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1 Orbital integrals and the Harish-Chandra
transform.

This section is devoted to a rapid review of some of the basic analysis that
is necessary in representation theory and the basic theory of automorphic
forms. Even though the material below looks complicated it is just the tip
of the iceberg.

1.1 Left invariant measures.

Let X be a locally compact topological space with a countable basis for
its topology. Let C(X) denote the space of all continuous complex valued
functions on X. If f is a function on X then we denote by supp(f) the
closure of the set

{x ∈ X|f(x) 6= 0}.

We set

Cc(X) = {f ∈ C(X)|supp(f) is compact}.

If K ⊂ X is a compact subset then we set CK(X) = {f ∈ C(X)|supp(f) ⊂
K}. Whe endow each space with the norm topology induced by

‖f‖K = max
x∈K
|f(x)|.

We endow Cc(X) with the union topology. That is, a subbasis of the topology
is the set consisting of the sets that are open subsets of some CK(X). With
this notation in place a complex measure on X is a continuous linear map
µ : Cc(X)→ C. A measure is a complex measure µ such that µ(f) is real if
f is real valued and non-negative if f takes on only non-negative values.
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Example 1 Let x ∈ X and let δx(f) = f(x). This measure is called the
Dirac delta function supported at x.

Example 2 Let Γ be a closed subset of X that is discrete in the subspace
topology. In particular, the intersection of Γ with a compact subset is finite.
Then µΓ(f) =

∑
γ∈Γ f(γ) defines a measure on X.

Example 3 Let X and Y be locally compact topological spaces. Let µ and
ν be respectively measures on X and Y . We now show how to associate a
measure µ×ν on X×Y If f ∈ Cc(X×Y ) and if y ∈ Y is fixed then we write
fy(x) = f(x, y). Set g(y) = µ(fy). One can show that g ∈ Cc(Y ). Thus
we can define (µ× ν)(f) = ν(g). One can show that if we first integrate out
Y (rather than X) one obtains the same measure. (We have just described
Fubini’s theorem.)

We now assume that X = G, a locally compact group with a countable
basis for its topology. Then a measure, µ , on G is said to be left invariant if

µ(f ◦ Lg) = µ(f).

Here Lg : G→ G is given by Lgx = gx. Similarly if Rgx = xg then µ would
be said to be right invariant if

µ(f ◦Rg) = µ(f).

It is a theorem of Haar that there always exists left (hence right) invariant
measure, µ, on G such that if f ∈ Cc(X) is non-negative and non-zero then
µ(f) > 0 and furthermore if ν is any left invariant complex measure then ν
is a scalar multiple of µ. We fix a non-zero left invariant measure, µ, on G.
We will generally write

µ(f) =
∫
G

f(g)dg.

if µ is a left invariant measure on G.
If f1 ∈ CC(G)and f2 ∈ C(G) (or vice-versa) then we define

f1 ∗ f2(g) =
∫
G

f1(x)f2(x−1g)dx.
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This function is in C(G) and if f1, f2 ∈ Cc(G) then so is f1 ∗ f2. We call
f1 ∗ f2 the convolution of f1 and f2. We note that the obvious calculation
implies that if f1, f2 ∈ Cc(G) then f1 ∗ (f2 ∗ f2) = (f1 ∗ f2) ∗ f3.

One direct application of this theorem is to locally compact fields. Our
reference for this material is to A. Weil, Basic Number Theory. Let F be a
locally compact non-discrete field. Then as a group under addition it is a
locally compact group. We therefore have a unique, up to positive multiple,
left (that is translation) invariant measure on F . In other words∫

F

f(x+ y)dx =
∫
F

f(x)dx

and the integral of a non-zero positive function is strictly positive. If F
is either R or C then we can take µ to be Lebesgue measure. One knows
from the classification of locally compact non-discrete fields that the other
alternative is that F be totally disconnected this implies that F has a neigh-
borhood basis of 0 consisting of compact open subsets . Set Max = ax for
a ∈ F× = F − {0}. We write µa(f) = µ(f ◦Ma−1). Then the distributive
rule implies that µa is a translation invariant measure thus we have

µa = c(a)µ, a ∈ F×.

Furthermore, we have c(ab) = c(a)c(b). If F = R then c(a) = |a| in the case
F = C then c(a) = |a|2. For a general locally compact, nondiscrete, totally
disconnected field one has (here c(0) = 0)

c(a+ b) ≤ max(c(a), c(b)).

Thus in all cases but F = C, c satisfies the triangle inequality on F . We
will call c(a) the norm of a and write |a| = c(a).

Now consider the group G = GL(n, F ) the group of invertible n × n
matrices over F with the subspace topology in Mn(F ) thought of as the n2-
fold product of F with itself. On F n we put the n-fold product measure of
µ with itself and denote it by dx. We have

Lemma 4 If F is a local field and g ∈ GL(n, F ) then∫
Fn
f(gx)dx = | det(g)|−1

∫
Fn
f(x)dx.
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Proof. We observe that GL(n, F ) is generated by elementary matrices.
That is matrices of the form

Di(a) =


1

. . .
a

. . .
1


(with zeros off of the main diagonal, a nonzero a in the i-th diagonal po-
sition, all the rest of the diagonal entries 1) and Tij(y) which is the linear
transformation of F n such that if Tij(y)x = z then zk = xk for k 6= j and
zj = xj + yxi. The translation invariance of the measure and the previous
lemma imply ∫

Fn
f(Tij(y)x)dx =

∫
Fn
f(x)dx

and ∫
Fn
f(Di(a)x)dx = |a|−1

∫
Fn
f(x)dx.

Since det(Tij(y)) = 1 and det(Di(a)) = a the lemma follows.

Corollary 5 Left invariant measure on GL(n, F ) is given by∫
GL(n,F )

f(X)
dX

| det(X)|n
.

Here
∫
GL(n,F ) f(X)dX means the restriction of the translation invariant mea-

sure on Mn(F )

In general if G is an n-dimensional Lie group with a finite number of
connected components then G is a locally compact, separable topological
group. In this case left invariant measures can be described using a bit of
differential geometry. Let Lie(G) denote, as usual, the Lie algebra of G. Let
ω be a differential form of degree n on G such that L∗gω = ω for all g ∈ G.
Here we recall that ω is an assignment x 7−→ ωx with ωx ∈

∧n T (G)∗x (T (G)x
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the tangent space at x) such that if X1, ..., Xn are vector fields on G then the
map

x 7−→ ωx((X1)x, ..., (Xn)x)

is of class C∞. The condition L∗gω = ω means that

ωgx((dLg)x(X1)x, ..., (dLg)x(Xn)x) = ωx((X1)x, ..., (Xn)x)

for all x ∈ G (here d, as usual, stands for differential) The standard way
of constructing such an ω is to choose a basis X1, ..., Xn looked upon as
left invariant vector fields ((dLg)xXx = Xgx) and choosing η ∈

∧n Lie(G)∗

such that η(X1, ..., Xn) = 1 then we identify Lie(G) with T (G)1. We set for
Y1, ..., Yn vector fields on G

ωx((Y1)x, ..., (Yn)x) = η((dLx)−1(Y1)x, ..., (dLx)−1(Yn)x).

We fix an orientation on G (we can choose the one corresponding to ω as
above). Then if f ∈ Cc(G) we can integrate f with respect to ω defining

µ(f) =
∫
G

fω.

This defines a Haar measure on G.

1.2 Some integration formulas

Let G be a locally compact separable topological groups. and let H be a
closed subgroup of G with a fixed left invariant measure dh. On X = G/H
and let π : G→ X be the natural projection given by π(g) = gH. We write
τ(g)(xH) = gxH, this defines the standard action of G on X. We endow
G/H with the quotient topology. That is, the open sets are the subsets
whose inverse images in G are open. A measure, ν, on X will be said to be
G-invariant if ν(f ◦ τ(g)) = ν(f) for all g ∈ G. We have

Theorem 6 Let G be unimodular (that is left invariant measures are right
invariant). There exists a unique measure ν on G/H such that∫

G

f(g)dg =
∫
G/H

∫
H

f(gh)dhdν(gH).

Furthermore, ν is a G-invariant measure on G/H.
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The displayed formula needs some explanation. The inner integral is

ν((f ◦ Lg)|H).

Which makes sense since (f ◦ Lg)|H ∈ Cc(H). The main point in the proof
is the fact that if φ ∈ Cc(G/H) then there exists f ∈ Cc(G) such that
φ(gH) =

∫
H
f(gh)dh. This is usually proved using a partition of unity

argument.
The following lemma is a special case of a much more general result but

it will be sufficient for our purposes.

Lemma 7 Let X be a locally compact, separable topological space and let
G be a locally compact, separable group acting on X. We assume that the
action is transitive (Gxo = X for some, hence all, xo ∈ X). We also assume
that if xo ∈ X then

Gxo = {g ∈ G|gxo = xo)

is compact. Then up to positive multiple there is at most one G-invariant
measure on X.

Proof. For this we need the following fact (which is not completely
trivial). Let xo ∈ X then X is homeomorphic with G/Gxounder the map
gGxo 7−→ gxo (for a proof see Helgason,S., Differential geometry, Lie groups,
and symmetric spaces, Academic Press, New York, 1978). Set K = Gxo . Fix
a Haar measure on K which will be denoted with the usual integral notation.
We define for f ∈ Cc(G;C),

T (f)(gxo) =
∫
K

f(gk)dk.

We leave it to the reader to check that T : Cc(G;C) → Cc(X;C) is linear
and continuous. Let µ be a G-invariant measure on X then we define

ν(f) = µ(T (f))

for f ∈ Cc(G;C). This is easily checked to be left invariant on G. We leave
it to the reader to see that it is a measure on G. The lemma now follows
from Haar’s theorem.
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We note that if µ is a nonzero left invariant measure on G then the
measure f 7−→ µ(f ◦ Rg) is also a left invariant measure. Thus Haar’s
theorem implies that there exists a function δ on G such that

µ(f ◦Rg) = δ(g)µ(f)

for all g ∈ G and f ∈ Cc(G).

Definition 8 The function δ is called the modular function of G. If G is
not understood then we will write δG for δ. It easily seen to be continuous.
If δ ≡ 1 then we say that G is unimodular.

If G is a Lie group then the left invariant measure can be gotten as
in the end of the previous section. Observing that x 7→ LgRg−1x is an
automorphism of G with differential Ad(g). We conclude

Lemma 9 If G is a Lie group then δ(g) = | det(Ad(g))|.

Exercise 10 Show that the measure f 7−→ µ(δ−1f) is invariant under the
right regular action.

Proposition 11 Let G be a locally compact, separable, unimodular topolog-
ical group and suppose that A and B are two closed subgroups of G such
that

AB = {ab|a ∈ A, b ∈ B} = G

and A∩B is compact. Then if dg denotes invariant measure on G, da denotes
left invariant measure on A and db right invariant measure on B then up to
constants of normalization∫

G

f(g)dg =
∫
A

∫
B

f(ab)dadb.

In other words if T : Cc(G)→ Cc(A×B) is given by T (f)(a, b) = f(ab), if µ
is left invariant on A, ν is right invariant on B then (µ× ν) ◦T is invariant
on G.
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Proof. Let A × B act on G by (a, b) · x = axb−1. Then the stability
group of 1 is {(k, k)|k ∈ A ∩B} which is compact. The measure (µ× ν) ◦ T
and Haar measure are both invariant under this action of A× B. Lemma 7
now implies the result.

Our main application of this result involves parabolic subgroups of re-
ductive groups over local fields. However we will take this chance to talk
about algebraic and reductive groups. Let F be a field and let F denote it’s
algebraic closure. Then an algebraic group is a subgroup, G, of GL(n, F )
whose elements are the locus of zeros of a finite number of polynomials on
Mn(F ) let I be the ideal of polynomials in F [xij, det−1] that vanish on G.
We say that G is defined over F if the ideal I is generated by elements of
F [xij, det−1]. We denote by GF the subgroup GL(n, F ) ∩ G and call the
subgroup the F -rational points. We say that G is reductive if the only nor-
mal subgroup consisting of unipotent elements (1 − X is nilpotent) is {1}.
We now assume that F is a nondiscrete locally compact field and G be is a
reductive algebraic group defined over F and let G be the F -rational points.
We will now give some representative examples. We will think of G as a
group with points in the algebraic closure. We first look at the case of
F = R. For a more detailed discussion of this case ones hould also consult,
N.Wallach, Real Ruductive Groups (RRGI) I, Chapter 2.

Example 12 F = R. G = GL(n,C) and G = GL(n,R).

Example 13 F as above G = SL(n,C) and G = SL(n,R).

One can have algebraic groups isomorphic over the algebraic closure but
having non-isomorphic F -rational points.

Example 14 F = R. G = O(n,C) and G = O(p, n−p). Here on Rn we put
symmetric form of signature (p, n− p) and G is the corresponding indefinite
orthogonal group. These are isomorphic over R if and only if the signatures
are the same or reversed.

Example 15 The real forms of the classical groups over C. See for example
Goodman,Wallach,Representations and invariants of the classical groups..

We will now look at F a non-archimedian locally compact field with
algbraic closure F̄ . Then the first examples are essentially the same
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Example 16 G = GL(n, F̄ ) and G = GL(n, F ).

Example 17 G = SL(n, F̄ ) and G = SL(n, F ).

More generally we have for the other classical groups over an algebraically
closed fieldO,SO, Sp we note that each is given as the group leaving invariant
a bilinear form (and in the case of SO of determinant 1). If the form has
coefficients in the field F then one can take the group leaving invariant that
form.as G.

The parabolic subgroups are defined to be the F -rational points algebraic
subgroups of G that are defined over F that contain a maximal connected
(in the Zariski topology– that is, the closed subsets are the loci of zeros of
polynomials) solvable subgroup (Borel subgroup). We will look at some of
the examples. For G = GL(n, F ) or SL(n, F ) then up to conjugacy in G we
are talking about sunbroups of the following form

g1 ∗ ∗ ∗ ∗
0 g2 ∗ ∗ ∗
...

... . . . ...
...

0 0 0 gk−1 ∗
0 0 0 0 gk


with gi an ni×ni invertible matrix (the product of the determinants must be
1 in the SL case) and n1 + ...+ nk = n. For the orthogonal and symplectic
cases if we take the symmetric form to have matrix of the symetric form to
be 

0 0 0 0 1
0 0 0 1 0
...

... J
...

...
0 1 0 0 0
1 0 0 0 0


with J having ones on the indicated diagonal and zeros elsewhere and skewsym-
metric form to be [

0 J
−J 0

]
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Then up to conjugacy the parabolic subgroups are the intersections of parabolic
subgoups of GL(n, F ).

In all cases if we chose a maximal compact subgroup, K, of G and a
parabolic subgoup, P , over F then we have

G = KP .

One can show that reductive groups and compact groups are unimodular.
(If F = R then δ(g) = | detAd(g)| which is 1 for a reductive group.) We
can thus apply Proposition 10 and we see that if dk and drp are respectively
invariant and right invariant measures on K and P then up to constants of
normalization we have∫

G

f(g)dg =
∫
K×P

f(kp)dkdrp.

Also of dp is left invariant measure then we have∫
G

f(g)dg =
∫
P×K

f(pk)dpdk.

A parabolic group over F can be written in the form MN with M a reductive
group over F and N the unipotent radical of P . For our context a group over
F is said to be unipotent if there is an ascending series {1} = N0 ⊂ N1 ⊂
... ⊂ Nr = N with each Ni closed and normal and Ni/Ni−1 isomorphic as
an algebraic group with the additive group of F . This in particular implies
that δP is identically equal to 1 on N . One can refine the above integration
formulas as follows.

Proposition 18 Let G be a reductive group over F and let P be a parabolic
subgroup with P = MN a Levi decomposition. Then up to constants of
normalization we have∫

G

f(g)dg =
∫
N×M×K

δP (m)−1f(nmk)dpdk.

The following standard material is used in the definition of parabolic
induction.

Lemma 19 If f ∈ C(K ∩ P\K) = C(P\G) then there exists ϕ ∈ Cc(G)
such that

f(k) =
∫
P

ϕ(pk)dp.
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Proof. Consider the map p, k 7−→ pk of P × K onto G. Then if pk =
p1k1 with p, p1 ∈ P and k, k1 ∈ K then (p1)−1p = k1k

−1 = m ∈ K ∩ P .
Hence p1 = pm−1 and k1 = mk. This implies that if we consider the left
action m(p, k) = (pm−1,mk), m ∈ K ∩ P then G is homeomorphic with
K ∩P\(P ×K). Let φ ∈ Cc(P/K ∩P ) and define ϕ(p, k) = φ(p)f(k). Then
ϕ(pm.m−1k) = ϕ(p, k) for all p ∈ P , k ∈ K, m ∈ P ∩K. Assume that∫

P

φ(p)dp = 1.

Then the formula in the statement is satisfied.
Here is the key integration formula in this context. First we need some

notation. If u ∈ C(P ) and u(pm) = u(p) for p ∈ P and m ∈ P ∩ K then
we extend u to G by u(pk) = u(p), for p ∈ P and k ∈ K. If h ∈ C(K) and
h(mk) = h(k) for m ∈ K ∩ P and k ∈ K then we extend h to G by setting
h(pk) = h(k), p ∈ P, k ∈ K. Let δ be the modular function of P . Then since
δ|K∩P = 1 we may extend it to G as above.

Lemma 20 Let f ∈ C(K ∩ P\K) then∫
K

f(k)dk =
∫
K

f(kg)δP (kg)dk

for all g ∈ G.

Proof. Let ϕ be as in the previous lemma. Then∫
K

f(k)dk =
∫
G

ϕ(x)dx =
∫
G

ϕ(xg)dg.

If x ∈ G then we write x = p(x)k(x) for some choice of p(x) and k(x) the
ambiguity of the choice will be irrelevant in the rest of the argument. We
continue∫

G

ϕ(xg)dx =
∫
P×K

ϕ(pkg)dpdk =
∫
P×K

ϕ(pp(kg)k(kg))dpdk

=
∫
P×K

δ(p(kg))ϕ(pk(kg))dpdk =
∫
K

δ(p(kg))f(k(kg))dk.

Since δ(p(kg)) = δ(kg) and f(k(kg)) = f(kg) the lemma follows.
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In the case when F is R then all of the groups we have been studying
are all Lie groups. Let p = Lie(P ),m = Lie(M) and n = Lie(N). Then
[p, n] ⊂ n and if n ∈ N then Ad(n) on p is unipotent (the only eigenvalue
over the algebraic closure is 1). This implies that if n ∈ N and m ∈M then
θθ

δP (mn) = | det(Ad(m)|n)|.

1.3 Orbital Integrals I. SL(2,R)

Let G be a locally compact, seperable, unimodular, topological group with
invariant measure dg. Let γ ∈ G and set Gγ = {g ∈ G|gγg−1 = γ}. Then
Gγ is closed subgroup of G. We will use the notation dxGγ for G-invariant
measure on G/Gγ asserted to exist in Proposition 6. Note that it is uniquely
determined by fixed choices of left invariant measures on G and on Gγ.The
integrals

F (γ) =
∫
G/Gγ

f(gγg−1)dgGγ

will be called orbital integrals. We note that this makes formal sense since
ghγh−1g−1 = gγg−1 for h ∈ Gγ. It is, however, not easy to determine when
(if ever) this integral converges. In this section we will concentrate on the
case when G = SL(2,R) and the next we will concentrate on the case when
G is a more general reductive group over R. There are many references for
this material but we will use Chapter 7 in Real Reductive Groups I (RRGI).
We will not give details in the case of G = SL(2,R) (exept for the socalled
nilpotent orbital integrals), rather we will write out formulae details can be
found in RRGI section 7.5. The formulae are relatively easy consequences
of the more general results later in this section. Let

h =
[

0 1
−1 0

]
, H =

[
1 0
0 −1

]
, X =

[
0 1
0 0

]
.

Then every element in G is conjugate to one of the form exu with x ∈ R and
u ∈ {h,H,X}. We chose for a maximal compact subgroup of G the group
K = SO(2). That is K = {eθh|θ ∈ R} since

eθh =
[

cos θ sin θ
− sin θ cos θ

]
.
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We also note that since dg is invariant we will get the same orbital integrals
from

f̄(g) =
1

2π

∫ 2π

0
f(eθhge−θh)dθ.

We will thus assume that f = f̄ until further notice (this is no loss in
generality since all orbital integrals of f are exactly the same as those of
f̄ . If θ = 0 or θ = π then γ = ±I and the integral is just F (±I) = f(±I).
We will now concetrate on θ 6= 0, π. It is also convenient to normalize the
integral and define

Ff (θ) = sin θF (eθh).

Using standard integration formulas one finds that (there are constants of
normalization that we will ignore)

Ff (θ) = sin θ
∫ ∞

0
sin(2t)f

(
exp

(
θ

[
0 e2t

−e−2t 0

]))
dt.

And

Ff (θ) =
sin θ
|θ|

∫ ∞
|θ|

f

(
exp

(
sgnθ

[
0 u+ (u2 − θ2)

1
2

−u+ (u2 − θ2)
1
2 0

]))
du.

Notice that for θ 6= 0 the function Ff (θ) is easily seen to be smooth (continu-
ous derivatives of all orders). Thus there is no problem with the convergence
of the corresponding orbital integral in for θ 6= 0 or π (notice that sinπ = 0
so Ff says nothing about the orbital integral at −I). The second formula
yields

lim
θ→0+

Ff (θ) =
∫ ∞

0
f

(
1 2u
0 1

)
du

and

lim
θ→0−

Ff (θ) = −
∫ ∞

0
f

(
1 −2u
0 1

)
du.

Thus6=

lim
θ→0+

Ff (θ)− lim
θ→0−

Ff (θ) =
1
2

∫ ∞
−∞

f

(
1 u
0 1

)
du.
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A direct calculation of derivatives

lim
θ→0

d

dθ
Ff (θ) = 2f(I).

This formula is a critical first step in the proof of the Plancherel fomula for
G.

We next look at the integrals corresponding to γ = exp tH =
[
et 0
0 e−t

]
.

Then if t = 0 then γ = I thus we will consider the case when t 6= 0. We will
do a similar normalization setting for γ = expxH, x 6= 0

FA
f (x) = | sinhx|

∫
G/Gγ

f(gγg−1)dg.

The superscript A corresponds to A = {expxH|x ∈ R} (to be consistant we
should set F T

f = Ff with T = {exp θh|θ ∈ R}. Then we have

FA
f (x) =

ex

2

∫ ∞
−∞

f (expxH exp yX) dx.

As before this implies that the orbital integral converges for all x 6= 0. This
implies the following beautiful formula

lim
θ→0+

F T
f (θ)− lim

θ→0−
F T
f (θ) = lim

x→0
FA
f (x).

There is one more case to do. We set N = {expxX|x ∈ R}. This time
we look at γ = exp(xX) with x 6= 0. We will give a bit more detail in this
case since this case is not covered in RRGI. We first note that if P = ±AN
then P is a parabolic subgroup of G. Since ±I ∈ K we see that G = KAN .
We note that the right invariant measure on AN can be described as follows∫

AN

f(s)drs =
∫ ∞
−∞

∫ ∞
−∞

e2tf

([
et 0
0 e−t

] [
1 y
0 1

])
dtdy.

One can check this formula directly observing that it is obviously invariant

under right multiplication by
[

1 u
0 1

]
for u ∈ R and if we multiply on the

right by
[
es 0
0 e−s

]
then we get

∫ ∞
−∞

∫ ∞
−∞

e2tf

([
et 0
0 e−t

] [
1 y
0 1

]
es 0
0 e−s

)
dtdy =
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∫ ∞
−∞

∫ ∞
−∞

e2tf

([
et+s 0

0 e−t−s

] [
1 e−2sy
0 1

])
dtdy =

∫ ∞
−∞

∫ ∞
−∞

e2(t+s)f

([
et+s 0

0 e−t−s

] [
1 y
0 1

])
dtdy =

∫ ∞
−∞

∫ ∞
−∞

e2tf

([
et 0
0 e−t

] [
1 y
0 1

])
dtdy.

We next observe that Gγ = ±N . The invariant measure on G/N is
defined up to normalization by the condition that∫

G/N

∫
N

f(gn)d(gN) =
∫
G

f(g)dg.

Thus by the above, if φ ∈ Cc(G/N) then up to normalization we have∫
G/N

φ(gN)d(gN) =
∫
K

∫ ∞
−∞

φ(k exp(tH)N)e2tdtdk.

Thus in this case we have if x 6= 0 then (recall that f = f̄)

F

([
1 x
0 1

])
=
∫ ∞
−∞

f

([
1 e2tx
0 1

])
e2tdx =

1
|x|

∫ ∞
0

f

([
1 sgn(x)u
0 1

])
du.

The upshot is that every orbital integral for SL(2,R) can be obtained by
some sort of limiting procedure from the orbital integrals for the semisimple
elements (γ conjugate to an element of K or ±A).

1.4 Orbital integrals II. Elliptic elements in groups
over R

In the last section we saw that there was an apparent hierarchy of orbital
integrals. The elliptical (i.e. γ ∈ K) at the top of the heap. We will begin
this section with that class. Let K be a maximal compact subgroup of G.
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Let g = Lie(G) and k = Lie(K) We note that G can be realized as a closed
subgroup of GL(n,R) (for some n) that is invariant under transpose (g 7→ gT )
such thatK = {g ∈ G|gTg = I}. Indeed, this may be taken to be a definition
of a linear reductive group, in any event we will assume this and note that it is
true for all of our examples. We therefore assume that g is a Lie subalgebra
of Mn(R) that is invariant under transpose. We set B(X,Y ) =tr(XY ).
Then B is a symmetric and G-invariant (B(Ad(g)X,Ad(g)Y ) = B(X,Y ) for
g ∈ G) bilinear form. We set p = {X ∈ g|B(X,Y ) = 0 for Y ∈ k}. Let
θ(g) = (gT )−1 then θ defines an involutive automorphism of G and K is the
fixed point set. We also note that θ(X) = −X for X ∈ p. We set

K ′′ = {k ∈ K| det((I − Ad(k))|p) 6= 0}.

This is the set of all k ∈ K such that Gk ⊂ K. In general this set may be
empty even if the center of G is contained in K.

Example 21 G = SL(n,R) with n ≥ 3. Then K = SO(n). Every element
is conjugate (in K) to one of the form k1 0 0

0 k2 0

0 0 . . .


with each ki in SO(2) if n is even and if n is odd all but the last (which
must be 1× 1 and equal to 1). The centralizer of any such element contains
elements of the form  a1I 0 0

0 a2I 0

0 0 . . .


with ai > 0.

Harish-Chandra observed that the situation with K ′′ 6= ∅ is the basic case
and developed methods to reduce to this case. Before we pursue them we
will analyze this case. We note that the set

G[K ′′] = {gkg−1|g ∈ G, k ∈ K ′′}

is open in G. We will be assuming until further notice that it is non-empty.
One has the following integratal formula (which is a consequence of the Weyl
integration for G and K).
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Lemma 22 There exists a positive constant such that∫
G[K′′]

f(g)dg = c

∫
K

| det((1− Ad(k))|p)|
∫
G

f(gkg−1)dgdk.

This integration formula is the basis of the estimation that is used in
finding general classes of functions for the convergence of orbital integrals.
We will jump to the end. If f ∈ C∞c (G) then we define a function

Qf (k) =
∫
G

f(gkg−1)dg

on K with domain those k such that the integral converges absolutly. Then
we have

Lemma 23 If f ∈ C∞c (G) then K ′′ is contained in the domain of Qf and
Qf ∈ C∞(K ′′).

As in the case of SL(2,R) it is useful to add a factor to the orbital integral
which we will now describe. We will assume that the group G is of inner
type. This means that Ad(G) = Ad(Go) with Go the identity component
of G. Our assumption that K ′′ 6= ∅ implies that a maximal torus (compact,
connected abelian subgroup) of K is a Cartan subgroup of G (that is the
complexified Lie algebra is maximal abelian and consists of diagonalizable
elements). Fix a maximal torus, T in K. Let h be the complexification
of Lie(T ). Then the elements of ad(h) are simultaneously diagonalizable.
Let gC denote the complexified Lie algebra of G and for each α ∈ h∗ we set
gα = {X ∈ g|ad(h)X = α(h)X, h ∈ h}. We set Φ = {α ∈ h∗−{0}|gα 6= {0}}.
Then the standard theory implies that the spaces gα are all one dimensional
and

g = h
⊕⊕

α∈Φ

gα.

We make a choice, Φ+, of positive roots for Φ (i.e. Φ+ is closed under as much
addition as Φ is and such that if α ∈ Φ that exactly one of the elements ±α
is in Φ+). We note that Ad(t)|gα = tαI for t ∈ T . We write ρ = 1

2

∑
α∈Φ+ α

and we assume that ρ is the differential of a group homomorphism (t 7−→ tρ)
of T into the circle group (we note that this is possible by possibly replacing
G by a two-fold covering).
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We write

∆(t) = tρ
∏
α∈Φ+

(1− t−α) =
∏
α∈Φ+

(t
α
2 − t−

α
2 ).

Notice that if G = SL(2,R)

t =
[

cos θ sin θ
− sin θ cos θ

]
then

∆(t) = 2i sin θ.

We write

Ff (t) = ∆(t)Qf (t)

and note that this function is defined on T ∩ K ′′. Except for a factor
of 2i this is consistant with the notation of the previous section. We set
T ′ = {t ∈ T |tα 6= 1, α ∈ Φ} = {t ∈ T |∆(t) 6= 0} ⊂ T ∩K ′′. We look upon
Lie(T ) as left invariant differential operators (as usual) and U(Lie(T )) as the
algebra of differential operators generated by Lie(T ). We denote by B(T ′)
the space of all f ∈ C∞(T ′) such that

σD(f) = sup
t∈T ′
|Df(t)| <∞

for all D ∈ U(Lie(T )). We endow B(T ′) with the topology induced by the
seminorms σD for D ∈ U(Lie(T )).

The fundamental theorem of Harish-Chandra in this context is

Theorem 24 If f ∈ C∞c (G) then Ff ∈ B(T ′). Furthermore, the map
f 7−→ Ff is continuous into B(T ′) (indeed it extends to a continuous mapping
of the Harish-Chandra Schwartz space to B(T ′)).

The hardest part of this result is the parenthetic remark and the topolo-
gies in question will be explained in the next section. Harish-Chandra’s proof
uses the theory of the discrete series for G. The proof in RRGI is straight
analysis and similar ideas have been used in the non-Archimedian case by
Rader and Silberger. The point here is that this implies that the singulari-
ties of Ff thought of as a function on all of T are at worst jump singularities
(e.g. they are of the same nature as we encountered for SL(2,R).

The next step is to look at more general diagonalizable elements (as in
the case of SL(2,R)) For this and for later developments in representation
theory we will need the notion of the Harish-Chandra transform.
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1.5 The Harish-Chandra transform

For simplicity we will assume that G is connected. We will drop the as-
sumption that K ′′ 6= ∅. The form B(X,Y ) =tr(XY ) on gC is symmetric,
invariant and non-degenerate. Let n = dimG. We will think of (gC , B)
as the pair Cn and the usual dot product. Thus Ad : G → SO(n,C) is a
group homomorphism. Let G̃ denote the (algebraically) simply connected
covering group of G. Then Ad lifts to a homomorphism, µ, of G̃ into
Spin(n,C). Let (δ, S) denote the spin representation of Spin(n,C). Fix a
Hilbert space structure on S that is invariant under the action of a maximal
compact subgroup of G̃ containing the inverse image of K. We denote by
‖...‖ denote the corresponding Hilbert-Schmidt norm on End(S). We note
that g 7−→ ‖δ(µ(g))‖ is well defined on G. Hence on G. We write ‖g‖ for
‖δ(µ(g))‖. We note that

‖k1gk2‖ = ‖g‖ , k1, k2 ∈ K, g ∈ G.

If you are uncomfortable with the spin representation but like the theorem
of the highst weight then we have defined a multiple of the irreducible repre-
sentation with highest weight ρ. For our purposes there are four important
spaces of functions on G which we will now describe. We look upon g as
the left invariant vector fields on G (as is usual). We can also look at the Lie
algebra as right invariant vector fields, for the right invariant fields (involv-
ing differentiation on the left) we will write XL The algebra of differential
operators generated by g is denoted U(g). When we use right invariant
differential operators we will write DL. For the sake of consistancy we will
use the notation DR for the operator D to emphasize the fact that it involves
differentiation on the right. Also, we write G = oGA with oG the intersec-
tion of the kernels of all continuous homomorphisms of G into R>0 and A is
a subgroup of G isomorphic with the additive group of Rn for some n (but
should be thought of as the multiplicative group (R>0)n). The group A is
called the split component of G. Then the exponential mapping of Lie(A) to
A is an isomorphism. We denote by log the inverse map. Fix a Euclidean
norm, |...|, on Lie(A). We set σ(g) = | log(a)| if g = g1a with g1 ∈ oG and
a ∈ A.

Example 25 If G = GL(n.R) or SL(n.R) and H is the subgroup of diag-
onal elements of G then AH is the group of diagonal elements with positive
diagonal entries and TH is the subgroup of the diagonal with diagonal entries
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±1. nσ(g) = | log(| det(g)|)|. Finally, there are constants C1, C2 > 0 such
that C1φ(g) ≤ ‖g‖ ≤ C2φ(g) with

φ(g)2 =
∫
K

(∆2
1∆2

2 · · ·∆2
n−1)(kgk−1)

|∆n(g)|n−1 dk

Here ∆i(g) is the determinant of the upper left corner i× i block in g.

The first space is C∞c (G). Here if Ω is a compact subset of G then we set
C∞Ω (G) = {f ∈ C∞c (G)|supp(f) ⊂ Ω}. We endow C∞Ω (G) with the topology
induced by the seminorms

pΩ,D(f) = sup
x∈Ω
|Df(g)|

for D ∈ U(g). Here we could use either the right invariant or the left invariant
version (or both). We put the union topology on C∞c (G). The next is the
Harish-Chandra Schwartz space. Let C(G) denote the space of all smooth
functions on G such that

qk,l,D,D′(f) = sup
g∈G

(1 + log ‖g‖)k(1 + σ(g)l ‖g‖ |DLD
′
Rf(g)| <∞

for all k, l and all D,D′ ∈ U(g). We endow C(G) with the topology induced
by these seminorms. The next space is similar, let C1(G) denote the space
of all smooth functions on G such that

q1,k,l,D,D′(f) = sup
g∈G

(1 + log ‖g‖)k(1 + σ(g))l ‖g‖2 |DLD
′
Rf(g)| <∞

for all k, l and all D,D′ ∈ U(g). We endow C1(G) with the topology induced
by these seminorms. This is the socalled L1-Schwartz space. The final
example was introduced by Casselman and the author. We denote by S(G)
the space of all smooth functions on G such that

νk,l,D(f) = sup
g∈G
‖g‖k (1 + σ(g))l|Df(g)| <∞

for all k, l and all D ∈ U(g). We endow S(G) with the topology induced by
these seminorms.

The hierachy of these spaces is

C∞c (G) ⊂ S(G) ⊂ C1(G) ⊂ C(G)
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with continuous inclusion. One can show that every one of these spaces is
closed under the left and right action of U(g).

We note that ‖g‖ = ‖g−1‖ so ‖g‖2 = ‖g‖ ‖g−1‖ ≥ ‖1‖ ≥ 1. Using
standard integration formulas for the socalled KAK decomposition one can
show

Lemma 26 If k is sufficiently large then∫
G

(1 + σ(g))−k(1 + log ‖g‖)−k ‖g‖−2 dg <∞.

In particular, C(G) ⊂ L2(G) and C1(G) ⊂ L1(G).

We will use the notation ‖...‖G for the norm defined above for G (note
that it is invariant under left and right multiplication by elements of the
center of G. Let P be a parabolic subgroup of G with unipotent radical N .
We choose a Levi factor, M , of P and we use the decomposition M = oMAM
we did for G with AM the split component. Then an element of P can be
written uniquely in the form g = n(g)a(g)m(g) with m(g) ∈ oM , a(g) ∈ AM
and n(g) ∈ N . Also, G = KP thus if g ∈ G then we can write

g = n(g)a(g)m(g)k(g)

with k(g) ∈ K and m(g) ∈ oM , a(g) ∈ AM and n(g) ∈ N . We note that
only the cosets M ∩Kk(g) and m(g)M ∩K are well defined. The following
is a variant of a result of Harish-Chandra (for a proof see 4.5.6 in RRGI).
We write N̄ = θ(N).

Theorem 27 If r > 0 is sufficiently large then for fixed d we have∫
N̄

δP (a(n̄))
1
2 ‖m(n̄)‖−1

M (1 + log ‖m(n̄)‖)d(1 + | log(δP (a(n̄)))|)−k <∞.

The point of this ugly result is that if f ∈ C(G) then the integral

fP (m) = δP (m)−
1
2

∫
N

f(mn)dn

converges absolutely for m ∈M . One has (cf. Theorem 7.2.1 in RRGI).

Theorem 28 The map f 7−→ fP defines a continuous linear map from C(G)
into C(M).

We will call fP the Harish-Chandra transform of f . It is ubiquitous in
Harish-Chandra’s approach to representation theory and automorphic forms.
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1.6 Orbital Integrals III. General semisimple elements.

We retain the assumptions of the previous section. A subgroup H of G
is said to be a Cartan subgroup of G if it is the set of real points of a
Cartan subgroup of G defined over R. That is to say, there is a maximal
abelian subalgebra of gC , h, consisting of diagonalizable (e.g. semisimple)
elements such that h ∩ g is a real form of h and finally H is the subgroup
{g ∈ G|Ad(g)|h = I}. Fix such a group. Then H is a reductive group of
the type we are studying. Hence H = THAH with TH a compact with its
identity component a torus and AH isomorphic with (R>0)n.

Example 29 G = GL(n,R). Let 2k ≤ n. Let H denote the subgroup of G
consisting of block diagonal matrices

a1t1 0 · · · 0 0
0 a2t2 · · · 0 0
...

... . . . ...
...

0 0 · · · aktk 0
0 0 · · · 0 D


with ti an element of SO(2) and ai > 0 for i = 1, ..., k and D a diagonal
n− 2k × n− 2k matrix.

Fix such a Cartan subgroup. Let Φ be the root system of gC with respect
to h. Let X̄ denote complex conjugation in gC with respect to g. If α ∈ Φ
then set ᾱ(h) = α(h̄). Choose a system of positive roots Φ+ such that if
α ∈ Φ+ and if ᾱ 6= −α then ᾱ ∈ Φ+. Let Σ = {α ∈ Φ+|ᾱ 6= −α}. We set

∆H = hρ
∏

α∈Φ+−Σ

(1− h−α)
∏
α∈Σ

|1− h−α|.

Note that if H = T as in section 1.4 we have the same factor. In the
case of G = SL(2,R) and if H is the group of diagonal elements of G then

∆H

([
et 0
0 e−t

])
= | sinh t|. As before H ′ = {h ∈ H|∆H(h) 6= 0}.We note

that if γ ∈ H ′ then Gγ = H.
We define for γ ∈ H ′

FH
f (γ) = ∆H(γ)

∫
G/H

f(gγg−1)dg.
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Let nC =
∑

α∈Σ gα and let P = {g ∈ G|Ad(g)nC ⊂ nC}. Then P is a
parabolic subgroup of G with unipotent radical N and nC is the complexifi-
cation of Lie(N). Furthermore, if M = {g ∈ G|ga = ag, a ∈ A} then M is
a Levi factor of P . Finally, A is a split component of M and T is a Cartan
subgroup of oM .

With this notation we have (see RRGI 7.4.10).

Proposition 30 Let f ∈ C(G). Define f̄(g) =
∫
K
f(kgk−1)dk. Let

ua(m) = f̄P (ma) for m ∈ oM and a ∈ A. Then

FH
f (ta) = F T

ua(t)

for t ∈ T ′ and a ∈ A.

Let H ′′ = T ′A. Then we see that the integral defining FH
f (γ) converges

absolutely for γ ∈ H ′′. Let σ be as above for H. We denote by C(H ′′) the
space of all smooth f on H ′′ such that

ξk,D(f) = sup
h∈H′′

(1 + σ(h))k|Df(h)| <∞

for all k and all D ∈ U(Lie(H)) endowed with the topology induced by the
seminorms ξk,D. We have (cf. RRGI, Theorem 7.4.10)

Theorem 31 The map f 7−→ FH
f defines a continuous linear map of C(G)

into C(H ′′).

2 Representation Theory

In this section we we develop just enough representation theory to study the
terms that occur in the trace formula.

2.1 Definitions and preliminary results.

Let G be a locally compact, separable, topolgical group. We will write the
left invariant measure as dg (as usual). If H is a topological vector space
(over C) then a representation of G on H is a group homomorphism, π, of G
into GL(H) (the continuous, linear bijections with continuous inverses) such
that the map of G×H to H

g, h 7−→ π(g)h
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is continuous. That is, we will, at a minimum, be looking at strongly
continuous representations. Generally, H will either be a Hilbert space or
a Frèchet space. In either case a continous bijection is automatically an
element of GL(H). If H is a Hilbert space then (π,H is called a Hilbert
representation and if π(g) is a unitary operator for each g ∈ G then (π,H)
will is called a unitary representation of G.

We will need a result of Banach (the principal of uniform boundedness).

Theorem 32 Let V,W be Banach spaces and let U be a subset of L(V,W ).
Suppose that for each v ∈ V there exists Cv < ∞ such that ‖Tv‖ ≤ Cv ‖v‖
for all T ∈ U . Then there exists C <∞ such that ‖T‖ ≤ C for all T ∈ U .

This surprising theorem is a consequence of the Baire category theorem.
A proof can be found in K.Yoshida, Functional Analysis. A useful criterion
for when a group homomorphism from G to GL(H) is a representation is

Lemma 33 Let H be a Hilbert space, let G a locally compact, separable
topological group and let π be a homomorphism of G into bounded, invertible
operators on H. Then π defines a representation of G (that is, it is contin-
uous in the strong topology) if and only if the following two conditions are
satisfied

1. There is a dense subspace, V ⊂ H such that if v ∈ V,w ∈ H the
function cv,w(g) = 〈π(g)v, w〉 is continuous.

2. If K is a compact subset of G then there exists a positive constant CK
such that ‖π(g)‖ ≤ CK for all k ∈ K.

Proof. If (π,H) is a representation then condition 1. is clearly satisfied.
The strong continuity implies that the functions

g 7−→ ‖π(g)v‖

are continuous on G. Condition 2 now follows from the principle of uni-
form boundedness. We now consider the converse. So we assume the two
conditions. We observe that they imply

1′. cv,w is continuous for all v, w ∈ H.
This is proved by a “3ε argument”. Let v ∈ H, g ∈ G, {vj} a sequence

in V such that lim vj = v, {gn} a sequence in G such that lim gn = g. Then
there exists a compact subset K of G containing g and each of the gn. We
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must show that limn→∞ cv,w(gn) = cv,w(g). We note that Condition 2 implies
that ‖π(k)‖ ≤ CK <∞ for all k ∈ K. Set C = CK . We have

|cv,w(gn)− cv,w(g)|
= |cv,w(gn)− cvj ,w(gn) + cvj ,w(gn)− cvj ,w(g) + cvj ,w(g)− cv,w(g)|
≤ |cv,w(gn)− cvj ,w(gn)|+ |cvj ,w(gn)− cvj ,w(g)|+ |cvj ,w(g)− cv,w(g)|
= | 〈π(gn)(v − vj), w〉 |+ |cvj ,w(gn)− cvj ,w(g)|+ | 〈π(g)(vj − v), w〉 |
≤ 2C ‖v − vj‖ ‖w‖+ |cvj ,w(gn)− cvj ,w(g)|.

Now let ε > 0 be given then there existsN such that if j ≥ N then ‖v − vj‖ <
ε. Fix one such j. There exists N1 such that if n ≥ N1 then |cvj ,w(gn) −
cvj ,w(g)| < ε. Putting all of this together we have that if n ≥ N1 then
|cv,w(gn)− cv,w(g)| < (2C + 1)ε. This proves 1′.

We will now begin the proof of the lemma. Ideas in this proof will be
used in the next section. Let Ho be the subspace of all v ∈ H such that the
map g 7−→ π(g)v is continuous from G to H. Then using an argument as
in the proof of 1′. one can show that condition 2. implies that Ho is closed.
Also, it is not hard to see that if we can show that Ho = H then the result
is proved.

If f ∈ Cc(G) then we set

µf (v, w) =
∫
G

f(g) 〈π(g)v, w〉 dg.

If the support of f is contained in the compact set K and if φ ∈ Cc(G) is
such that φ(k) = 1 for all k ∈ K (such a φ exists by Urysohn’s theorem)
then we have

|µf (v, w)| ≤ CK ‖φ‖1 pK(f) ‖v‖ ‖w‖ .

Thus the Riesz representation theorem implies that for each v ∈ H there
exists an element Tf (v) ∈ H such that 〈Tf (v), w〉 = µf (v, w). It is easy to
see that Tf is a linear map of H to H. The estimate above now shows that
‖Tf (v)‖ ≤ CK ‖φ‖1 pK(f) ‖v‖. Thus the map f 7−→ Tf of the completion of
Cc(G) into L(H,H) is strongly continuous. We note that

TLgf = π(g)Tf .

Hence Tf (H) ∈ Ho for all f ∈ Cc(G). Now, since G is separable and locally
compact we can find a sequence of open subsets Uj ⊂ G such that Uj is
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compact, Uj ⊃ U j+1 and ∩jUj = {1}. Uryson’s lemma implies that there
exists φj ∈ Cc(G) such that the support of φj is contained in Uj, φj(x) ≥ 0
for all x ∈ G and φj(x) = 1 for all x ∈ U j+1. Set uj(x) = φj(x)

‖φj‖1
. Then if

v, w ∈ H

lim
j→∞

〈
Tuj(v), w

〉
= 〈v, w〉 .

Before we prove this we will show how it completes the proof.
We need to show that H⊥o = 0. But if w ∈ H⊥o then

〈
Tuj(w), w

〉
= 0 for

all j. Hence the limit formula implies that 〈w,w〉 = 0.
To prove the limit formula we note that〈

Tuj(v), w
〉
− 〈v, w〉 =

∫
G

uj(g)(cv,w(g)− cvw(1))dg.

Let ε > 0 be given then there exists N such that if j ≥ N then

|cv,w(g)− cvw(1)| < ε for g ∈ Uj.

Thus if j ≥ N then∫
G

uj(g)(cv,w(g)− cvw(1))dg ≤ ε

∫
G

uj(g)dg = ε.

This completes the proof.

Definition 34 If (π,H) is a Hilbert representation of G then the operator
Tf as defined in the above proof will be denoted π(f).

We note that if (π,H) is unitary then the operator norm of π(f) is less
than or equal to the L1-norm. Thus in this case π(f) is meaningful for f in
L1(G).

Definition 35 If G is a locally compact separable topological group then a
sequence {uj} of non-negative functions in Cc(G) such that ‖uj‖1 = 1 for all
j and there exist open subsets Uj of G such that Uj is compact, Uj ⊃ U j+1

and ∩jUj = {1} and the support of uj is contained in Uj then {uj} will be
called a delta sequence or approximate identity on G.

In the course of the proof of Lemma 33 we have also proved
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Lemma 36 Let (π,H) be a Hilbert representation of G. Let {uj} be a delta
sequence on G. Then if u, v ∈ H then

lim
i→∞
〈π(uj)u, v〉 = 〈u, v〉 .

The following is known as the Weyl unitary trick (however, Weyl called
it the unitarian trick)..

Lemma 37 Assume that K is a compact topological group and that (π,H) is
a Hilbert representation of K. Let 〈..., ...〉 be the Hilbert space structure on H.
Then there is an inner product (..., ...) on H such that (π(k)v, π(k)w) = (v, w)
for all k ∈ K, v, w ∈ H and such that the topology on H induced by (..., ...)
is the same as the original topology. In particular, if (σ, V ) is a finite
dimensional represntation of K then we may assume that it is unitary.

Proof. We assume that
∫
K
dk = 1. We define

(v, w) =
∫
K

〈π(k)v, π(k)w〉 dk, v, w ∈ H.

Then since K is compact there exists a constant C > 0 such that

‖π(k)‖ ≤ C, k ∈ K.

This implies that if v is a unit vector then

〈π(k)v, π(k)v〉 ≤ C ‖π(k)v‖ , k ∈ K.

Thus

〈π(k)v, π(k)v〉 ≥ C−2 〈v, v〉 , k ∈ K, v ∈ H.

We conclude that

C−2 〈v, v〉 ≤ (v, v) ≤ C2 〈v, v〉 , v ∈ H.

The last assertion follows by observing that any finite dimensional vector
over C space is isomorphic with a Hilbert space.

We will show how these results allow us to show that certain standard
group actions yield representations.
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Let X be a locally compact space on which G acts continuously on the
right. We also assume that there is a measure dx on X and a continuous
function c : X ×G→ R>0 such that∫

X

f(xg)c(x, g)dx =
∫
X

f(x)dx

for all g ∈ G. One checks that if dx is a regular measure (if f(x) ≥ 0 and
f 6= 0 then

∫
X
f(x)dx > 0) then c must satisfy the cocycle condition

c(x, g1)c(xg1, g2) = c(x, g1g2).

In any event we assume this condition and that the measure is regular. The
function c is called the cocycle determined by the action and the measure.
If f ∈ Cc(X) and g ∈ G then we set

π(g)f(x) = c(x, g)
1
2f(xg).

One checks that

π(g1g2)f = π(g1)π(g2)f.

As usual, we define

〈f, g〉 =
∫
X

f(x)g(x)dx

for f, g ∈ Cc(X). We will use the usual notation L2(X) for the Hilbert space
completion of Cc(X) relative to this inner product. The factor in the action
is designed so that

〈π(g)f1, π(g)f2〉 = 〈f1, f2〉

for f1, f2 ∈ Cc(X). Thus the operators π(g) extend to unitary operators on
L2(X). Since it is easy to see that the hypothesis of Lemma 33 are satisfied
with V = Cc(X) we have defined a unitary representation of G.

Example 38 X = G and the action is the right regular action. The cor-
responding unitary represntation is called the right regular represention of
G.
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Example 39 G a Lie group and H a closed subgroup of G. If we take the
quotient measure on H\G relative to the left invariant measure then using
the realization of the measures using left invariant forms one sees that the
cocycle exists. A subexample of this is when Γ ⊂ G is a discrete subgroup.
Then we have the right regular representation of G on L2(Γ\G).

The example of Γ\G is the point of these lectures.
We end this section by using the same ideas to define parabolic induction.

Let G be a reductive group over a locally compact non-discrete field, F . Let
P be a parabolic sugroup defined over F . We will use the notation preceding
Lemma 20.

Let (σ,Hσ) be a Hilbert representation of P . We assume that it is unitary
when restricted to K ∩ P (this is no real assumption in light of Lemma 33).
Let Hσ

o denote the space of all continuous functions

f : G→ Hσ

such that f(pg) = δ(p)
1
2σ(p)f(g) for p ∈ P and g ∈ G. We note that if

f ∈ Hσ
o and f|K = 0 then f = 0. We endow Hσ

o with a pre-Hilbert space
structure by taking

〈f1, f2〉 =
∫
K

〈f1(k), f2(k)〉 dk

for f1, f2 ∈ Hσ
o (here the inner product inside the integral is that of Hσ). Let

Hσ denote the Hilbert space completion of Hσ
o . If g ∈ G then we define the

operator πσ(g) on Hσ
o by πσ(g)f(x) = f(xg).

Lemma 40 If g ∈ G then π(g) extends to a bounded operator on Hσ. Fur-
thermore, (πσ, Hσ) defines a Hilbert representation of G which is unitary if
(σ,Hσ) is unitary.

Proof. As in the proof of Lemma 20 , we will write x = p(x)k(x). If Ω
is a compact subset of G then since the ambiguity is in K ∩ P we see that
p(Ω) ⊂ Ω′ a compact subset of P . Thus there exists a constant CΩ <∞ such
that ‖σ(p(x))‖ ≤ CΩ for all x ∈ Ω. If f ∈ Hσ

o then

‖πσ(g)f‖2 =
∫
K

‖f(kg)‖2 dk =
∫
K

δ(p(kg)) ‖σ(p(kg))f(k(kg))‖2 dk. (1)
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Now if g ∈ Ω then this last expression is less than or equal to

C2
Ω

∫
K

δ(p(kg)) ‖f(k(kg))‖2 dk = C2
Ω ‖f‖

2

in light of the previous lemma. Thus ‖πσ(g)‖ ≤ CΩ. We note that (1)
above combined with the integral formula in Lemma 20 implies that πσ(g),
for g ∈ G, is unitary if σ is unitary. We leave it to the reader to check that
the matrix coefficients g 7−→ 〈πσ(g)u, v〉 are continuous for u, v ∈ Hσ

o . Thus
Lemma 33 implies that πσ defines a representation of G.

The representation (πσ, Hσ) is usually denoted IndGP (σ) or IndGP (Hσ) and
called an parabolically induced representation. If the parabolic subgroup
is minimal and if the representation σ is one dimensional and is given by
p 7−→ |p|iν for ν ∈ R then we say that IndGP (σ) is a spherical (or unramified)
principal series representation.

Example 41 These names were frst applied to the case of G = SL(2, F ) or
GL(2, F ). We will dscribe them in this case. We take P to be the subgroup of
upper triangular matrices in G and χ a continuous homomorphism of P into
C×. Then the corresponding representation will be denoted I(χ) and is called
a principal series representation. If χ is unitary then the representation is
unitary.

2.2 Schur’s Lemma.

There is a sens in which representation theory is just a series of applications
of variants of Schur’s lemma. In this section we will give several versions.

Definition 42 Let (π, V ) be a representation of G on a topological vector
space V . A subspace W of V is said to be invariant if π(g)W ⊂ W . The
representation is said to be irreducible if the only closed, invariant subspaces
are {0} and V .

Definition 43 If (πi, Vi), i = 1, 2 are respectively representations of G on
topological vector spaces V1, V2 then a continuous map T : V1 → V2 will be
called a G-homomorphism or G-intertwining operator if T ◦ π(g) = π(g) ◦ T
for all g ∈ G. We will use the notation LG(V1, V2) for the space of all
G-homomorphisms from V1 to V2. The representations are said to be equiv-
alent if there exists an element then is bijective with continuous inverse in
L(V1, V2).
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Remark 44 In the literature the notation HomG(V1, V2) is often used for
what we are calling LG(V1, V2).

Here is the first version of Schur’s Lemma which is a direct consequence
of the spectral theorem.

Proposition 45 Let (π,H) be a unitary representation of G. Then it is
irreducible if and only if LG(H,H) = CI.

Proof. Suppose LG(H,H) = CI. Let V be a closed invariant subspace
of H. Let P denote the orthogonal projection of H onto V . If v ∈ H then
v = v1 + v2 with v1 ∈ V and v2 ∈ V ⊥. If w ∈ V ⊥ and if v ∈ V then for each
g ∈ G we have 0 = 〈π(g)v, w〉 = 〈v, π(g−1)w〉 by the assumption of unitarity.
But then V ⊥ is an invariant space. Thus π(g)v1 ∈ V and π(g)v2 ∈ V ⊥.
Hence Pπ(g)v = π(g)v1 = π(g)Pv. Thus P ∈ LG(H,H). Thus P = zI,
z ∈ C. Since P is a projection z = 0 or I. Thus V = {0} or V = H.

We now prove the converse. We first note that if T ∈ LG(H,H) then so
is T ∗. Since T = T+T ∗

2 + iT−T
∗

2i we must only show that if T is a self adjoint
intertwining operator then T is a multiple of the identity. So we assume
T ∈ LG(H,H) and T ∗ = T . To such an operator there is an associated
family of spectral projections, PS, for S ⊂ R a Borel set. (See Reed,M.
and Simon,B., Functional Analysis I,Academic Press,1972., p.234.) The
uniqueness of the spectral resolution and the fact that π(g)Tπ(g)−1 = T
implies that π(g)PSπ(g)−1 = PS for all S. Then T = pI if and only if
P{p} = I. If the real interval [a, b] contains the spectrum of T then P[a,b] = I.
Let J1 = [a, b]. If we bisect J1, then J1 = A ∪ B and one of PA or PB is
non-zero. Thus PA = I or PB = I. Let J2 be one of A,B such that PJ2 = I.
We can bisect again and get J3 one of the halves such that PJ2 = I. We
this have a nested sequence of intervals J1 ⊃ J2 ⊃ J3 ⊃ ... such that Ji has
length 2−i(b − a) and PJi = I. We note that ∩iJi = {p} for some p ∈ R.
The definition of spectral projections implies that the limit of the PJi in the
strong operator topology is P{p}. Thus P{p} = I. Hence T = pI.

We will rephrase this result in the context of operator algebras. Let
A ⊂ L(H,H) be a subalgebra. Then it is called a ∗algebra if whenever
T ∈ A, T ∗ ∈ A. We say that A is an irreducible subalgebra if whenever
V ⊂ H is a closed subspace invariant under all the elements of A, V = {0}
or V = H.

Definition 46 If A is a subset of L(H,H) then we denote by A′ the set
{T ∈ L(H,H)|Ta = aT, a ∈ A}. A′ is called the commutant of A.
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The above is a standard notation. It unfortunately conflicts with a
standard notation for continuous dual space.

We will now restate Schur’s lemma.

Corollary 47 (to the proof)A ∗algebra A ⊂ L(H,H) is irreducible if and
only if A′ = CI.

Proof. We note that if V ⊂ H is a closed subspace invariant under every
element of A then so is V ⊥. Thus as above PV ∈ A′. Thus if A′ = CI. Then
A is irreducible (as above). To prove the converse, we note that if T ∈ A′
then so is T ∗. If a ∈ A is such that a∗ = a then the element

eia =
∞∑
n=0

(ia)n

n!

defines a unitary operator on H. Since

d

dt |t=0
eitaTe−ita = i(aT − Ta).

We see that T ∈ A′ if and only if eiaTe−ia = T for all a ∈ A such that
a = a∗. We can now argue in exactly the same way as we did in the proof of
the previous proposition to prove that A′ = CI.

We now come to the Von Neumann density theorem.

Theorem 48 Let A ⊂ L(H,H) be a ∗subalgebra containing I. Let T ∈ (A′)′

and let {xn}∞n=1 be a sequence in H such that
∑∞

n=1 ‖xn‖
2 <∞. Then given

ε > 0 there exists a ∈ A such that
∑∞

n=1 ‖(T − a)xn‖2 < ε.

Proof. Let V be a Hilbert space and let B be a ∗subalgebra of L(V, V )
containing I. Then
(1) If v ∈ V then (B′)′v ⊂ Bv.

Indeed, Bv
⊥

is B invariant since B is invariant under ∗. This implies
that if P is the orthogonal projection of V onto Bv then P ∈ B′. Thus
if T ∈ (B′)′ then TP = PT . Hence T (Bv) ⊂ Bv. We therefore see that
(B′)′(Bv) ⊂ Bv. This proves the result since v ∈ Bv.

We will apply this result to the Hilbert space V that consists of all
sequences {xn} with

∑∞
n=1 ‖xn‖

2 < ∞ and inner product 〈{xn}, {yn}〉 =∑
n 〈xn, yn〉. Let B be the algebra of operators σ(a), a ∈ A given by
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σ(a){xn} = {axn}. Let Pm{xn} = xm and let Qmx = {δn,mx}∞n=1. Then
P ∗m = Qm.

Suppose that T ∈ B′ and a ∈ A. Then

PmTσ(a){xn} = Pmσ(a)T{xn} = aPmT{xn}.

Also

TQmax = Tσ(a)Qmx = σ(a)TQmx.

This implies
(2) If T ∈ B′ then PnTQm ∈ A′ for all n,m ≥ 1.

This implies that if S ∈ (A′)′ then the operator {xn} 7−→ {Sxn} is in
(B′)′. Hence if T ∈ (A′)′ then

{Txn} ∈ B{xn}.

This implies that given ε > 0 there exists a ∈ A such that
∑∞

n=1 ‖(T − a)xn‖2 <
ε.

The following result is also referred to as the Von Neumann density the-
orem in the literature.

Corollary 49 Let A be a ∗subalgebra of L(H,H) then if I is in the closure
of A with respect to the strong operator topology then the algebra (A′)′ is the
closure of A in the strong operator topology.

Proof. Let C = A + CI. Then the above result implies that (C ′)′ is
contained in the closure of C in the strong topology. Now the closure of C is
the same as the closure of A by our hypothesis. Also it is clear that A′ = C ′.
Thus (A′)′ is contain in the closure of A. Since the reverse inclusion is clear,
the result follows.

This result yields an analog of Burnside’s theorem.

Corollary 50 Let A be a ∗subalgebra of L(H,H) containing the identity in
its closure in the strong operator topology and acting irreducibly on H then
the closure of A in the strong topology is L(H,H).

Proof. A′ = CI.
At this point we can introduce an important class of algebras for abstract

representation theory.
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Definition 51 A ∗subalgebra of L(H,H) is called a Von Neumann algebra
of it is closed in the strong operator topology and contains the identity.

The above results imply

Proposition 52 A ∗subalgebra, A, of L(H,H) is a Von Neumann algebra
if and only if (A′)′ = A.

We will use this result to give a useful variant of Schur’s lemma.

Proposition 53 Let (π,H) be an irreducible unitary representation of G.
Let D be a dense subspace of H such that π(g)D ⊂ D for all g ∈ G and let T
be a linear map of D to H such that Tπ(g)v = π(g)Tv for all g ∈ G, v ∈ D.
Assume that there exists a dense subspace D′ in H and a linear map S from
D′ to H such that

〈Tv, w〉 = 〈v, Sw〉

for all v ∈ D, w ∈ D′. Then T = λI for some λ ∈ C.

Remark 54 Notice that there is no topology assumed on D or D′ and T, S
are general subject to the assumptions in the proposition.

Proof. Assume that v ∈ D and v and Tv are linearly independent. Then
there exists B ∈ L(H,H) with Bv = v, BTv = v. Let A be the subalgebra
of L(H,H) spanned by {π(g)|g ∈ G}. Then A satisfies the hypothesis of
Theorem 43. Schur’s lemma implies that (A′)′ = L(H,H). Hence there
exists a sequence aj ∈ A such that

lim
j→∞

ajv = v, lim
j→∞

ajTv = v.

On the other hand ajD ⊂ D and Taj = ajT . Thus if w ∈ D′ then

〈v, w〉 = lim
j→∞
〈ajTv, w〉 = lim

j→∞
〈Tajv, w〉 = lim

j→∞
〈ajv, Sw〉 = 〈v, Sw〉 = 〈Tv, w〉 .

Since D′ is dense this yields the absurd conclusion that of v, Tv are linearly
independent then Tv = v. Thus v, Tv are linearly dependent for all v ∈ D.
This implies that T is a scalar multiple of the identity.

Exercise 55 Show that if V is a vector space and T is a linear operator on
V (no topology) and if for every v ∈ V , v and Tv are linearly dependent then
T is a multiple of the identity.
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2.3 Square integrable representations I.The case of SL(2,R).

Let G be a locally compact separable topological group. Then a unitary
representation of G, (π,H), is said to be square integrable if it is irreducible
and if one of the functions (called matrix entries), cv,w(g) = 〈π(g)v, w〉 with
v, w is square integrable with respect to left invariant measure, that is∫

G

| 〈π(g)v, w〉 |2dg <∞.

We will see in the next section that (π,H) is square integrable if and only if it
is irreducible and very cv,w, v, w ∈ H is square intgrable. IfG is compact then
every irreducible unitary representation is square integrable. Some groups
have no square integrable representations. For example, if G = GL(1,R) =
R× and if (π,H) is an irreducible unitary representation of G then since G
is commutative, Schur’s lemma implies that dimH = 1̇. Sunce, π is unitary
this implies that if v is an orthonormal basis for H then |cv,v(g)| = 1 for all
g ∈ G. Simlarly, if G = GL(n,R) then the center R×I must act by scalars
absolute value 1 on any irreducible unitary representation. Thus there are
no square integrable representations in this case. It is more subtle, but still
true that SL(n,R) for n ≥ 3 has no square integrable represenations. Never-
the-less the square integrable rperesentations are the basic building blocks
for representation theory of reductive groups. We will now describe (all)
square integrable representations of SL(2,R) in disguise as

SU(1, 1) =
{[

a b

b a

]
|a, b ∈ C, |a|2 − |b|2 = 1

}
.

Let D = {z ∈ C||z| < 1}. We use ordinary Lebesgue measure on D thinking
of z = x+ iy as (x, y) ∈ R2. We write dz = dx+ idy and dz̄ = dx− idy then
dx
∧
dy = 1

2idz̄
∧
dz. We let G = SU(1, 1).We define an action of G on D by

g · z =
az + b

b̄z + ā

where

g =
[
a b

b a

]
.

We will use the following formulas.

1−
∣∣∣∣az + b

b̄z + ā

∣∣∣∣2 =
1− |z|2

|b̄z + ā|2
. (2)
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d(g · z) =
dz

(b̄z + ā)2
. (3)

Using (2),(3) we have∫
D

φ(g · z)
dz̄dz

(1− |z|2)2 =
∫
D

φ(g · z)
d(g · z)d(g · z)
(1− |g · z|2)2 =

∫
D

φ(z)
dz̄dz

(1− |z|2)2 .

Thus

µ(φ) =
1
2i

∫
D

φ(z)
dz̄dz

(1− |z|2)2 (4)

defines a G-invariant measure on D.
Let Hk be the space of all holomorphic functions f : D → C such that

1
2i

∫
D

|f(z)|2(1− |z|2)k
dz̄dz

(1− |z|2)2 <∞.

If f1, f2 ∈ Hk then we set

〈f1, f2〉k =
1
2i

∫
D

f1(z)f2(z)(1− |z|2)k
dz̄dz

(1− |z|2)2 . (5)

We define for f ∈ Hk, and g as in (1)

πk(g)f(z) = (−b̄z + a)−kf(g−1 · z). (6)

Then using formulas (2),(3) as we did in the proof of the invariance of µ. We
find that

〈πk(g)f1, πk(g)f2〉 = 〈f1, f2〉 , f1, f2 ∈ Hk, g ∈ G.

Proposition 56 If k ≥ 2 then Hk is a Hilbert space and if k ∈ Z , k ≥
2, (πk, Hk) is a square integrable representation of G.

Proof. We first show that the space Hk is complete. For this we observe
that if zo ∈ D and if r = 1−|zo|

2 then the set Dr = {z ∈ C||z − zo| ≤ r} ⊂ D.
Then if k ≥ 2 we have

(1− |z|2)k−2 ≥ (1− 1
4

(1 + |zo|)2)k−2for all z ∈ Dr.
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Thus we see that

〈f, f〉k ≥
(1− 1

4(1 + |zo|)2)k−2

2i

∫
Dr

|f(z)|2dz̄dz.

On Dr the holomorphic function f is given as a series

f(z) =
∞∑
n=0

an(z − zo)n.

Then

1
2i

∫
Dr

|f(z)|2dz̄dz =
∫ r

0

∫ 2π

0

∑
n,m≥0

anams
nsmei(n−m)θdθsds =

2π
∑
n≥0

|an|2
∫ r

0
s2n+1dr = 2π

∑
n≥0

|an|2
r2n+2

2n+ 2
≥ 2π|a0|2r2.

We therefore see that

〈f, f〉k ≥ (1− 1
4

(1 + |zo|)2)k−22π|f(zo)|2.

This implies the completeness, since if {fj} is Cauchy in Hk then it is Cauchy
relative to the topology of uniform convergence on compacta. This implies
that there is a continuous function on D, f , such that limj→∞ fj(z) = f(z)
uniformly on compacta of D. But then f is holomorphic on D and it is easy
to check that it is in Hk.

Notice that the function f(z) ≡ 1 is in Hk if k ≥ 2. We calculate the
matrix coefficient (g as in (1))

〈πk(g)1, 1〉 =
1
2i

∫
D

(−b̄z + a)−k(1− |z|2)k−2dz̄dz

=
∫ 1

0

∫ 2π

0
(−b̄reiθ + a)−k(1− r2)k−2dθrdr

= a−k
∫ 1

0
r(1− r2)k−2

∫ 2π

0
(− b̄
a
reiθ + 1)−kdθdr.

We observe that since |a|2 − |b|2 = 1, | b̄
a
| ≤ 1. Thus if 0 ≤ r < 1 then the

function

φ(z) = (− b̄
a
rz + 1)−k
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is holomorphic in z for |z| < 1
r
. This implies that∫ 2π

0
φ(eiθ)dθ = 2πφ(1) = 2π.

We therefore see that

〈πk(g)1, 1〉k = a−k2π
∫ 1

0
r(1− r2)k−2dr = cka

−k.

Notice that this is a continuous function of g. Let f(g) = a−k we will show
that ∫

G

|f(g)|2dg <∞.

For this we need a formula for the Haar integral analogous to the formula for
polar coordinates. Set

K = {k(θ)|k(θ) =
[
eiθ 0
0 e−iθ

]
, θ ∈ R}

and

A+ = {at|at =
[

cosh t sinh t
sinh t cosh t

]
, t ∈ R, t ≥ 0}.

Then G = KA+K (exercise we will see it in general later). Furthermore, if
φ is summable on G then up to constants of normalization∫

G

φ(g)dg =
∫ 2π

0

∫ ∞
0

∫ 2π

0
φ(k(θ1)atk(θ2)) sinh(2t)dθ1dtdθ2.

This can be proved by observing that K = {g ∈ G|g · 0 = 0}. Thus if
f ∈ Cc(G) then

f̄(gK) =
∫ 2π

0
f(gk(θ))dθ

Defines a function on D = G · 0. If we write out the invariant measure given
in formula (4) above in polar coordinates and consider the change of variables
r 7−→ tanh t,t > 0 the formula follows. Now

f(k(θ1)atk(θ2)) = (eiθ1 cosh teiθ2)−k.
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Thus ∫
G

|f(g)|2dg = (2π)2
∫ ∞

0
(cosh t)−2k sinh(2t)dt

= 4π2
∫ ∞

0
(cosh t)−2k cosh(t) sinh(t)dt =

2π2

k − 1
.

This shows that c1,1 is square integrable. The exercise below proves that πk
is a representation. We will prove the irreducibility later.

For later reference we note that ck = 〈1, 1〉k thus we have (up to normal-
ization of measures)∫

G

| 〈π(g)1, 1〉k |
2dg =

2π2

k − 1
〈1, 1〉2k . (7)

Exercise 57 Calculate
〈
πk(g)zl, zm

〉
for l,m = 0, 1, 2, ... as above and show

that it is a continuous function of g. Show that the span of the functions
1, z, z2, ... is dense in Hk for k ≥ 2. Now use an appropriate extension of
Lemma 73 (allowing the element w in 2. to be taken from a dense subspace)
to show that (πk, Hk) is a representation for k ≥ 2.

Exercise 58 Give the details of the proof of the integration formula for Haar
measure on G as sketched in the above proof.

The series of representations (πk, Hk) k > 1 is called the holomorphic dis-
crete series of representations of G. If we take the space of anti-holomorphic
functions instead and denote the space by H−k then one has representations
(πk, Hk) for |k| > 1. This series of representations is called the discrete
series of G. There are also two representations corresponding to |k| = 1
that are not quite discrete series. As the name suggests there are other
(continuous) series of representations of G. In fact the continuous series are
just the principal series of Example 41 and the complementary series which
we will describe (and the πk for k = ±1) after an interlude on general square
integrable representations and representations of compact groups.

2.4 Square integrable representations II

In this setion we will collect generalities on square integrable representations.
In the next we will apply this theory to representations of compact groups.

We will consider L2(G) as a unitary representation under the right regular
action. Here we write Rgf(x) = f(xg).

39



Proposition 59 Let (π,H) be a square integrable representation of G. Then
every matrix entry (cv,w, v, w ∈ H) is square integrable. Furthermore, there
exists an element T ∈ LG(H,L2(G)) with closed range consisting of contin-
uous functions that is a unitary bijection onto its range. The map T can be
implemented as follows: fix vo in H a unit vector then T (w) = cw,vo.

Proof. Fix vo a unit vector in H such that cvo,vo is in L2(G). Let D
denote the space of all v ∈ H such that cv,vo ∈ L2(G). We note that

cπ(g)v,w = Rgcv,w.

Thus D is an invariant non-zero subspace. Since vo ∈ D the irreducibility
implies that D is a dense subspace. On D we put the pre-Hilbert space
structure

(v, w) = 〈v, w〉+ 〈cv,vo , cw,vo〉 .

The last inner product is the L2-inner product the first one on the right hand
side is the inner product on H.

We now come to the key point.
(*) D is complete with respect to (..., ...).

Indeed, if {vj} is a Cauchy sequence in D then it is Cauchy in H and
{cvj ,vo} is Cauchy in L2(G). Since H is complete there exists v ∈ H such that
limj→∞ vj = v. Since L2(G) is complete by definition there exists f ∈ L2(G)
such that limj→∞ cvj ,vo = f in L2. We note that

|cvj ,vo(g)− cv,vo(g)| ≤ ‖vj − v‖ , g ∈ G.

Let U be an open subset of G such that Ū is compact and let φ ∈ Cc(G)
be such that φ(x) ≥ 0 for all x ∈ G and φ(x) = 1 if x ∈ Ū . We note that
the operator of multiplication by φ on Cc(G) extends to a bounded operator
Tφ : L2(G) → L2(G). Now we have limj→∞ φcvj ,vo = φcv,vo in L2(G) by the
above uniform convergence. We also have

lim
j→∞

φcvj ,vo = Tφf

in L2(G). Hence we have φcv,vo = Tφf . This implies that f is represented
by the continuous function cv,vo . But then v ∈ D.

We note that if g ∈ G and v, w ∈ D then

(π(g)v, π(g)w) = (v, w).
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Thus the operators π(g)|D define unitary operators ρ(g) on D with respect
to (..., ...). Let S(v) = v for v ∈ D but looked upon as a map of the Hilbert
space D into H. Then

〈S(v), S(v)〉 ≤ (v, v)

for all v ∈ D. This implies that S extends to a bounded operator from the
Hilbert space completion, D, into H. Furthermore, S ◦ ρ(g) = π(g) ◦ S. Let
S∗ : H → D denote the adjoint operator. Then S∗ ◦ π(g) = ρ(g) ◦ S∗ for
all g ∈ G. We therefore see that SS∗ ∈ LG(H,H). Schur’s lemma implies
that SS∗ = λI and it is clear that λ is real and λ > 0. Now if v ∈ H then
S∗(v) ∈ D so λv = S(S∗v) = S∗v. But then v ∈ D. Hence D = H. We also
note that this implies that

(v, v) ≤ 1
λ2 〈v, v〉

for all v ∈ H. Thus ‖cv,vo‖
2
2 ≤

1−λ2

λ2 ‖v‖2. Define T (v) = cv,vo . To complete
the proof we note that all we used about vo in the proof above was that the
set {w ∈ H|cv,vo ∈ L2(G)} is non-zero. By the above this is true for every
v ∈ H since vo is in the corresponding set.

The next theorem is a general form of the Schur orthogonality relations.

Theorem 60 Let (π,H) and (ρ, V ) be square integrable representations of
G. If π and ρ are inequivalent then their matrix coefficients are orthogonal.
There exists a positive real number d(π) (which depends only on π and the
normalization of Haar measure) such that if v1, v2, w1, w2 ∈ H then∫

G

〈π(g)v1, w1〉 〈π(g)v2, w2〉dg =
1

d(π)
〈v1, v2〉 〈w2, w1〉 .

Proof. Assume that ho ∈ H and vo ∈ V are unit vectors and that there
exists h ∈ H, v ∈ V such that∫

G

〈π(g)h, ho〉 〈ρ(g)v, vo〉dg 6= 0.

Let T : H → L2(G) and S : V → L2(G) be as in the proof of the preceding
proposition. That is T (x) = cx,ho and S(y) = cy,vo . Then we showed that
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T and S respectively define injective intertwining operators from H and V
into L2(H) with closed range. Consider

(x, y) = 〈T (x), S(y)〉 .

Then (h, v) 6= 0 and (π(g)x, ρ(g)y) = (x, y). Finally the pairing is continuous
in x, y. Thus the Riesz representation theorem, for H, implies that (x, y) =
〈x,A(y)〉 with A : V → H a bounded operator. It is easy to see that
A ∈ LG(V,H). Since A 6= 0. We see that kerA = 0. We also see that ImA
is dense in H. We also observe that A∗A ∈ LG(V, V ) and AA∗ ∈ LG(H,H)
. Thus each is a scalar by Schur’s lemma. We conclude that there is a scalar
s > 0 such that sA is a unitary bijection, We therefore conclude that π and
ρ are unitarily equivalent.

To prove the last part we see that∫
G

〈π(g)v1, w1〉 〈π(g)v2, w2〉dg = a(w2, w1) 〈v1, v2〉

and ∫
G

〈π(g)v1, w1〉 〈π(g)v2, w2〉dg = b(v1, v2) 〈w2, w1〉

for v1, v2, w1, w2. This implies that a(w2, w1) is a positive multiple of 〈w2, w1〉.
We call the multiple 1

d(π) .

Definition 61 We call the number d(π) the formal degree of π.

Example 62 If (πk, Hk) is as above for SU(1, 1) then d(πk) = k−1
2π2 .

2.5 Representations of compact groups.

In this section we will show how the results of the preceding section apply
to compact groups. In this section G will denote a compact group unless
otherwise specified.

Clearly, an irreducible unitary representation of G is square integrable.
We have

Theorem 63 Let (π,H) be an irreducible Hilbert representation of G. Then
dimH <∞. If (π,H) is unitary and we normalize the Haar measure, µ, on
G such that µ(1) = 1 then d(π) = dimH (recall d(π) is the formal degree).
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Proof. We may assume that (π,H) is unitary. Then it is square inte-
grable. There is therefore an injective intertwining operator T : H → L2(G)
with closed image contained in C(G). We look upon C(G) as a Banach
space under the sup-norm, pG(f) = maxx∈G |f(x)|. Let V denote the closure
of T (H) in C(G). Then if we normalize the Haar measure as in the statement
of the theorem it is clear that

‖f‖2 ≤ pG(f).

Thus the map f 7−→ f of T (H) to T (H) extends to a continuous linear map
of V to T (H) (since T (H) is closed in L2(G)). The closed graph theorem
(Yoshida, Functional Analysis,p. 79, Theorem 1) implies that this map is
continuous. Hence there exists C <∞ such that if f ∈ T (H) then

pG(f) ≤ C ‖f‖2 .

We will show that this implies that T (H), hence H, is finite dimensional.
Let f1, ..., fd be orthonormal in T (H) then if λi ∈ C we have

|
∑
i

λifi(x)| ≤ pG(
∑
i

λifi) ≤ C

∥∥∥∥∥∑
i

λifi

∥∥∥∥∥
2

= C

(∑
i

|λi|2
) 1

2

.

We apply this with λi = fi(x). We conclude that

∑
i

|fi(x)|2 ≤ C

(∑
i

|fi(x)|2
) 1

2

.

Hence ∑
i

|fi(x)|2 ≤ C2.

Integrating both sides of the equation over G yields d ≤ C2.
We now calculate the formal degree. Let v1, ..., vn be an orthonormal

basis of H then the matrix
[
cvi,vj(g)

]
is unitary for all g ∈ G. Hence∑

i,j

|cvi,vj(g)|2 = n
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for all g ∈ G. If we integrate both sides of this equation and take into account
the Schur orthogonality relations we have

1
d(π)

n2 = n.

If {Hn}1≤n<N with N ≤ ∞ is a sequence of Hilbert spaces then we write⊕̂
n<NHn for the space of all sequences {xn}n<N such that

∑
n ‖xn‖

2 < ∞
we define

〈{xn}, {yn}〉 =
∑
〈xn, yn〉 .

This endows
⊕̂

n<NHn with a Hilbert space structure. This construction
defines the Hilbert space direct sum. Notice that it is a completion of the
algebraic direct sum.

Definition 64 Let B a locally compact topological group and for each n, 1 ≤
n < N we have a unitary representation (πn, Hn) of B then the unitary direct
sum of these representations is the representation (

⊕̂
n<Nπn,

⊕̂
n<NHn) of B

with (⊕̂
n<N

πn(g){xn}
)

= {πn(g)xn}.

Recall that if T : H1 → H2 is a continuous linear map of Hilbert spaces
then T is said to be completely continuous (or compact) if the image of a
bounded set has compact closure. If H is a Hilbert space then we denote by
CC(H) the space of all completely continuous operators from H to H. The
following result is completely standard the simplest proof of it that we know
is in N.Wallach, RRGI p.326, 8,A.1.2.

Lemma 65 Let T ∈ CC(H) be such that T = T ∗. Then there exists an
orthonormal basis, {vn}, of kerT⊥ and λj ∈ R such that Tvn = λnvn and
the dimension of T⊥ is infinite then limn→∞ λn = 0.

Definition 66 Let B be a locally compact, separable topological group then
a unitary representation (π,H) of B is said to be of class CC if π(f) is
completely continuous for all f ∈ Cc(B). We say that B is a CCR group if
every irreducible unitary representation of B is of class CC.
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One of Harish-Chandra’s basic theorems is that all real reductive groups
are CCR groups.

The next result is a generalization of the Peter-Weyl theorem and is
basic to the theory of automorphic forms (it applies to the so-called cuspidal
spectrum). In the course of the proof of the result we will be using the fact
that if B is unimodular than∫

B

f(b)db =
∫
B

f(b−1)db.

Theorem 67 Let B be a locally compact, separable topological group and let
(π,H) be a unitary representation of B of class CC. Then (π,H) is unitarily
equivalent with a unitary direct sum of irreducible representations of B.

Example 68 Before we prove the theorem we will describe the general form
of the main application. Assume that B is unimodular. Let X = B/C with
C a closed unimodular subgroup of B and assume that X is compact and that
there exists a B-invariant measure on X, λ (one can show that this is not
really an assumption under our hypotheses on B and C). We will write the
measure as

λ(f) =
∫
X

f(x)dx

as usual. Let φ ∈ Cc(B) then we can choose Haar measure on B and C
such that if we set φ̄(bC) =

∫
C
φ(bc)dc (the integration with respect to Haar

measure on C) then ∫
B

φ(b)db =
∫
X

φ̄(x)dx.

Let H = L2(X) and π(b) = Lb. We calculate

π(φ)f(x) =
∫
B

φ(b)f(b−1x)db =
∫
B

φ(b)f(b−1gC)db =

∫
B

φ(b)f((g−1b)−1C)db =
∫
B

φ(gb)f(b−1C)db =

∫
B

φ(gb−1)f(bC)db =
∫
X

∫
C

φ(gcb−1)f(bC)dcd(bC).
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Let

kφ(gC, bC) =
∫
C

φ(gcb−1)dc.

The function kφ ∈ C(X ×X) and

π(φ)f(x) =
∫
X

kφ(x, y)f(y)dy.

on L2(X). The lemma below implies that (π, L2(X)) is of class CC.

Lemma 69 Let Y be a locally compact, separable, topological space and let
λ be a regular measure on Y . Let k ∈ L2(Y ×Y ) (with respect to the product
measure). If we define T : L2(Y ) → L2(Y ) by T (f)(x) = λ(k(x, ·)f).then T
defines a compact operator.

Proof. Let {φn} be an orthonormal basis of L2(Y ) consisting of continu-
ous functions (L2(Y ) is separable since Y is separable). Define un,m(x, y) =
φn(x)φm(y). Then {un,m} is an orthonormal basis of L2(Y × Y ). Now

k =
∑
n,m

an.mun,m

in L2(Y × Y ). Set kN =
∑

n,m≤N an.mun,m. Then the operator

TN(f)(x) =
∫
Y

kN(x, y)f(y)dy

is of finite rank hence compact. Also

(T − TN)f =
∑

m,n>N

an,mφn 〈f, φm〉 .

An application of the Schwarz inequality yields

‖T − TN‖2 ≤
∑

m,n>N

|an,m|2.

Thus T is in the norm closure of the finite rank operators. Hence it is
compact.
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We will now prove the theorem. Let S denote the set of all closed
invariant subspaces, V , of H such that V is a Hilbert space direct sum of
irreducible subrepresentations ordered by inclusion. If {Vα} is a linearly
ordered subset of S then the closure of

⋃
αVα is in S (exercise). Hence Zorn’s

lemma implies that there is a maximal element V in S. We will now prove
that V = H and thereby prove the Theorem. Let W = V ⊥. If u ∈ Cc(B)
then π(u)W = W . Let w ∈ W be a unit vector. Let {un} be a delta
sequence such that un(x−1) = un(x) for all x ∈ B. Then π(un)∗ = π(un)
(exercise)for all n. Now limn→∞ π(un)w = w. Hence there exists n such that
π(un)w 6= 0. Fix T = π(un)|W . Then T is a compact, non-zero self-adjoint
operator on W . Lemma 65 implies that T has a nonzero eigenvalue on W .
Let Z denote the corresponding eigenspace. Then Lemma 65 also implies
that dimZ < ∞. Let m > 0 denote the positive minimal dimension of an
intersection of a closed B-invariant subspace with Z. Fix M an intersection
of this type with dimM = m. Let U denote the intersection of all closed
invariant spaces Y such than Y ∩Z = M . Then U is closed and invariant. If
N is a closed invariant subspace of U then both N and N⊥ are T invariant.
Thus M = M ∩ N

⊕
M ∩ N⊥. But then M ∩ N = M or M ∩ N⊥ = M . If

M ∩N = N (resp.M ∩N⊥ = M) then N = U (resp. N⊥ = U) by definition
of U . Thus U is a closed, invariant, irreducible subspace of W and thus
V
⊕
U is in S. This contradicts the definition of V . Hence W = 0 and the

result is proved.

Let Ĝ denote the set of equivalence classes of irreducible finite dimensional
representations of G. For each γ ∈ Ĝ we fix (τγ, Vγ) ∈ γ which we assume is
unitary. If (π, V ) is a representation of G then we set V (γ) equal to the sum
of the closed, G-invariant, irreducible subspaces in the class of γ.

Definition 70 The space V (γ) is called the γ-isotypic component of V .

We will now concentrate on L2(G) we first note that since G is compact
the discussion in Example 68 implies that the right (or the left) regular
representation is of class CC. If γ ∈ Ĝ then we define a map Aγ : V ∗γ

⊗
Vγ →

L2(G) by

Aγ(λ
⊗
v)(g) = λ(π(g)v).

Set d(γ) = dimVγ. If λ ∈ V ∗γ then there exists vλ ∈ Vγ such that λ(v) =
〈v, vλ〉 for all v. We define 〈λ1, λ2〉 = 〈vλ2 , vλ1〉. Then the Schur orthogonality
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relations imply that
√
d(γ)Aγ is a unitary operator from V ∗γ

⊗
Vγ onto its

image. We also observe that Aγ(λ ◦ τγ(g)−1⊗v) = LgAγ(λ
⊗
v).

The next result is the Peter-Weyl theorem.

Theorem 71 The γ-isotypic component of L2(G) is the image of Aγ. Fur-
thermore, L2(G) is the Hilbert space direct sum of the spaces L2(G)(γ).

Proof. Let V be a closed, invariant, irreducible subspace of L2(G). Then
in particular it is an irreducible unitary representation hence Theorem 63
implies that dimV < ∞. If u ∈ C(G) then π(u)V ⊂ V . We have seen
that the span of the elements π(u)v with u ∈ C(G), v ∈ V is dense in
V . Hence it is equal to V . We leave it to the reader to check that this
implies that V ⊂ C(G). Define λ(f) = f(1) for f ∈ V . Then λ ∈ V ∗ and
λ(π(g)f) = f(g). Let T : Vγ → V be a bijective intertwining operator. Let
ξ = λ◦T−1. Then if T (v) = f , f = Aγ(ξ

⊗
v). The last assertion now follows

from Theorem 67.

Definition 72 If (τ, V ) is a finite dimensional representation of G then its
character is defined to be the function χV (g) = tr(τ(g)).

We note that χV ∈ C(G) and that χV (xgx−1) = χ(g) for all x, g ∈ G.
We also observe that if (τ1, V1) and (τ2, V2) are equivalent then χV1 = χV2 .
We will now show that the converse is also true. We first observe that this
implies that if V1, V2 ∈ γ ∈ Ĝ then χV1 = χV2 . This common value will be
denoted χγ. We also set αγ = d(γ)χγ(complex conjugate). We note that
the Schur orthogonality relations imply that

αγ ∗ ατ = δγ,ταγ

for γ, τ ∈ Ĝ. Also, since αγ(xgx−1) = αγ(g) for x, g ∈ G we have

π(αγ)π(g) = π(g)π(αγ)

for all γ ∈ Ĝ.

Lemma 73 The orthogonal projection of L2(G) onto L2(G)(γ) is the oper-
ator Pγ = π(αγ).
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Proof. Let v1, ..., vd be an orthonormal basis of Vγ. Then αγ = d(γ)
∑
cvi,vi .

We thus have

π(αγ)f(x) = d(γ)
∑∫

G

cvi,vi(g)f(xg)dg = d(γ)
∫
G

cvi,vi(g)Lx−1f(g)dg.

If µ ∈ Ĝ , µ 6= γ and f is in the image of Aµ then the above integral is 0
by the Schur orthogonality relations and the observation preceding Theorem
71. If µ = γ then assuming that f(g) = 〈τγ(g)v, w〉 for some v, w in Vγ we
have f(xg) = 〈τγ(g)v, τγ(x)−1w〉. The Schur orthogonality relations yield

d(γ)
∫
G

cvi,vi(g)Lx−1f(g)dg = d(γ)
∑∫

G

〈τγ(g)vi, vi〉
〈
τγ(g)v, τγ(x)−1w

〉
dg =

∑
〈v, vi〉

〈
vi, τγ(x)−1w

〉
=
〈
v, τγ(x)−1w

〉
= 〈τγ(x)v, w〉 = f(x).

Let (π,H) be a Hilbert representation ofG. By Lemma 37 we may assume
that the representation is unitary. If γ ∈ Ĝ then we set Eγ = π(αγ). Then
if v, w ∈ H we have

〈Eγπ(g)v, w〉 = (Pγcv,w)(g).

Thus if Eγv = 0 for all γ ∈ Ĝ then cv,w = 0 for all v ∈ H. Hence v = 0.
If v ∈ H(γ) then cv,w ∈ L2(G)(γ). Thus we see that Eγ is the orthogonal
projection of H onto H(γ).

We conclude

Proposition 74 Let (π,H) be a Hilbert representation of G then the alge-
braic sum of the spaces H(γ), γ ∈ Ĝ is dense in H. Furthermore, if (π,H)
is unitary then H is the Hilbert space direct sum of the spaces H(γ), γ ∈ Ĝ.

Suppose that M is a closed subgroup of G and (σ,Hσ) is a unitary rep-
resentation of M . We set Hσ

0 equal to the space of all continous maps

f : G→ Hσ

such that

f(mg) = σ(m)f(g),m ∈M, g ∈ G.
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We define an inner product on Hσ
0 by

〈f1, f2〉 =
∫
G

(f1(g), f2(g))dg

where (..., ...) is the Hilbert space inner product on Hσ. We define

πσ(g)f(x) = f(xg), x, g ∈ G.

Then it is a direct consequence of the unimodularity of G that

〈πσ(g)f1, πσ(g)f2〉 = 〈f1, f2〉

for all g ∈ G and f1, f2 ∈ Hσ
0 . Thus the operators πσ(g), g ∈ G extend to

unitary operators on the Hilbert space completion of Hσ
0 . We will denote

this Hilbert space by IndGM(σ) (or IndGM(Hσ) if module notation is more
convenient). We leave it to the reader to check that (πσ, IndGM(σ)) defines
a representation of G.

As a representation of M , Hσ breaks up into a direct sum of isotypic
components

Hσ =
⊕
µ∈cMHσ(µ).

It is not hard to see that as a representation of G

IndGM(σ) ∼=
⊕
µ∈cM IndGM(Hσ(µ)).

As a representation of M , Hσ(µ) ∼= Wµ

⊗
Vµ with (σµ, Vµ) a (unitary) rep-

resentative of µ and Wµ = HomM(Vµ, Hσ(µ)) with an appropriate Hilbert
space structure and M acts trivially on the first factor and via σµ on the
second. Indeed we have

Lemma 75 Let B be a compact group and let (ν, V ) be a unitary represen-
ation of B such that there exists µ ∈ M̂ such that V = V (µ). Fix a unitary
representative of µ, (ξ,W ). Then the map

Ψ(T
⊗

w) = T (w)

of HomB(W,V )
⊗

W to V is a unitary bijection if we define (T, S) =
tr(S∗T )/ dimW .
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Proof. The map is surjective by the definition of isotypic component.
If T, S ∈ HomB(W,V ). Then T ∗S ∈ HomB(W,W ) = CI. Thus T ∗S =

1
dimV

tr(T ∗S)I. If
∑d

i=1 Ti
⊗

vi 7−→ 0 and v1, ..., vd are linearly independent
then if S ∈ HomB(W,V ) we have 0 =

∑
S∗Ti(vi) = 1

dimW

∑
(Ti, S)vi. Hence

(Ti, S) = 0 for all S and i. Hence Ti = 0 for all i.
We now put it all together

IndGM(σ) ∼=
⊕
µ∈cMHom(Wµ, Hσ)

⊗
IndGM(σµ)

(note that we can replace Hσ by Hσ(µ) in the first factor). We will now
analyse the second factor. Here we have the decomposition

IndGM(σµ) =
⊕
γ∈ bG Ind

G
M(σµ)(γ)

into isotypic components. Applying the lemma above we have a unitary
isomorphism

HomG(Vγ, IndGM(σµ))
⊗

Vγ → IndGM(σµ)(γ)

given by T
⊗

v 7−→ T (v) here (τγ, Vγ) is a fixed unitary representative of γ.
As a ast step in this general abstract nonsense we have Frobenius reciprocity

Lemma 76 The map F : HomG(Vγ, IndGM(σµ))→ HomM(Vγ,Wµ) given by
F (T )(v) = T (v)(1) is a positive scalar multiple of a unitary bijection.

Proof. If S ∈ HomM(Vγ,Wµ) then define (L(S)(v))(k) = S(τγ(k)v).
Then L(S)(v) ∈ IndGM(σµ) and F (L(S)) = S, L(F (T )) = T . We will leave
it to the reader to unwind the scalars.

Definition 77 If B is a compact group and if (π,H) is a unitary represen-
ation of B then we say that it is admissible if dimHomB(W,H) <∞ for all
finite dimensional representations W of B. Equivalently, dimH(µ) <∞ for
all µ ∈ B̂.

Proposition 78 A necessary and sufficient condition that IndGM(σ) be ad-
missible for G is that σ be admissible for M .
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2.6 C∞-vectors and (g, K)-modules.

In this section G will denote a Lie group with a finite number of connected
components.

Definition 79 Let (π, V ) be a representation of G on a locally convex topo-
logical space. Then a vector v ∈ V is said to be a C∞-vector if the map
g 7−→ π(g)v is a C∞ map of G into V .

The following observation is due to G̊arding.

Lemma 80 Let (π,H) be a Hilbert representation of G. If f ∈ C∞c (G)(=
C∞(G) ∩ Cc(G)) and if v ∈ H then π(f)v is a C∞ vector.

Proof. Let U be a relatively compact subset ofG containing 1. Let L1(U)
denote the subspace of all L1-functions on G that are limits of elements of
Cc(G) with support in U . Let V be an open subset of U such that it is
invariant under inverse and such that V V ⊂ U . Then we have
1. If f ∈ C∞c (V ) then the map of V to L1(U) given by x 7−→ F (x) =
L(x)f is of class C∞. Indeed, if X ∈ Lie(G) then we set L(X)f(g) =
d
dt |t=0f(exp(−tX)g) for g ∈ G. Taylor’s theorem with remainder implies
that there exists ε > 0 and a function, E, of t, g for |t| ≤ ε such that
|E(t, g)| ≤ φ(g) with φ ∈ Cc(G) for |t| ≤ ε and

f(exp(−tX)g) = f(g) + tL(X)f(g) + t2E(t, g)

for |t| ≤ ε and g ∈ V . This implies that

‖L(x)L(X)f − (1/t)(L(x exp(tX))f − L(x)f)‖1 =

‖L(X)f − (1/t)(L(x exp(tX))f − L(x)f)‖1 ≤ |t|C

for |t| ≤ ε for C > 0 and appropriate constant. Hence the function F is of
class C1. This argument can be iterated to prove the result. We have seen
(at least implicitly) that the map f 7−→ π(f) is continuous from L1(U) to
H. Thus, since linear continuous maps are smooth, we see that if v ∈ H
then the map from V to H given by x 7−→ π(L(x)f)v is of class C∞. Now
π(L(x)f)v = π(x)π(f)v. The lemma now follows using a partition of unity
argument.

We denote by V ∞ the space of all C∞ vectors in V . Now arguing as in
the proof of Lemma 33 we have
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Theorem 81 Let (π,H) be a Hilbert representation of G. Then the space
of C∞ vectors in H is dense.

Proof. There exists a Delta sequence {uj} in G with each uj ∈ C∞c (G).
We have shown

lim
j→∞
〈π(uj)v, w〉 = 〈v, w〉

for all v, w ∈ H. Now suppose that w ∈ (H∞)⊥ then since π(uj)w ∈ H∞ for
all j we have

0 = lim
j→∞
〈π(uj)w,w〉 = 〈w,w〉 .

If (π,H) is a Hilbert representation of G and if v ∈ H∞ then we define
for X ∈ Lie(G)

dπ(X)v =
d

dt
π(exp tX)v|t=0.

We have

• dπ(X)H∞ ⊂ H∞ for all X ∈ Lie(G),π(g)H∞ ⊂ H∞ for g ∈ G.

• dπ(aX + bY ) = adπ(X) + bdπ(Y ), a, b ∈ R, X,Y ∈ Lie(G).

• dπ([X,Y ]) = dπ(X)dπ(Y )− dπ(Y )dπ(X), for all X,Y ∈ Lie(G).

• If g ∈ G, X ∈ Lie(G) then π(g)π(X)v = π(Ad(g)X)π(g)v.

We will simplify notation and write π(X) for dπ(X). The first assertion
is clear from the definition of C∞. The second follows from

exp(tX) exp(tY ) = exp(t(X + Y ) +O(t2)).

The third follows from

exp(tX) exp(Y ) exp(−tX) = exp(Y + t[X,Y ] +O(t2)).

The fourth follows from

exp(tAd(g)X) = g(exp tX)g−1.
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The three bullet items imply that (π,H∞) defines a representation of
Lie(G). The fourth is a compatibility condition that will play a role later.
We will also consider this to be a representation of the complexification of
Lie(G), that is Lie(G)C. Set gC = Lie(G)C. Then (π,H∞) extends to a
representation of the universal enveloping algebra, U(gC). We define ZG(gC)
to be the subalgebra if U(gC) consisting of those z such that Ad(g)z = z for
all g ∈ G. We define an involution denoted * on U(gC) by the following rules

• (z1)∗ = z̄1.

• X∗ = −X for X ∈ Lie(G).

• (xy)∗ = y∗x∗ for x, y ∈ U(gC).

We note that the anti-homomorphism x 7−→ x∗ exist by the universal
problem solved by the universal enveloping algebra and also the naturality
implies that if g ∈ G then (Ad(g)x)∗ = Ad(g)(x∗).

Lemma 82 If (π,H) is a unitary representation of G and if v, w ∈ H∞ and
x ∈ U(gC) then

〈π(x)v, w〉 = 〈v, π(x∗)w〉 .

Proof. We note that if X ∈ Lie(G) and v, w ∈ H then

〈π(exp tX)v, w〉 = 〈v, π(exp(−tX))w〉

for all t ∈ R. If v, w ∈ H∞ then both sides of the equation are differentiable
in t. Taking the derivative at t = 0 yields

〈π(X)v, w〉 = 〈v, π(−X)w〉 = 〈π(x)v, w〉 = 〈v, π(X∗)w〉 .

Now use the fact the Lie(G) generates U(gC) over C.
The next result is an application of the variant of Schur’s lemma in Propo-

sition 53.

Theorem 83 Let (π,H) be an irreducible unitary representation of G then
there exists an algebra homomorphism ηπ : ZG(gC) → C such that π(z)v =
ηπ(z)v for all v ∈ H∞.

54



Proof. In Proposition 88 take D = D′ to be H∞. If z ∈ ZG(gC) then
take T = π(z). We note that if v ∈ H∞ then

π(g)Tπ(g)−1v = π(g)π(z)π(g)−1v

= π(Ad(g)z)v = π(z)v = Tv.

Also take S = π(z∗). Then the previous lemma implies that the hypotheses
of Proposition 53 are satisfied. Thus π(z) acts as a scalar on H∞. Denote
this scalar by ηπ(z).

Definition 84 The homomorphism ηπ is called the infinitesimal character
of (π,H).

If (π,H) is a Hilbert representation of G and if x ∈ U(gC) then we denote
by px the semi-norm on H∞defined by px(v) = ‖π(x)v‖. We give H∞ the
corresponding locally convex topology. Notice that if {xi} is a basis of U(gC)
then the semi-norms {pxi} suffice to define the topology. The following result
uses basic calculus in its proof. The interested reader can refer to RRG I,
Lemma 1.6.2.

Lemma 85 The space H∞ is a Fréchet space with respect to the locally con-
vex topology given above. Furthermore, (π,H∞), is a smooth Fréchet repre-
sentation (i.e. if v ∈ H∞ then the map g 7−→ π(g)v defines a C∞ map from
G to H∞.

Let K be a compact subgroup of G. Set g = Lie(G) and k = Lie(K).
The most important special case is when K is a maximal compact subgroup
of G.

Definition 86 A (g, K) module is a vector space, V , over C that is a module
for the Lie algebra g and a module for K (as an abstract group) such that

1. k ·X · v = (Ad(k)X) · k · v for k ∈ K, X ∈ g, v ∈ V .
2. If v ∈ V then Wv =spanC{k · v|k ∈ K} is a finite dimensional vector

space such that the map k → k · w, is C∞ as a map from K to Wv for all
w ∈ Wv.

3. If Y ∈ k and v ∈ V then d
dt |t=0 exp(tY )·v = Y v (here the differentiation

is as a map into Wv).
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Our main class of example of (g, K) modules are given as follows. Let
(π,H) be a Hilbert representation of G. Let H∞ be the space of C∞ vectors
of H. We have seen that this space is dense in H. Then the material after
Theorem 93 implies that condition 1. is satisfied. As is condition 3. (but as
a map into H). We set H∞(K) equal to the space of all v ∈ H∞ that satisfy
2. Then if v ∈ H∞(K) it satisfies 3. The only condition missing is that g still
acts.

Lemma 87 If X ∈ g then XH∞(K) ⊂ H∞(K).

Proof. Let v ∈ H∞(K) then we have a map of g
⊗
Wv → H∞ given by

X
⊗
w 7−→ Xw. The compatibility condition 1. implies that the image of

this map is a K-invariant finite dimensional space. It clearly contains Xv.
Thus Xv ∈ H∞(K).

Definition 88 The (g, K) module H∞(K) is called the underlying (g, K)-module
of (π,H).

The (g, K)-modules form a full subcategory C(g, K) of the category of
g and K modules. That is Hom(g,K)(V,W ) =Homg(V,W )∩HomK(V,W ).
We say that a (g, K)-module V is irreducible if the only g and K invariant
subspaces are V and 0.

If V is a (g, K)-module and if γ ∈ K̂ then we set V (γ) equal to the span
of all v such that the representation Wv ∈ γ.

Definition 89 A (g, K)-module V is said to be admissible if dimV (γ) <∞
for all γ ∈ K̂.

The following result is useful in proving irreducibility of represntations of
G.

Theorem 90 Let (π,H) be a Hilbert representation of G such that the un-
derlying (g, K)-module is admissible and irreducible. Then (π,H) is irre-
ducible.

Proof. Let V = (H∞)(K). Suppose that V is reducible. Let W be a
closed invariant subspace of H. Then π(αγ)W ⊂ W for all γ ∈ K̂. Since
H∞ is dense in H and π(αγ)H∞ ⊂ H∞ this implies that H∞ ∩ H(γ) =
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H(γ) since π is admissibel. Now if W (γ) = H(γ) for all γ ∈ K̂ then
W = H. Also as a subrepresentation of H we have W∞ = W ∩ H∞. This
implies that (W∞)(K) ⊂ (H∞)(K). If the two spaces are equal then the above
considerations imply that (W∞)(K) = (H∞)(K). Assume W 6= H. Since
(W∞)(K) ⊂ (H∞)(K) is a g and a K-invariant subspace and (H∞)(K) is an
irreducible (g, K)-module this implies that (W∞)(K) = (0). Hence W (γ) = 0
for all γ ∈ K̂. But than W = 0. Hence π is irreducible as asserted.

This result allows us to finish the discussion of the holomorphic discrete
series of SU(1, 1). Here we take K and much of our notation as in 2.3. Since
the map T → K, eiθ 7−→ k(θ) defines an isomorphism of T = {z ∈ C||z| = 1}
with K. One sees easily that if ηn(k(θ)) = einθ then K̂ = {ηn|n ∈ Z}. From
the definition of (πk, Hk) we have πk(k)zl = η−k−2l(k)zl. It is easily seen that
if j 6= {−k − 2l|l ∈ Z, l ≥ 0} then Hk(ηj) = 0 and that Hk(η−k−2l) = Czl
otherwise. Thus V = (Hk)∞(K) is just the space of all polynomials in one
complex variable. We will now prove the irreducibility. Set

h =
[

0 1
1 0

]
, u =

[
0 i
−i 0

]
.

Then both are elements of Lie(SU(1, 1)). Set Z+ = h−iu
2 and Z− = h+iu

2
then

Z+zl = −lzl−1, Z−zl = (k + l)zl+1, l ≥ 0.

Now suppose that W is an invariant non-zero subspace of V . Then W (γ) 6= 0
for some γ ∈ K̂. This implies that zl ∈W for some l ≥ 0. Now (Z+)lzl = l!1.
This 1 ∈ W . But (Z−)m1 = k (k + 1) · · · (k + m− 1)zm. Hence zm ∈ W for
all m ≥ 0 so W = V .

We will now look at the principal series. We assume that G is a reductive
group over R, that P is a parabolic subgroup and that K is a maximal
compact subgroup. Then G = PK. Let (σ,Hσ) be a Hilbert representation
of P that is unitary when restricted to K ∩ P . Then as a representation of
K ∩ P , Hσ =

⊕
µ∈\K∩PHσ(µ) a direct sum of isotypic components. We will

use the notation at the end of section 2.1. If f ∈ Hσ
0 then f is completely

determined by its restiction to K since f(pk) = σ(p)f(k). Also, f|K ∈
IndKK∩P (Hσ). Furthermore, if φ ∈ IndKK∩P (Hσ) is continuous then we define
f(pk) = σ(p)φ(k) and note that the ambiguity in the definition is irrelevant
and that f ∈ Hσ

o . This implies that as a represntation of K, IndGP (σ) is
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equivalent with IndKP∩K(σ|K∩P ). Now Frobenius reciprocity (and the entire
discussion at the end of 2.5) implies

Proposition 91 The representation IndGP (σ) is admissible for K if and only
if σ is admissible for K ∩ P . Furthermore if γ ∈ K̂ and if Vγ ∈ γ and for
each µ ∈ K̂ ∩ P , Wµ ∈ µ then

dim IndGP (σ)(γ) =
∑

µ∈\K∩P
dimHomK∩P (Vγ,Wµ) dimHomK∩P (Wµ, Hσ).

We will now apply all of this materal to the case of G = SL(2,R) or
SL(2,C). As usual we take B to be the subgroup of upper triangular
elements of G. We take K to be the unitary elements of G (i.e. SO(2) or
SU(2)). Then in the two cases we have respectively, K ∩ B is {±I} for R
and for C {[

z 0
0 z−1

]
|z ∈ C, |z| = 1

}
.

We assume that χ : B → C× is a one dimensional representation of B. We
denote by I(χ) the corresponding induced representation of G. We note that
χ|B∩K is a one dimensional unitary representation of K ∩M . If K = SU(2)
we will parametrize the irreducible representations by their dimensions, we
choose a representative (τk, V k). Also we note that

χ

([
eiθ 0
0 e−iθ

])
= einχθ

with nχ ∈ Z. If K = SO(2) then the irreducible unitary representations will
be paramatrized by integers[

cos θ sin θ
− sin θ cos θ

]
7−→ eikθ

denoted χk.
We have

Lemma 92 Let G = SL(2,R) then dim I(χ)(χk) = 0 or 1 and it is 1 if and
only if χk(−I) = χ(−I). If G = SL(2,C) then dimHomK(V k, I(χ)) = 0 or
1 and it equals 1 if and only if nχ = k − 1− 2r for some 0 ≤ r ≤ k − 1.
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We will now parametrize the characters χ. First if G = SL(2,R) then
the characters are of the form

χ

([
a x
0 a−1

])
=
(
a

|a|

)ε
|a|ν

with ε = 0 or 1 and ν ∈ C. We will write χ = χε,ν in this case. If
G = SL(2, C) then

χ

([
a x
0 a−1

])
=
(
a

|a|

)n
|a|ν

with n ∈ Z and ν ∈ C we write χn,ν in this case. Here is the main theorem
relative to the principal series the proof is similar to the one given for the
discrete series.

Theorem 93 Let G = SL(2,R) then the representations I(χ0,iν) are irre-
ducible for ν ∈ R. The representations I(χ1,iν) are irreducible for ν ∈ R×.
Furthermore, I(χ1,0) splits into the direct sum of 2 irreducible representa-
tions of G, which we will denote by H1 and H−1 these representations are
described in the SU(1, 1) picture in the same way as the holomorphic and
anti-holomorphic discrete series for parameter 1 and the square integrabil-
ity condition replaced by square integrable boundary values on the circle. If
G = SL(2,C) then the representation I(χn,iν) is irreducible for all ν ∈ R.

In both cases there exists one more continuous series of representations
the complementary series. This series is described as follows.

Theorem 94 Let Iν be the underlying (g, K) module of I(χ0,ν) for 0 < ν <
1. Then there exists an irreducible unitary representation of G whose un-
derlying (g, K)-module is equivalent with Iν.

We have at this point described all irreducible unitary representations for
these two groups except for the “trivial”, g 7−→ 1.

2.7 Characters.

Here we will confine our attention to the case of G the F points of a reductive
group over a locally compact, non-discrete field F . We denote by C∞c (G)
the infinitely differentiable functions compactly supported on G if F = R or
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C and the locally constant complex valued functions with compact support
if F is non-Archimedian.

We have the following basic theorem of Harish-Chandra (F of character-
istic 0) and Bernstein (general non-archimedian).

Theorem 95 If (π,H) is an irreducible unitary representation of G then the
operators π(f) are trace class for f ∈ C∞c (G). Furthermore, if F is R or C
then the linear functional f 7−→ tr(π(f)) is a distribution (that is continuous
in the topology defined in section 1.5).

The linear functional f 7−→ tr(π(f)) is called the distribution character of
π (we will usually just call it the character). In the case when G is compact
it is given by integrating against the usual character.

A Hilbert representation, (π,H), of G is said to be essentially unitary if
there exists a continuous homomprhism, χ, of G to C× such that χ−1π is uin-
tary. If P is a parabolic subgroup and if P = MN is a Levi decomposition let
(σ,Hσ) be an essentially unitary, irreducible reperesenation of M we extend
it to a representation of P by σ(mn) = σ(m) for n ∈ N , m ∈ M . We will
use the notation IP,σ for the induced representation from this extesion of σ to
P . In the case of R or C we have seen that there is a refined decomposition
M = oMA and we may assume in this case we consider σ to be an irreducible
unitary representation of oM and ν a continuous homomorphism of A to C×.
We set σν(man) = aνσ(m) (notice how we are writing characters). In this
case we will denote the induced representation by IP,σ,ν it is unitary when ν
is a unitary character. One can show that the representations IP,σ are such
that the operators πσ(f) are trace class for f ∈ C∞c (G).

Harish-Chandra has calculated the characters.

Theorem 96 Let the notation be as in section 1.5.

tr(πσ(f)) = tr(σ(f
P

)).

We will write ΘP,σ (or ΘP,σ,ν in the more refined case) for this character.
In the case of R or C this formula combined with the material in section 1.6
and Harish-Chandra’s theory of discrete series characters relates the char-
acter theory directly with the orbital integrals. The Langlands conjectures
would do the same for the non-Archimedian case.

We will just touch on this difficult and important part of the theory.
References are Varadarajan, Harmonic analysis on reductive groups, RRGI
and, of course, Harish-Chandra’s original papers.
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The first main theorem is that in the notation of 1.4, square integrable
representations exist precisely when K ′′ 6= ∅. Thus assuming (for simplicity)
that G is connected this implies that there is a Cartan subgroup T in G
that is contained in K. Harish-Chandra showed that the square integrable
representations have a natural parametrization by regular characters on T
(this is not quite accurate one may need to go to a 2-fold covering but we
will pretend that this is unnecessary). A unitary character t 7−→ tλ is said
to be regular if dλ is not perpendicular to any root of gC relative to Lie(T )C .
For G = SU(1, 1) the Harish-Chandra parametrization is our πk is his πk−1

for k ≥ 2 and our π−k is Harish-Chandra’s π−k+1. Thus for every k 6= 0 there
is a square integrable representation.

The following result is usually attributed to Rossmann. The result is
implicit in RRGI 8.7.3 (1) (unfortunately, unattributed).

Theorem 97 Let Θλ denote the character of the discrete series representa-
tion parametrized by λ. If f is an element of C(G) with Lgf

P = 0 for all
parabolic subgroups P 6= G and all g ∈ G then F T

f is a smooth function on
T and furthermore up to constants of normalization and a sign

Θλ(f) =
∫
T

F T
f (t)tλdt.

The theorem needs a few words of explanation since if G is not compact
there are no elements of C∞c (G) satisfying these conditions. One proves that
in fact the characters, Θλ, extend to continuous functionals on C(G). The
subspace of functions in C(G) satisfying the conditions of the theorem are
called cusp forms for G and Harish-Chandra proves that this space is the
closure of the linear span of the matrix coefficients of the discrete series.

2.8 Intertwining operators.

In this secton we will describe a few points on intertwining operators. This
material is difficult. We will describe just enough for our discussion of
Eisenstein series.

Let G be reductive over F a locally compact non-discrete field. If P,Qare
two parabolic subgroups of G then they are said to be associate parabolic
subgroups if they have a common Levi factor. Let P,Q be associate parabolic
subgroups of G with common Levi factor M . We will now describe a method
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of relating IP,σ and IQ,σ Formally, if NP is the unipotent radical of P and
NQ that of Q then we write for f ∈ IP,σ

AQ|P (σ)f(g) =
∫

(NP∩NQ)\NQ
f(ng)d(NP ∩NQn).

Notice that we are taking right quotient measure rather than left (all modular
functions are 1 so there no problems here). Also that at least formally that

AQ|P (σ)f(nmg) = σ(m)AQ|P (σ)f(g),m ∈M,n ∈ NQ, g ∈ G.

Also

AQ|P (σ)πP,σ(g) = πQ,σ(g)AQ|P (σ), g ∈ G

at least formally. The real problem is that the integral has no reason to
converge and in general it doesn’t. The point of this section is to find useful
conditions for the convergence of these integrals and to show that there is a
method of analytic continuation that will lead to intertwining operators for
the type of representations that we want to study.

For the case when F is R or C Theorem 27 is usually used to find a best
possible range of convergence when the representation σ of oM is tempered
(in particular square integrable). We will be dealing with more general
choices of σ so we will content ourself with a relatively weak but adequate
range of convergence based on the next lemma. To state it we need the
notion of opposite parabolic subgroup. If P = MN is a parabolic subgroup
with given Levi decomposition then we may look at the set of all associate
parabolic subgroups with Levi factor M . Then among them there is exactly
one, P, such that P ∩ P = M . The existance of this associate parabolic
is usually proved using the absolute root system. Suffice for our purposes
it exists (in the case of the classical examples as given in 1.2 this parabolic
subgrup is just the image of P under transpose. We will call P the opposite
parabolic subgroup, we write P = MN . We note that it depends on the
Levi decomposition. If g ∈ G the write g = pk with the ambiguity noted
earlier.

Lemma 98 Let P = MN be a parabolic subgroup of G and let N be the
nilradical of the opposite parabolic subgroup then∫

N

δP (p(n))dn <∞.
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This result of Harish-Chandra is usually derived by the techniques of
section 1.2 using integration formulas associated with the fact that NMN is
open and dense in G so Proposition 11 applies with A = NM and B =.N .

Using this result one can get a crude range of convergence for the in-
tertwining integrals. We will give the result in the Archimedian case a
completely analogous result is true for the non-Archimedian fields. Let
M = oMA , as usual. If λ ∈ Lie(A)∗ then we set Lie(N)λ = {X ∈
Lie(N)|[h,X] = λ(h)X, h ∈ Lie(A)}. Let Φ(P,A) = {λ|Lie(N)λ 6= {0}, λ 6=
0}.

Proposition 99 There exists a constant CP > 0 such that if ν ∈ Lie(A)∗C
and Re(ν, λ) > CP for all λ ∈ Φ(P,A) ∩ Φ(Q,A) then if (σ,Hσ) is a uni-
tary representation of oM then the integrals defining AQ|P (σν)f for f ∈ Hσν

0
converge absolutely and uniformly in compacta of Lie(A)∗C.

A proof of this result can be found in RRGII Lemma 10.1.10. We will
consider σ to be fixed and write AQ|P (ν). The result above implies that if
f ∈ Hσν

0 then the map

f 7−→ AQ|P (ν)f

is a holomorpic map on the tube defined in the previous lemma (here one must
observe that the Hilbert space of the induced representations is IndKK∩P (σ|K∩P )
so independent of ν.

The names of many authors are associated with the meromorphic cnontin-
uation of these integrals (Kunze,Stein,Harish-Chandra, Knapp,...) the most
general result in this direction is due to Vogan and the author. Let I∞P,σ
denote the space of all C∞ elements of IndKK∩P (σ|K∩P ). The following result
is contained in Theorem 10.1.6 in RRGII.

Theorem 100 If f ∈ I∞P,σ then the map ν 7−→ AQ|P (ν)f has a meromorphic
continuation to Lie(A)∗C. Furthermore, there exists a non-zero holomorphic
function, β, (depending on σ) such that ν 7−→ β(ν)(AQ|P (ν)f is holomorphic.

There is an industry of finding normalizing factors such as that in the
above theorem. They are intimately connected with the Langlands ε factors.

Let N(A) = {g ∈ G|gAg−1 = A}. Set W (A) = N(A)/M . We look at
W (A) as a group of automorphisms of A. That is, s(a) = gag−1 for g ∈ s.
If ν is a character of A then we define sν by asν = (s−1a)ν . Also, we define

63



sσ(m) = σ((s∗)−1ms∗) for a fixed choice of s∗ ∈ s. We note that up to
equivalence this is well defined but the actual representation depends on the
choice of s∗. We also set sP = s∗P (s∗)−1. Then sP has M as a Levi factor.
We can define an intertwining operator

AsP |P (s, ν) : IP,σ.ν → IsP,sσ,sν

by AsP |P (s, ν)f(g) = f((s∗)−1g).
We finally have the most general intertwining operators that we will be

needing

AQ|P (s, ν) = AQ|sP (ν)AsP,P (s, ν).

Note that our original operators are now AQ|P (1, ν).
The operators AP |P (s, ν) are usually called the Kunze-Stein operators for

P minimal and the Knapp-Stein for general parabolic P and σ in the discrete
series of oM .

In the special case of G = SL(2, F ) with F = R or C. These operators
remove the ambiguity in the classification. One has IP,σ,ν ∼= IP,sσ,−ν for the
parameters indicated in the classification.

3 Automorphic forms

We are now ready to begin the main topic of these lectures.

3.1 The case of compact quotient.

We first look at a relatively simple but geometrically useful example. Let G
be a semi-simple Lie group and let Γ be a discrete subgroup of G such that
Γ\G is compact. We fix an invariant measure on G and put the counting
measure on Γ (that is µ(γ) = 1 for all γ ∈ Γ). Then we have a measure on
Γ\G that is invariant under the right regular action of G and such that∫

Γ\G

(∑
γ∈Γ

f(γg)

)
d(Γg).

We define a representation of G on L2(Γ\G) by πΓ(g)f(Γx) = f(Γxg). Then
(πΓ, L

2(Γ\G)) is a unitary representation of G(see example 39). Since the
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quotient Γ\G is compact we see that this representation is of class CC (see
Theorem 67). We therefore see that L2(Γ\G) splits into an unitary direct
sum of irreducible representations. We will use the notation Ĝ for the set
of equivalence classes of irreducible unitary representations. If ω ∈ Ĝ then
we fix a choice (πω, Hω) ∈ ω. Then we can write (as in the case of isotypic
components) the decomposition that we have asserted as

L2(Γ\G) ∼=
⊕
ω∈ bGHomG(Hω, L

2(Γ\G))
⊗

Hω

since

mΓ(ω) = dimHomG(Hω, L
2(Γ\G)) <∞

We call mΓ(ω) the multiplicity of ω in L2(Γ\G).
Before we move on to the trace formula in this case we will describe one of

the more important geometric applications of this decompositions. We first
recall a bit of relative cohomology theory (details can be found in A.Borel and
N.Wallach, Continuous cohomology,...). Let V be a (g, K)-module. Then
one has the relative Lie algebra cohomology complex

d
Ck(g, K;V ) → Ck+1(g, K;V ).

With

Ck(g, K;V ) = HomK(
∧

k(g/k), V )

and d is given by a formula that we will not be using (see the theorem
below). Suffice to say that it is a complex. The cohomology of this complex
is usually denoted Hk(g, K;V ). If W is the underlying (g, K)-module of a
unitary represenation such that the infinitesimal character is the same as
that of a finite dimensional module Fand if V = W

⊗
F ∗ then one can show

that d = 0. We therefore have

Theorem 101 If V is the underlying (g, K)-module of a unitary represen-
tation that has infinitesimal character equal to that of the finite dimensional
represenation F then

Hk(g, K;V
⊗

F ∗) ∼= HomK(
∧

k(g/k), V
⊗

F ∗).
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This result combined with some ideas of Matsushima and Kuga implies .

Theorem 102 If F is an irreducible finite dimensional representation of G
then let ĜF denote the elements of Ĝ whose representatives have infinitesimal
equal to that of F . Then one has

Hk(Γ, F ) =
⊕
ω∈ bGF HomG(Hω, L

2(Γ\G))
⊗

HomK(
∧

k(g/k), Hω

⊗
F ∗).

Here Hk(Γ, F ) is the usual Eilenberg-Maclane cohomology of Γ with coef-
ficients in F . This is one reason for the work done by many authors (Hotta,
Parthasarathy, Enright, Kumaresan, Zuckerman, Vogan,...) to determine
the elements of ĜF . Before all this was completed Borel and I (in the book
mentioned above proved that if 0 < k < rankR(G) and if G has on compact
normal subgroups and the representation Hω has finite kernel then if V is
the underlying (g, K) module of Hω then

Hk(g, K;V
⊗

F ∗) = 0.

This vanshing theorem is derivable from the classification but it is not com-
pletely trivial.

One should consult Borel-Wallach for some implications of this line of
reasoning.

The point so far is that we have been able to skirt the obvious question:
How do we compute the mΓ(ω)? Since 0 times anything is 0. The answer
to the question is that one has no real method. However, one can deduce
results about the distribution of the multiplicities. These results generally
involve the trace formula or elliptic operator theory (or both).

3.2 The trace formula in the case of compact quotient.

We retain the notation of the previous section. We will write π for πΓ. The
material in example 68 applies to the case when X = Γ\G. One finds using
those calcuations that if f ∈ Cc(G) and if

kf (Γx,Γy) =
∑
γ∈Γ

f(x−1γy)
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then (notice that we have interchanged right and left)

π(f)φ(x) =
∫

Γ\G
kf (x, y)φ(y)dy.

The argument in the proof of Lemma 69 proves that the operator π(f) is
of Hilbert-Scmidt class. This means that if {vj} is an orthonormal basis
of L2(Γ\G) then

∑
j ‖π(f)vj‖2 converges. One can take as a definition of

trace class operator a product of two Hilbert-Schmidt class operators. It is
a theorem of Dixmier-Malliavan that if f ∈ C∞c (G) then f can be written as
a finite sum of convolutions

∑
fi ∗ gi with fi, gi ∈ C∞c (G). Since

π(fi ∗ gi) = π(fi)π(gi)

we see that if f ∈ C∞c (G) then π(f) is of trace class. One can consult, say,
RRGI for the basics of trace class operators. All we need here is that if T
is a trace class operator on a Hilbert space H and if {vi} is an orthonormal
basis of H then ∑

〈Tvi, vi〉

converges absolutely and the sum, which we denote trT , is independent of the
basis. For the kernel operators we are studying the trace is just integration
on the diagonal. We have

Theorem 103 If f ∈ C∞c (G) then πΓ(f) is of trace class. Furthermore,

tr (πΓ(f)) =
∫

Γ\G

(∑
γ∈Γ

f(x−1γx)

)
d(Γx).

Notice that the inner sum is a function on Γ\G. Gelfand,Graev, Piattetsky-
Shapiro (Generalized Functions 6 ) give a refinement of this formula which
I will describe presently. First we will complete this one. If ω ∈ Ĝ then
πω(f) is trace class and so we have another formula for the trace (the so
called spectral side).

Theorem 104 Let f ∈ C∞c (G) then

∑
ω∈ bGmΓ(ω)tr(πω(f)) =

∫
Γ\G

(∑
γ∈Γ

f(x−1γx)

)
d(Γx).

67



For our first application of the trace formula we will assume that Γ con-
tains no elements of finite order (this can be accomplished by going to a
normal subgroup of finite index, Selberg, Mostow). Then we have a smooth
manifold Γ\G/K. On G/K we have a Riemannian structure corresponding
to the invariant form that we have chosen (we must make sure that the form
is negative definite on Lie(K) it will then be positive definite on Lie(K)⊥.
This we identify with the tangent space, T (G/K)1K , at the identity coset.
We then move this inner product to every tangent space by left translation.
Since the Riemannian structure is invariant under left translation by ele-
ments of G (by construction) it pushes down to a Riemannian structure on
the quotient manifold Γ\G/K. Let

p : G/K → Γ\G/K

be the natural projection. Then the Riemannian (geodesic) exponential map
is given by

Expp(gK)(v) = p(g exp(tX)K)

for v ∈ T (Γ\G/K)p(gK) being the image under the differential of p of the
vector gotten by translation by g if the tanget vector at 1K corresponding
to X ∈ Lie(K)⊥.

The general theory of Riemannian manifolds implies that if x ∈ Γ\G/K
then there is a ball of radius r > 0 on which the exponential map is injecive.
Let r(x) be the suppremum of all such r. Since Γ\G/K is compact rΓ =
infx∈Γ\G/K r(x) is strictly positive. Let

UΓ = {exp(X)k|X ∈ Lie(K)⊥, B(X,X) < r2
Γ, k ∈ K}.

Note that if x ∈ U then x−1 ∈ U .

Lemma 105 If x ∈ G then x−1Γx ∩ U = {1}.

Proof. By definition p(xu) 6= p(x)for all u ∈ UΓ, u /∈ K. Thus if xu = γx
for some γ ∈ Γ and u ∈ UΓ then u ∈ K. This implies that x−1γx ∈ K.
Since Γ is discrete this implies that γ has finite order and hance γ = 1.

We conclude that if supp(f) ⊂ UΓ then

tr (πΓ(f)) =
∫

Γ\G
f(1)d(Γx) = f(1)vol(Γ\G).
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David DeGeorge and the author applied this formula to prove limit for-
mulas for the multiplicities of representations. We will just sketch how this
can be done. Let

Vr = {exp(X)k|X ∈ Lie(K)⊥, B(X,X) < r2, k ∈ K}.

Then if suppf ⊂ Vr for r ≤ rΓ/2 then suppf ∗ f ⊂ UΓ. Let φ be the
characteristic function of VrΓ/(2+ε). Let ω ∈ Ĝ and let f(g) = φ(g)〈π(g)v, v〉.
Then the observation above implies that πΓ(f) is of Hilbert-Schmidt class.
Thus we can apply the trace formula to f ∗ f . That is

tr(πΓ(f ∗ f)) = f ∗ f(1)vol(Γ\G)

= vol(Γ\G)
∫
G

f(x)f(x−1)dx = vol(Γ\G)
∫
VrΓ/(2+ε)

| 〈πω(g)v, v〉 |2dg.

We now use the left hand side of the formula.

tr(πΓ(f ∗ f)) =
∑
µ∈ bGmΓ(µ)tr(πµ(f ∗ f)).

We observe that all of the terms are non-negative so in particular

mΓ(ω)tr(πω(f ∗ f)) ≤ tr(πΓ(f ∗ f)).

Now we assume that v is a unit vector. Thus if {vj} is an orthonomal basis
of Hω with v = v1. Then we have

tr(πω(f ∗ f)) = tr(πω(f)πω(f)∗).

Now

〈πω(f)vi, vj〉 =
∫
G

φ(g)〈πω(g)v, v〉 〈πω(g)vi, vj〉 dg.

Thus

tr(πω(f ∗ f)) =
∑
i,j

∣∣∣∣∫
G

φ(g)〈πω(g)v, v〉 〈πω(g)vi, vj〉 dg
∣∣∣∣2 .
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Again all of the terms in the sum are positive so any one term is dominated
by the left hand side. We look at the term with i = j = 1. We have∣∣∣∣∣

∫
VrΓ/(2+ε)

| 〈πω(g)v, v〉 |2dg

∣∣∣∣∣
2

≤ tr(πω(f ∗ f)).

Putting all of this together we have (after taking the limit as ε→ 0)

Proposition 106 Let ω ∈ Ĝ and let v ∈ Hω be a unit vector then

mΓ(ω)
vol(Γ\G)

≤ 1∫
VrΓ/2

| 〈πω(g)v, v〉 |2dg
.

In our paper with DeGeorge we showed that for each such Γ there exists a
tower of normal subgroups of finite index in Γ, Γ ⊃ Γ1 ⊃ Γ2 ⊃ ... ⊃ Γn ⊃ ...
such that

∞⋂
i=1

Γi = {1}

and (hence) limn→∞ rΓn =∞.
We therefore have

Theorem 107 Let the notation be as above. If ω ∈ Ĝ and ω is not square
integrable then

lim
n→∞

mΓn(ω)
vol(Γn\G)

= 0.

Using this and a proportionality principle we also proved

Theorem 108 If ω ∈ Ĝ and ω is square integrable then

lim
n→∞

mΓn(ω)
vol(Γn\G)

= d(ω).

Notice that the above results indicate that this is an upper bound.
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We will now describe the promised refinement of the formula and then give
an application due to Langlands. If x ∈ G we set Gx = {g ∈ G|gx = xg}.
If γ ∈ Γ then we set Γγ = Γ ∩Gγ. We normalize measures such that∫

G

f(g)dg =
∫
Gγ\G

(∫
Gγ

f(xg)dx

)
dg

and ∫
Gγ

h(g)dg =
∫

Γγ\Gγ

(∑
γ∈Γ

h(γx)

)
d(Γγx).

We now show that Γγ\Gγ is compact. We first consider the right action
of G on X = Γ\G. Let γ ∈ Γ we consider the set Hγ = {g ∈ G|gγg−1 ∈ Γ}.
Note that ΓHγ = Hγ. Then the set Xγ = {x ∈ X|xγ = x}. One has
Xγ = Γ\Hγ. We denote by Ho

γ the identity component of Hγ. Since Γ
is discrete we see that if g ∈ Ho

γ we must have gγg−1 = γ. Thus the
identity component of Hγ is the same as that if Gγ. This implies that
the identity component of Xγ is Γ\(ΓHo

γ). This implies that Γ\(ΓGγ) is a
union of connected components of Xγ. Since X is compact this implies that
Γ\(ΓGγ) = Γγ\Gγ is compact.

We denote by [γ] the conjugacy class of γ in Γ. We write [Γ] for the set
of conjuagacy classes.

Theorem 109 If f ∈ C∞c (G) then

trπΓ(f) =
∑

[γ]∈[Γ]

vol(Γγ\Gγ)
∫
Gγ\G

f(g−1γg)d(Gγg).

The point here is that the formula is made up completely of the orbital
integrals. This formula is derived from the original as follows we first note
that the sum ∑

τ∈[γ]

f(x−1τx) =
∑

τ∈Γγ\Γ

f(x−1τ−1γτx)

is a function on Γ\G. We now take the raw formula and note that it is given∫
Γ\G

(∑
γ∈Γ

f(x−1γx)

)
d(Γx) =

∫
Γ\G

∑
[γ]∈[Γ]

∑
τ∈[γ]

f(x−1τx)

 d(Γx).
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The sum over the conjugacy class coverges absolutly and uniformly in com-
pacta in G so the expression is∑
[γ]∈[Γ]

∫
Γ\G

∑
τ∈[γ]

f(x−1τx)

 d(Γx) =
∑

[γ]∈[Γ]

∫
Γ\G

 ∑
τ∈Γγ\Γ

f(x−1τ−1γτx)

 d(Γx)

=
∑

[γ]∈[Γ]

∫
Γγ\G

f(x−1γx)d(Γx).

Now we apply the integration formulae above and have∑
[γ]∈[Γ]

∫
Gγ\G

∫
Γγ\Gγ

f((xy)−1γxy)d(Γγx)d(Gγy).

The function being integrated is constant in y so the integral over Γγ\Gγ

gives the volume term.
Now for Langlands’ application. We assume that Γ has no elements of

finite order. We first note that the trace formula is true for functions in
C1(G). Let ω be the class of a discrete series representation of G such
that one matrix coefficient f(g) = cv,v(g) = 〈πω(g)v, v〉 with ‖v‖ = 1 is in
L1(G)(we call such a square integrable represenation an L1-discrete series
Then one can show that it is in C1(G). One can show that the characters of
irreducible unitary representations extend to continuous functions on C1(G).
An extension exactly the same argument used in the proof of the orthogo-
nality part of the Schur orthogonality relations proves that if ω1 6= ω then
πω1(f) = 0 (even if ω1 is not square integrable). Finally, a direct calculation
(completely analogous to the ones above) yields

trπω(f) =
1

d(ω)
.

Also, since there are no elements of finite order in Γother than 1 this implies
that all of the orbital integrals in the formula factor trhough the Harish-
Chandra transform for appropriate parabolic subgroups. Since, but the
Harish-Chandra transforms vanish for matrix entries of discrete series (see
the discussion at the end of section 2.7. The upshot is that we again have
exactly one term in the geometric side of the trace formula. Thus

mΓ(ω)
d(ω)

= vol(Γ\G).

Thus for L1-discrete series the limit formula can be replaced by an equality.
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3.3 The constant term.

We now assume that G ⊂ GL(n,C) is a reductive algebraic group defined
over Q (see the material after Proposition 11) and that G is the group of real
points (G ∩GL(n,R)) which we assume has the property oG = G and Γ is
arithmetic that is if GZ = G ∩ GL(n,Z) then Γ ∩ GZ is of finite index in
both GZ and in Γ. The basic reference for the theory of arithmetic groups
is A. Borel, Introduction aux Groupes Arithmetiques. Assume that P is a
parabolic subgroup of G defined over Q then then we write P for the R-
rational points. Let N be the unipotent radical of P then N is defined over
Q. Let N be the group of R-rational points. We note that M = P/N is also
a reductive group defined over Q. Thus M = oMA with A a maximal Q
split torus (i.e. commected group whose Q points are diagonalizable over Q).
Let M, oM and A denote the R rational points of M, oM, and A respectively.

Theorem 110 The space (Γ ∩N)\N is compact.

We will always normalize the measure on (Γ ∩ N)\N so that the total
measure is 1.

The standard example is G = SL(2,C), G = SL(2,R) defined by det−1 =
0, P the group of upper triangular matrices in G, Γ = SL(2,Z). Then

N =
{[

1 x
0 1

]
|x ∈ R

}
and

N ∩ Γ =
{[

1 n
0 1

]
|n ∈ Z

}
.

Then N ∩ Γ\N is isomorphic with the the unit circle in C.

The condition of compact quotient is that there are no parabolic sub-
groups of G defined over Q other than G. We will now assume that this is
not the case. It is still true that Γ\G has finite total volume (Borel,Harish-
Chandra, Annals of Mathematics,1962). We define a class of functions on G
that will be our main objects of study. We fix a realization of G in GL(n,R)
and assume, as we may, that G∩O(n) is a maximal compact subgroup. Let
‖g‖ be the Hilbert-Schmidt norm of the matrix g ∈ GL(n,R). We denote
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by A∞(Γ\G) the space of all smooth functions, f , from Γ\G to C such that
(here g = Lie(G) and ZG(g) is defined in the material before Lemma 82)

1. The space ZG(g)f is finite dimensional.

2. If x ∈ U(Lie(G)) then there exist k and Cx such that

|xf(g)| ≤ Cx ‖g‖k .

The critical point here is that k is independent of x This condition is A.
Borel’s notion of uniform moderate growth. We will call f an automorphic
function. If we impose in addition the condition

3. The span over C of RKf is finite dimensional.

Then we say that f is a K-finite automorphic function and denote the
space of all such f by A(Γ\G). We note that since the right action of K on
A(Γ\G) splits into irreducible K subrepresentations and the Lie algebra of
G acts by the usual action of left invariant vector fields A(Γ\G) is a (g, K)-
module.

On A∞(Γ\G) we put the union topology relative to the decomposition

A∞(Γ\G) = ∪kA∞k (Γ\G)

with A∞k (Γ\G) the subspace of elements that satisfy 1. and 2. above (i.e.
with that k). We use the seminorms

pk,x(f) = sup
g
‖g‖k |xf(g)|

for x ∈ U(g).
If P is the group of real points of a parabolic subgroup of G defined over

Q and let N be the unipotent radical then we define for f ∈ A∞(Γ\G)

fP (g) =
∫

(Γ∩N)\N
f(ng)dn.

The function fP is called the constant term of f along P . We note that
fP (ng) = fP (g) for all n ∈ N , g ∈ G. We also note that since N is normal
in P , N ∩ Γ is normal in P ∩ Γ Set ΓM = (Γ ∩ P )/(Γ ∩N). Then ΓM ∩ A
is finite and this implies that if γ ∈ ΓM then

fP (γg) = fP (g).
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With these observations in mind we set

fP (g)(p) = fP (pg), p ∈ P, g ∈ G.

We note that fP (pog)(p) = fP (ppog) = fP (g)(ppo) = (R(po)(fP (g)))(p). That
is

fP (pog) = R(po)fP (g).

We also observe that fP (g)(γp) = f(γpg) = f(pg) = f(g)(p). For the
moment we will fix g and condsider the function u(p) = f(g)(p) for p ∈ P .
Then from the above we see that u(np) = u(p) for n ∈ N and thus we may
look upon u as being a function on N\P = M . Also since u(γp) = u(p)
for γ ∈ Γ ∩ P we have, as a function on M , u(γm) = u(m) for m ∈ M and
γ ∈ ΓM = (Γ ∩ P )/(Γ ∩N).

Relative to the action of A, n = Lie(N) decomposes into root spaces.
That is

n =
⊕
α∈Σ+

nα.

We set n =
⊕

α∈Σ+ n−α then Lie(G) = n
⊕

Lie(M)
⊕

n. This implies (using
the Poincare-Birkhoff-Witt theorem) that

U(g) = U(m)
⊕

(nU(g) + U(g)n)

where g = Lie(G)
⊗
C and m = Lie(M)

⊗
C. Let p denote the projection

relative to this direct sum decomposition. One can show that

p : U(g)A → U(m)

is an algebra homomorphism (U(g)A is the algebra of Ad(A)-invariants in
U(g)).

We note that z ∈ U(g)A∩(nU(g)+U(g)n) if and only if z ∈ U(g)A∩U(g)n.
We now consider p(ZG(g)). One can prove (c.f. RRGI)

Theorem 111 The algebra ZM(m) is integral over p(ZG(g)) (that is there
exist u1, ..., ud ∈ ZM(m) such that ZM(m) =

∑
p(ZG(g))ui).
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Now fP as above satsifies (L(x) corresponds to the action of U(g) as right
invariant operators, that is by differentiation on the left)

L(z)fP = p(z)fP .

and

L(z)(fP ) = (L(z)f)P

for z ∈ ZG(g). This implies that the function u = fP (g) (for fixed g ∈ G)
satsifies dimZM(m)u <∞. In particular we have that dimU(a)u <∞ (here
a = Lie(A)). We fix coordinates x1...., xl. We therefore see that there exist
elements ν ∈ a∗C (the complex valued real linear forms on A) and smooth
functions uν,I on oM for I ∈ (Z≥0)l of which only a finite number are non-zero
such that

u(nma) =
∑

aν(log a)Iuν,I(m)

for m ∈ oM , n ∈ N and a ∈ A here xI = xi11 · · ·x
il
l . We note that

dimZoM(om)uν,I <∞.

We also note that the growth condition satisfied by f implies the analogous
growth condition for uν,I . We will write fP,ν,I(g) = uν,I . We have

Proposition 112 With the notation above fP,ν,I : G→ A∞(ΓoM\oM).

For the sake of simplicity we will assume that there exists a homomor-
phism, χ, of ZG(g) to C such that zf = χ(z)f for z ∈ ZG(g). The space
of such f will be denoted A∞(Γ\G,χ). We will use the notation A(Γ\G,χ)
for the elements of A∞(Γ\G,χ) that satisfy condition 2. above.

Using the integrality assertion above we can prove that given χ the set
of ν ∈ a∗C such that there exists f ∈ A∞(Γ\G,χ) and some I with fP,ν,I 6= 0
is finite. Further, for each ν the set of all I such that there is some f ∈
A∞(Γ\G,χ) with fP,ν,I 6= 0 is a finite set which we denote by P(ν). We
can order P(ν) so that if for f ∈ A∞(Γ\G,χ) we form the vector, fP,ν with
components fP,ν,I in the order then we have

fP,ν(ag) = µν(a)fP,ν(g)
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with

µν(a) =


aν ∗ ∗ ∗
0 aν ∗ ∗
...

... . . . ...
0 0 0 aν

 .
We can think of fP,ν as being an element of A∞(ΓoM\oM)

⊗
V (Γ, χ, ν) with

V = V (Γ, χ, ν) a vector space of dimension equal to the cardinality of P(ν).
We look upon µν as an action of A on V making it into a representation of
A.

In general for a smooth manifold, X, we endow C∞(X) with the topol-
ogy of uniform convergence with all derivatives on compacta. With this
topology A∞(ΓoM\oM) becomes a representation of oM and we interpret
our discussion in the following result.

Proposition 113 Set TP,ν(f) = fP,ν. Then TP,ν defines an intertwining
operator

TP,ν : A∞(Γ\G,χ)→ IndGP (A∞(ΓoM\
oM)

⊗
V (Γ, χ, ν))

from the right regular action to the representation induced from the repre-
sentation of oMAN geiven by man 7−→ R(m)

⊗
µν(a). If the infinities are

removed we have the same result with (g, K) induction.

The point of Eisenstein series is to give an approximate inverse to this
mapping. Before we dig into that subject we will look at a key property of
the constant term. For this we must recall the notion of Siegal sets associated
with P . Let ω ⊂ oMN be a compact set. Let Σ+ be as above and let t > 1
be given set A+

t = {a ∈ A|aα ≥ t}. We will write oP = oMN .

Definition 114 A set of the form ωA+
t K is called a Siegel set and denoted

SP,ω,t.

Let P1, ..., Pr be a complete set of representatives for the Γ conjugacy
classes of minimal parabolics defined over Q (which is finite, Borel based
on the methods developed by Borel and Harish-Chandra ) then there are
compact subsets of oPi and ti > 1, i = 1, ..., r such that

G = ∪ΓSPiωi,ti .
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See B-HC for this also.
We return to the P that we have been studying. Set A+ = ∪t>1A

+
t . We

define

β(a) = min
α∈Σ+

aα.

We have the following lemma which was inspired by a technique of Langlands
(The Functional Equations Satisfied by Eisenstein Series, section 3; we will
refer to this book as Langlands).

Lemma 115 Fix t > 1 and ω ⊂ oP . Let f ∈ A∞(Γ\G) and let k be such
that |xf(g)| ≤ Cx ‖g‖k for x ∈ U(g) and g ∈ SP,ω,t. Then

|f(g)− fp(g)| ≤ β(a(g))−1C ‖g‖k

Here g = n(g)m(g)a(g)k(g) with n(g) ∈ N , m(g) ∈ oM , a(g) ∈ A and
k(g) ∈ K as usual.

We will prove this result for SL(2,R) assumed defined over Q and such
that the usual upper triangular parablic, P , subgroup is defined over Q.
This will give the main idea of the proof. We note that Γ ∩N is a discrete
subgroup of N which is isomorphic with the additive group R. Thus Γ ∩N
must be of the form {[

1 r2n
0 1

]
|n ∈ Z

}
with r > 0. After conjugating Γ by

a =
[
r 0
0 r−1

]
we can assume that r = 1. We set

X =
[

0 1
0 0

]
We can write

f(g)− fP (g) =
∫ 1

0
(f(g)− f(exp(xX)g))dg.
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We write g = nak with a as above and r > t. We may assume that n =
exp(yX) with 0 ≤ y ≤ 1. We have (recall LXu(g) = d

dt
u(exp(−tX)g)|t=0, RXu(g) =

d
dt
u(g exp(tX))|t=0∫ 1

0
(f(g)− f(exp(xX)g))dx = −

∫ 1

0

∫ x

0

d

ds
f(exp((s+ y)X)ak)dsdx =

=
∫ 1

0

∫ x

0
LXf(exp((s+ y)X)ak)dsdx

= −r−2
∫ 1

0

∫ x

0
RAd(k)−1Xf(exp((s+ y)X)ak)dsdx.

We now use the moderate growth property and see that the integrand in
absolute value is dominated by a constant times ‖a‖k ≤ C ‖g‖k with C
another constant Since 0 < x < 1 the integration makes things no bigger and
we wind up with the desired estimate since r2 = a(g)α for α the positive root

|f(g)− fP (g)| ≤ C1a(g)−α ‖g‖k

for g ∈ SP,ω,t since r2 = a(g)α for α the positive root.
We will now make a few observations about the Lemma. First is that on

SP,ω,t there is are constants C1, C2, k1, k2 all positive real numbers such that

C2 ‖g‖k2 ≤ β(a(g)) ≤ C1 ‖g‖k1 .

Next we note that the proof only uses the N ∩ Γ invariance of f . We can
replace SP,ω,t by Γ ∩ N\(NSP,ω,t). And do the same argument for f − fP .
If we continue to iterate we find that

|f(g)− fP (g)| ≤ Cm ‖g‖−m

for all m for g ∈ SP,ω,t.
We define A∞cusp(Γ\G) to be the space of all f ∈ A∞(Γ\G) such that

fP = 0 for all proper parabolic subgroups defined over Q. The results and
observations above imply

Theorem 116 If f ∈ A∞cusp(Γ\G) then for each P, ω, t ,m we have |f(g)| ≤
CP,ω,t,m ‖g‖−m for g ∈ SP,ω,t.
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Definition 117 An element f ∈ A∞cusp(Γ\G) is called a cusp form.

In the literature the condition f ∈ A(Γ\G) is assumed for cusp forms.
One can prove easily from the above theorem that A∞cusp(Γ\G) ⊂ L2(Γ\G).
It is also clear that A∞cusp(Γ\G) is invariant under the operators πΓ(g) for
g ∈ G. This implies that we have a G-invariant subspace L2

cusp(Γ\G).
Langlands has shown (using an argument very similar to the proof of the

lemma above see the Corolary on p.41 of Langlands) that if f ∈ C1
c (Γ\G)

then πΓ(f)|L2
cusp(Γ\G) is of Hilbert-Schmidt class. This combined with the

theorem of Dixmier-Malliavan mentioned earlier imples

Theorem 118 If f ∈ C∞c (G) then πΓ(f)|L2
cusp(Γ\G) is trace class.

In particular we know that if ω ∈ Ĝ then dimHomG(Hω, L2
cusp(Γ\G)) <

∞.

Corollary 119 We have the decomposition

L2
cusp(Γ\G) =

⊕
ω∈ bGHomG(Hω, L2

cusp(Γ\G))
⊗

Hω.

Put in the simplest terms the “philosophy of cusp forms” says that for
each Γ-conjugacy classes of Q-rational parabolic subgroups one should con-
struct automorphic functions (from objects from spaces of lower dimensions)
whose constant terms are zero for other conjugacy classes and the constant
terms for and element of the given class give all constant terms for this
parabolic subgroup. This is almost possible and leads to a discription of
all automorphic forms in terms of these constructs and cusp forms. The
construction that does this is the Eisenstein series.

3.4 Eisenstein Series.

We retain the notation of the previous section. Fix P a parabolic subgroup
of G defined over Q. Let P/N = oMA as above. We take KM = π(K ∩ P )
where π : P → M = P/N is the natural projection. Let q be the projection
of M onto oM = M/A. We note that KM ∩A is finite and so we set KoM =
q(KM). This notation becomes very heavy and so we will just assume that
KM ⊂oM . Before we define the Eisenstein series we will need to define our
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notion of Schwartz space. Let P1, ..., Pr be a complete set of Γ-conjugacy
classes of parabolic sugroups defined over Q. Let SPi,ωi,ti be Siegel sets such
that ⋃

i

ΓSPi,ωi,ti = G.

We denote by C(Γ\G) the space of all f ∈ C∞(Γ\G) satisfying

pi,k,x(f) = sup
g=pk∈SPi,ωi,ti

(1 + log ‖g‖)kδP (p)
1
2 |xf(g)| <∞

(the expression g = pk corresponds to the decomposition G = PiK) for all
i, k and x ∈ U(g). We endow C(Γ\G) with the topology induced by the
above seminorms. Then C(Γ\G) is invariant under πΓ(g) (which you should
recall is right translation) and defines a smooth Fréchet representation.

We are now ready to define Eisenstein series. Let

ϕ : K → C(ΓM\oM)

be a continous mapping such that

ϕ(mk) = Rπ(m)ϕ(k)

for m ∈ K ∩ P . We define for each ν ∈ a∗C

ϕν(pk) = a(π(p))ν+ρϕ(k)(q ◦ π(p)), p ∈ P, k ∈ K.

Here a(ma) = a for m ∈ oM and a ∈ A and we note that δP (N) = {1} so
δP (a) makes sense for a ∈ A. We write δP (a)

1
2 = aρ. The transformation

rule for ϕ implies that this formula does, indeed define a function on G. We
note that ϕν extended in this way is an element of C((Γ∩P )N\G). We also
note that if we take a Jordan-Hölder series for the action of P on Lie(N).
Then on the irreducible subquotients N acts trivially. Thus we have an
action of M on the semisimplification (the direct sum of the irrecucibles), V .
In particular, the characters of A that appear will be denotes by Σ (P,A)
and if mα is the multiplicity of the character in V then ρ = 1

2

∑
mαα.

We write

E(P, ϕ, ν)(g) =
∑

γ∈(Γ∩P )\Γ

ϕν(γg).
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One can show that the series in the above expression converges for Re(ν, α) >
(ρ, α) for all α ∈ Σ(P,A) . These series are the Eisenstein series introduced
in somewhat greater generality by Langlands. The simplest prof of the
convergence of the series follows from a method of Godement explained by
A.Borel in his article in Proceedings of Symposia in Pure Mathematics, 9.
Introduction to Automorphic Forms, 199-210, Lemma 11.1.

The first step in their study is to give a meromorphic continuation of the
Eisenstein series to all of a∗C . Unfortunately, in this generality there is no
such continuation known. In fact, the continuation is really only needed for
the series that are constructed from ϕ that take C(ΓM\oM) ∩A∞(ΓM\oM).
In fact it is known even for values in C(ΓM\oM) ∩ A(ΓM\oM) this fact is
comes at the end of the story (Chapter 7 in Langlands).

The first step is the continuation if the values are taken inAcusp(ΓM\oM).
This is very difficult and very indirect in Langlands (a similar method can
be found in Harish-Chandra’s note Springer Lecture Notes, 62).

The next step is to examine the poles of the meromorphic continua-
tion. Some of these poles have residues that are elements of C(ΓM\oM) ∩
A(ΓM\oM). The difficulty is to determine which ones have this property.
This is the reason why Osborne and Warner developed their Eisenstein sys-
tems and Langlands developed his theory of “admissible subspaces” associ-
ated with parabolic subgroups defined over Q. With almost infinite care
(since we have no idea which poles are the important ones) one can iden-
tify certain residues with the analytic continuation of Eisenstein series con-
structed from enough elements of C(ΓM\oM) ∩ A(ΓM\oM). The theorem
is

Theorem 120 If ϕ : K → C(ΓM\oM) ∩ A(ΓM\oM) is as above then the
map

(ν, g) 7−→ E(P, ϕ, ν)(g)

extends to a meropmorphic function in ν in a∗C that is jointly smooth in G.
Furthermore, the map

ν 7−→ E(P, ϕ, ν)

is meromorphic as a map to the Fréchet space A∞(Γ\G). Furthermore it is
holomorphic in a neigborhood of ia∗.
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3.5 The decomposition of L2(Γ\G).

In this section we will give an short exposition of Langlands’ decomposition
of L2(Γ\G). A somewhat more detailed account can be found in J.Arthur’s
paper in the Proceedings of Symposia in Pure Mathematics,33 part 1, 253-274
however he explains the results over the Adeles and so his exposition is of
a less general case (the congruence subgroups). Let P be the real points
of a parabolic subgroup defined over Q. We will retain the notation of the
previous section. If α ∈ C∞c (a∗) and ϕ is as in the last section with values in
C(ΓM\oM) ∩ A(ΓM\oM) then we set

E(P, ϕ, α) =
∫
a∗
α(ν)E(P, ϕ, iν)dν.

We will call such a function a wave packet associated with P .

Theorem 121 The function E(P, ϕ, α) is square integrable, indeed, there
exists a constant cP depending only on P and the normalizations of invariant
measures such that

‖E(P, ϕ, α)‖2
2 = cP ‖α‖2

2

∫
K×(ΓM\oM)

|ϕ(k)(m)|2dkd(ΓMm)

Here all of the norms indicated by ‖...‖2 are the corresponding L2-norms.

We set L2
cont(Γ\G) equal to the closure of the span of the E(P, ϕ, α) for

all P, ϕ and α as above. Set L2
disc(Γ\G) equal to the closure of the sum of the

irreducible closed subspaces of L2(Γ\G). Langlands’ spectral decomposition
can be stated as follows.

Theorem 122 We have L2(Γ\G) = L2
disc(Γ\G)

⊕
L2
cont(Γ\G) orthogonal

direct sum.

We will end with one further decomposition due to Langlands. If P,Q
are parabolic subgroups defined over Q then we say that they are associate
if there is some Levi factor over Q of P that is conjugate via an element of
GQ with a Levi factor over Q of Q.

We have

Theorem 123 If P and Q are non-associate parabolics defined over Q then

〈E(P, ϕ, α), E(Q,ψ, β)〉 = 0

with E(Q,ψ, β) a wave packet associated with Q.
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We look at the elements of L2
disc(Γ\G) as wave packets associated with

G. We will use the notation {P} for the set of parabolic subgroups associate
to P . Let L2

{P}(Γ\G) denote the closure of the span of all wave packets
associated with the elements of {P}. Pick a set of representatives P1, ..., Pd
for the associativity classes of parabolic subgroups defined over Q. As a
corrolary to the preceding two theorems we have.

Theorem 124 The space

L2(Γ\G) =
⊕
{P}

L2
{P}(Γ\G)

a Hilbert space direct sum of irreducible spaces.

One can also prove that C(Γ\G) =
⊕
{P} L

2
{P}(Γ\G) ∩ C(Γ\G.
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