Levels of Entaglement

Nolan Wallach
UCSD
September 2010

Entanglement

- Let $\mathcal{H}_{1}, \ldots, \mathcal{H}_{m}$ be complex finite dimensional Hilbert spaces and $\mathcal{H}=\mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{m}$ with the tensor product Hilbert space structure.

Entanglement

- Let $\mathcal{H}_{1}, \ldots, \mathcal{H}_{m}$ be complex finite dimensional Hilbert spaces and $\mathcal{H}=\mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{m}$ with the tensor product Hilbert space structure.
- A pure state in \mathcal{H} can be looked upon in two ways:

Entanglement

- Let $\mathcal{H}_{1}, \ldots, \mathcal{H}_{m}$ be complex finite dimensional Hilbert spaces and $\mathcal{H}=\mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{m}$ with the tensor product Hilbert space structure.
- A pure state in \mathcal{H} can be looked upon in two ways:
- A unit vector ignoring phase.

Entanglement

- Let $\mathcal{H}_{1}, \ldots, \mathcal{H}_{m}$ be complex finite dimensional Hilbert spaces and $\mathcal{H}=\mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{m}$ with the tensor product Hilbert space structure.
- A pure state in \mathcal{H} can be looked upon in two ways:
- A unit vector ignoring phase.
- An element of $\mathbb{P}(\mathcal{H})$ the projective space of one dimensional subspaces.

Entanglement

- Let $\mathcal{H}_{1}, \ldots, \mathcal{H}_{m}$ be complex finite dimensional Hilbert spaces and $\mathcal{H}=\mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{m}$ with the tensor product Hilbert space structure.
- A pure state in \mathcal{H} can be looked upon in two ways:
- A unit vector ignoring phase.
- An element of $\mathbb{P}(\mathcal{H})$ the projective space of one dimensional subspaces.
- Thus there are two groups that act naturally on $\mathcal{H}, U(\mathcal{H})$ the unitary transfomations and $G L(\mathcal{H})$ the colineations.

Entanglement

- Let $\mathcal{H}_{1}, \ldots, \mathcal{H}_{m}$ be complex finite dimensional Hilbert spaces and $\mathcal{H}=\mathcal{H}_{1} \otimes \cdots \otimes \mathcal{H}_{m}$ with the tensor product Hilbert space structure.
- A pure state in \mathcal{H} can be looked upon in two ways:
- A unit vector ignoring phase.
- An element of $\mathbb{P}(\mathcal{H})$ the projective space of one dimensional subspaces.
- Thus there are two groups that act naturally on $\mathcal{H}, U(\mathcal{H})$ the unitary transfomations and $G L(\mathcal{H})$ the colineations.
- We will call a transformation local if it is of the form $T_{1} \otimes \cdots \otimes T_{m}$.
- A state is said to be a product state if it is represented by a unit vector of the form $\phi_{1} \otimes \phi_{2} \otimes \cdots \otimes \phi_{m}$.
- A state is said to be a product state if it is represented by a unit vector of the form $\phi_{1} \otimes \phi_{2} \otimes \cdots \otimes \phi_{m}$.
- The simplest definition of an entangled state is one that is not a product state.
- A state is said to be a product state if it is represented by a unit vector of the form $\phi_{1} \otimes \phi_{2} \otimes \cdots \otimes \phi_{m}$.
- The simplest definition of an entangled state is one that is not a product state.
- The dimension of the set of product states is

$$
\sum d_{i}-m
$$

$d_{i}=\operatorname{dim} \mathcal{H}_{i}$. The dimension of the set of all states is $\prod d_{i}-1$.

- A state is said to be a product state if it is represented by a unit vector of the form $\phi_{1} \otimes \phi_{2} \otimes \cdots \otimes \phi_{m}$.
- The simplest definition of an entangled state is one that is not a product state.
- The dimension of the set of product states is

$$
\sum d_{i}-m
$$

$d_{i}=\operatorname{dim} \mathcal{H}_{i}$. The dimension of the set of all states is $\prod d_{i}-1$.

- Thus if $m>1$ and all $d_{i}>1$ almost all states are entangled.
- Even so, if we have a state it is not necessarily easy to tell if it is entangled.
- Even so, if we have a state it is not necessarily easy to tell if it is entangled.
- There are two natural questions:
- Even so, if we have a state it is not necessarily easy to tell if it is entangled.
- There are two natural questions:
- Is there a useful method to tell if a state is entangled?
- Even so, if we have a state it is not necessarily easy to tell if it is entangled.
- There are two natural questions:
- Is there a useful method to tell if a state is entangled?
- Is there a natural ordering of entanglement and if so is there a way to place an entangled state in the order?
- David Meyer and I came up with a measure of entanglement starting with the following observation.
- David Meyer and I came up with a measure of entanglement starting with the following observation.
- In each of the spaces \mathcal{H}_{i} we choose an orthonormal basis $|0\rangle, \ldots,\left|d_{i}-1\right\rangle$.
- David Meyer and I came up with a measure of entanglement starting with the following observation.
- In each of the spaces \mathcal{H}_{i} we choose an orthonormal basis $|0\rangle, \ldots,\left|d_{i}-1\right\rangle$.
- If ϕ is a state then we can write a representative as

$$
\sum_{j=0}^{d_{i}-1}|j\rangle \otimes \phi_{1 j}
$$

with $\phi_{1 j} \in \mathcal{H}_{2} \otimes \cdots \otimes \mathcal{H}_{m}$.

- David Meyer and I came up with a measure of entanglement starting with the following observation.
- In each of the spaces \mathcal{H}_{i} we choose an orthonormal basis $|0\rangle, \ldots,\left|d_{i}-1\right\rangle$.
- If ϕ is a state then we can write a representative as

$$
\sum_{j=0}^{d_{i}-1}|j\rangle \otimes \phi_{1 j}
$$

with $\phi_{1 j} \in \mathcal{H}_{2} \otimes \cdots \otimes \mathcal{H}_{m}$.

- The observation is that if ϕ is a product state then any pair of the $\phi_{1 j}$ is linearly dependent. Further, if we do the expansion as above relative to any tensor factor, say the i-th, getting $\phi_{i j}$ then
- David Meyer and I came up with a measure of entanglement starting with the following observation.
- In each of the spaces \mathcal{H}_{i} we choose an orthonormal basis $|0\rangle, \ldots,\left|d_{i}-1\right\rangle$.
- If ϕ is a state then we can write a representative as

$$
\sum_{j=0}^{d_{i}-1}|j\rangle \otimes \phi_{1 j}
$$

with $\phi_{1 j} \in \mathcal{H}_{2} \otimes \cdots \otimes \mathcal{H}_{m}$.

- The observation is that if ϕ is a product state then any pair of the $\phi_{1 j}$ is linearly dependent. Further, if we do the expansion as above relative to any tensor factor, say the i-th, getting $\phi_{i j}$ then
- ϕ is a product state if and only if any pair of the $\phi_{i j}$ with the same first index is linearly independent. This leads to our measure Q.
- $Q(\phi)=\sum_{i=1}^{m} \sum_{k<1}\left\|\phi_{i k} \wedge \phi_{i l}\right\|^{2}$ up to normalization.
- $Q(\phi)=\sum_{i=1}^{m} \sum_{k<1}\left\|\phi_{i k} \wedge \phi_{i l}\right\|^{2}$ up to normalization.
- There is another formula for Q that follows from an identity of Lagrange.
- $Q(\phi)=\sum_{i=1}^{m} \sum_{k<1}\left\|\phi_{i k} \wedge \phi_{i l}\right\|^{2}$ up to normalization.
- There is another formula for Q that follows from an identity of Lagrange.
- We define for each i a linear map from \mathcal{H}_{i} to the tensor product with \mathcal{H}_{i} deleted. by

$$
T_{i}(\phi)(|j\rangle)=\phi_{i j}
$$

We set $A_{i}(\phi)=T_{i}(\phi)^{*} T_{i}(\phi)$ the reduced trace. Then

- $Q(\phi)=\sum_{i=1}^{m} \sum_{k<l}\left\|\phi_{i k} \wedge \phi_{i l}\right\|^{2}$ up to normalization.
- There is another formula for Q that follows from an identity of Lagrange.
- We define for each i a linear map from \mathcal{H}_{i} to the tensor product with \mathcal{H}_{i} deleted. by

$$
T_{i}(\phi)(|j\rangle)=\phi_{i j}
$$

We set $A_{i}(\phi)=T_{i}(\phi)^{*} T_{i}(\phi)$ the reduced trace. Then

- $Q(\phi)=m\|\phi\|^{4}-\sum_{i} \operatorname{tr} A_{i}(\phi)^{2}$. This expression is usually called the total linear entropy. In the case when all of the d_{i} have dimension 2 this formula is attributed to Brennan.

Entropy as a measure.

- If $m=2$ then it is standard to define the Von Neumann entropy of ϕ by

$$
E(\phi)=-\sum_{i} \lambda_{i} \log \lambda_{i}
$$

where the λ_{i} are the eigenvalues of $A_{1}(\phi)$ counting multiplicity.

Entropy as a measure.

- If $m=2$ then it is standard to define the Von Neumann entropy of ϕ by

$$
E(\phi)=-\sum_{i} \lambda_{i} \log \lambda_{i}
$$

where the λ_{i} are the eigenvalues of $A_{1}(\phi)$ counting multiplicity.

- The linear entropy is

$$
E_{L}(\phi)=1-\sum \lambda_{i}^{2}
$$

Entropy as a measure.

- If $m=2$ then it is standard to define the Von Neumann entropy of ϕ by

$$
E(\phi)=-\sum_{i} \lambda_{i} \log \lambda_{i}
$$

where the λ_{i} are the eigenvalues of $A_{1}(\phi)$ counting multiplicity.

- The linear entropy is

$$
E_{L}(\phi)=1-\sum \lambda_{i}^{2}
$$

- These two measures have the same extreme states: if $d_{1} \leq d_{2}$ then the maximal value of these entropies is attained if and only if

$$
A_{1}(\phi)=\frac{1}{d_{1}} I .
$$

- We now return to the case of m factors but assume that all the $d_{i}=d$. If $J \subset\{1, \ldots, m\}$ then we can divide \mathcal{H} into a tensor product of the spaces whose index is in J and one with the rest of the indices. We can thus look at ϕ as bipartite in this way. We can thus define $A_{J}(\phi)$ a semidefinite matrix of size $d^{|J|}$.
- We now return to the case of m factors but assume that all the $d_{i}=d$. If $J \subset\{1, \ldots, m\}$ then we can divide \mathcal{H} into a tensor product of the spaces whose index is in J and one with the rest of the indices. We can thus look at ϕ as bipartite in this way. We can thus define $A_{J}(\phi)$ a semidefinite matrix of size $d^{|J|}$.
- If for all J with at most $\frac{m}{2}$ elements

$$
A_{J}(\phi)=\frac{1}{d^{|J|}} l
$$

then we can argue that ϕ is maximally entangled.

- We now return to the case of m factors but assume that all the $d_{i}=d$. If $J \subset\{1, \ldots, m\}$ then we can divide \mathcal{H} into a tensor product of the spaces whose index is in J and one with the rest of the indices. We can thus look at ϕ as bipartite in this way. We can thus define $A_{J}(\phi)$ a semidefinite matrix of size $d^{|J|}$.
- If for all J with at most $\frac{m}{2}$ elements

$$
A_{J}(\phi)=\frac{1}{d^{|J|}} /
$$

then we can argue that ϕ is maximally entangled.

- We look at some examples. Here we will only look at qubits $(d=2)$.
- We now return to the case of m factors but assume that all the $d_{i}=d$. If $J \subset\{1, \ldots, m\}$ then we can divide \mathcal{H} into a tensor product of the spaces whose index is in J and one with the rest of the indices. We can thus look at ϕ as bipartite in this way. We can thus define $A_{J}(\phi)$ a semidefinite matrix of size $d^{|J|}$.
- If for all J with at most $\frac{m}{2}$ elements

$$
A_{J}(\phi)=\frac{1}{d^{|J|}} /
$$

then we can argue that ϕ is maximally entangled.

- We look at some examples. Here we will only look at qubits $(d=2)$.
- $m=2$. Then a state, ϕ, satisfies the condition for maximal entanglement if and only if there is a transformation of the form $u=u_{1} \otimes u_{2}$ with u_{i} unitary such that $u \phi=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$. That is, a local unitary transformation transforms it to one state (usually called Bell or GHZ).
- $m=3$. There is a local unitary $u=u_{1} \otimes u_{2} \otimes u_{3}$ such that $u \phi=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$.
- $m=3$. There is a local unitary $u=u_{1} \otimes u_{2} \otimes u_{3}$ such that $u \phi=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$.
- $m=5$. Define $\left\langle i_{0} i_{1} i_{2} i_{3} i_{4}\right\rangle=\left|i_{0} i_{1} i_{2} i_{3} i_{4}\right\rangle+\left|i_{4} i_{0} i_{1} i_{2} i_{3}\right\rangle+\ldots+\left|i_{1} i_{2} i_{3} i_{4} i_{0}\right\rangle$. That is cycle over the tensor factors. Let $\phi_{0}=\frac{1}{4}(|00000\rangle+\langle 11000\rangle-\langle 10100\rangle-\langle 11110\rangle)$. Then there exists $u=u_{1} \otimes u_{2} \otimes u_{3} \otimes u_{4} \otimes u_{5}$ such that $u \phi=\phi_{0}$ (Rains).
- $m=3$. There is a local unitary $u=u_{1} \otimes u_{2} \otimes u_{3}$ such that $u \phi=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$.
- $m=5$. Define $\left\langle i_{0} i_{1} i_{2} i_{3} i_{4}\right\rangle=\left|i_{0} i_{1} i_{2} i_{3} i_{4}\right\rangle+\left|i_{4} i_{0} i_{1} i_{2} i_{3}\right\rangle+\ldots+\left|i_{1} i_{2} i_{3} i_{4} i_{0}\right\rangle$. That is cycle over the tensor factors. Let $\phi_{0}=\frac{1}{4}(|00000\rangle+\langle 11000\rangle-\langle 10100\rangle-\langle 11110\rangle)$. Then there exists $u=u_{1} \otimes u_{2} \otimes u_{3} \otimes u_{4} \otimes u_{5}$ such that $u \phi=\phi_{0}$ (Rains).
- $m=6$. Let $\phi_{1}=\operatorname{Not}\left(\phi_{0}\right)$. Then there exists a local untary transformation such that $u \phi=|0\rangle \otimes \phi_{0}+|1\rangle \otimes \phi_{1}$ (also due to Rains).
- $m=3$. There is a local unitary $u=u_{1} \otimes u_{2} \otimes u_{3}$ such that $u \phi=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$.
- $m=5$. Define $\left\langle i_{0} i_{1} i_{2} i_{3} i_{4}\right\rangle=\left|i_{0} i_{1} i_{2} i_{3} i_{4}\right\rangle+\left|i_{4} i_{0} i_{1} i_{2} i_{3}\right\rangle+\ldots+\left|i_{1} i_{2} i_{3} i_{4} i_{0}\right\rangle$. That is cycle over the tensor factors. Let $\phi_{0}=\frac{1}{4}(|00000\rangle+\langle 11000\rangle-\langle 10100\rangle-\langle 11110\rangle)$. Then there exists $u=u_{1} \otimes u_{2} \otimes u_{3} \otimes u_{4} \otimes u_{5}$ such that $u \phi=\phi_{0}$ (Rains).
- $m=6$. Let $\phi_{1}=\operatorname{Not}\left(\phi_{0}\right)$. Then there exists a local untary transformation such that $u \phi=|0\rangle \otimes \phi_{0}+|1\rangle \otimes \phi_{1}$ (also due to Rains).
- $m=4$ no such state exists. $m>7$ no such state exists. $m=7$?
- $m=3$. There is a local unitary $u=u_{1} \otimes u_{2} \otimes u_{3}$ such that $u \phi=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$.
- $m=5$. Define $\left\langle i_{0} i_{1} i_{2} i_{3} i_{4}\right\rangle=\left|i_{0} i_{1} i_{2} i_{3} i_{4}\right\rangle+\left|i_{4} i_{0} i_{1} i_{2} i_{3}\right\rangle+\ldots+\left|i_{1} i_{2} i_{3} i_{4} i_{0}\right\rangle$. That is cycle over the tensor factors. Let $\phi_{0}=\frac{1}{4}(|00000\rangle+\langle 11000\rangle-\langle 10100\rangle-\langle 11110\rangle)$. Then there exists $u=u_{1} \otimes u_{2} \otimes u_{3} \otimes u_{4} \otimes u_{5}$ such that $u \phi=\phi_{0}$ (Rains).
- $m=6$. Let $\phi_{1}=\operatorname{Not}\left(\phi_{0}\right)$. Then there exists a local untary transformation such that $u \phi=|0\rangle \otimes \phi_{0}+|1\rangle \otimes \phi_{1}$ (also due to Rains).
- $m=4$ no such state exists. $m>7$ no such state exists. $m=7$?
- In part due to this Gilad Gour and I decided to determine the "maximally entangled states for 4 qubits".
- $m=3$. There is a local unitary $u=u_{1} \otimes u_{2} \otimes u_{3}$ such that $u \phi=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$.
- $m=5$. Define $\left\langle i_{0} i_{1} i_{2} i_{3} i_{4}\right\rangle=\left|i_{0} i_{1} i_{2} i_{3} i_{4}\right\rangle+\left|i_{4} i_{0} i_{1} i_{2} i_{3}\right\rangle+\ldots+\left|i_{1} i_{2} i_{3} i_{4} i_{0}\right\rangle$. That is cycle over the tensor factors. Let $\phi_{0}=\frac{1}{4}(|00000\rangle+\langle 11000\rangle-\langle 10100\rangle-\langle 11110\rangle)$. Then there exists $u=u_{1} \otimes u_{2} \otimes u_{3} \otimes u_{4} \otimes u_{5}$ such that $u \phi=\phi_{0}$ (Rains).
- $m=6$. Let $\phi_{1}=\operatorname{Not}\left(\phi_{0}\right)$. Then there exists a local untary transformation such that $u \phi=|0\rangle \otimes \phi_{0}+|1\rangle \otimes \phi_{1}$ (also due to Rains).
- $m=4$ no such state exists. $m>7$ no such state exists. $m=7$?
- In part due to this Gilad Gour and I decided to determine the "maximally entangled states for 4 qubits".
- As it turns out there is a vast physics literature on 4 qubits. For example, Verstrade and his coworkers.
- As opposed to the case of $2,3,5,6$ qubits the maximally entangled states relative to linear entropies are not the same as those for Von Neumann. There is also a large zoo of "entropies".
- As opposed to the case of $2,3,5,6$ qubits the maximally entangled states relative to linear entropies are not the same as those for Von Neumann. There is also a large zoo of "entropies".
- We found a finite number of states such that for any of the entropies we studied an extremal state is conjugate up to local unitary transformations to an element of this set.
- As opposed to the case of $2,3,5,6$ qubits the maximally entangled states relative to linear entropies are not the same as those for Von Neumann. There is also a large zoo of "entropies".
- We found a finite number of states such that for any of the entropies we studied an extremal state is conjugate up to local unitary transformations to an element of this set.
- Our paper is on the archive.
- As opposed to the case of 2,3,5,6 qubits the maximally entangled states relative to linear entropies are not the same as those for Von Neumann. There is also a large zoo of "entropies".
- We found a finite number of states such that for any of the entropies we studied an extremal state is conjugate up to local unitary transformations to an element of this set.
- Our paper is on the archive.
- Thus in four qubits there are several answers to the question of maximal entanglement.
- In 2 qubits Bell introduced the basis $v_{0}=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$,

$$
v_{1}=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), v_{2}=\frac{1}{\sqrt{2}}(|01\rangle+|01\rangle), v_{3}=\frac{1}{\sqrt{2}}(|01\rangle-|01\rangle)
$$

- In 2 qubits Bell introduced the basis $v_{0}=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$,

$$
v_{1}=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), v_{2}=\frac{1}{\sqrt{2}}(|01\rangle+|01\rangle), v_{3}=\frac{1}{\sqrt{2}}(|01\rangle-|01\rangle)
$$

- In 4 qubits we set $u_{i}=v_{i} \otimes v_{i}$ for $i=0,1,2,3$. These vectors form an orthonormal basis of a four dimensional subspace, \mathfrak{a}, of the 4 qubit space.
- In 2 qubits Bell introduced the basis $v_{0}=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$, $v_{1}=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), v_{2}=\frac{1}{\sqrt{2}}(|01\rangle+|01\rangle), v_{3}=\frac{1}{\sqrt{2}}(|01\rangle-|01\rangle)$.
- In 4 qubits we set $u_{i}=v_{i} \otimes v_{i}$ for $i=0,1,2,3$. These vectors form an orthonormal basis of a four dimensional subspace, \mathfrak{a}, of the 4 qubit space.
- If we set $G=S L(2, \mathbb{C})^{4}$ acting on \mathcal{H} by the tensor product action then the algebra of polynomials on \mathcal{H} invariant under the action of G is a polynomial algbra in 4 homogeneous generators, $f_{1}, f_{2}, f_{3}, f_{4}$, of degrees 2.4.4.6.
- In 2 qubits Bell introduced the basis $v_{0}=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$, $v_{1}=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), v_{2}=\frac{1}{\sqrt{2}}(|01\rangle+|01\rangle), v_{3}=\frac{1}{\sqrt{2}}(|01\rangle-|01\rangle)$.
- In 4 qubits we set $u_{i}=v_{i} \otimes v_{i}$ for $i=0,1,2,3$. These vectors form an orthonormal basis of a four dimensional subspace, \mathfrak{a}, of the 4 qubit space.
- If we set $G=S L(2, \mathbb{C})^{4}$ acting on \mathcal{H} by the tensor product action then the algebra of polynomials on \mathcal{H} invariant under the action of G is a polynomial algbra in 4 homogeneous generators, $f_{1}, f_{2}, f_{3}, f_{4}$, of degrees 2.4.4.6.
- Given by $\sum z_{i} u_{i} \rightarrow \sum z_{i}^{2}, \sum z_{i}^{4}, z_{0} z_{1} z_{2} z_{3}, \sum z_{i}^{6}$.
- In 2 qubits Bell introduced the basis $v_{0}=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$, $v_{1}=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), v_{2}=\frac{1}{\sqrt{2}}(|01\rangle+|01\rangle), v_{3}=\frac{1}{\sqrt{2}}(|01\rangle-|01\rangle)$.
- In 4 qubits we set $u_{i}=v_{i} \otimes v_{i}$ for $i=0,1,2,3$. These vectors form an orthonormal basis of a four dimensional subspace, \mathfrak{a}, of the 4 qubit space.
- If we set $G=S L(2, \mathbb{C})^{4}$ acting on \mathcal{H} by the tensor product action then the algebra of polynomials on \mathcal{H} invariant under the action of G is a polynomial algbra in 4 homogeneous generators, $f_{1}, f_{2}, f_{3}, f_{4}$, of degrees 2.4.4.6.
- Given by $\sum z_{i} u_{i} \rightarrow \sum z_{i}^{2}, \sum z_{i}^{4}, z_{0} z_{1} z_{2} z_{3}, \sum z_{i}^{6}$.
- Furthermore, $G \mathfrak{a}$ is dense in \mathcal{H} and contains interior.
- In 2 qubits Bell introduced the basis $v_{0}=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$, $v_{1}=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), v_{2}=\frac{1}{\sqrt{2}}(|01\rangle+|01\rangle), v_{3}=\frac{1}{\sqrt{2}}(|01\rangle-|01\rangle)$.
- In 4 qubits we set $u_{i}=v_{i} \otimes v_{i}$ for $i=0,1,2,3$. These vectors form an orthonormal basis of a four dimensional subspace, \mathfrak{a}, of the 4 qubit space.
- If we set $G=S L(2, \mathbb{C})^{4}$ acting on \mathcal{H} by the tensor product action then the algebra of polynomials on \mathcal{H} invariant under the action of G is a polynomial algbra in 4 homogeneous generators, $f_{1}, f_{2}, f_{3}, f_{4}$, of degrees 2.4.4.6.
- Given by $\sum z_{i} u_{i} \rightarrow \sum z_{i}^{2}, \sum z_{i}^{4}, z_{0} z_{1} z_{2} z_{3}, \sum z_{i}^{6}$.
- Furthermore, $G \mathfrak{a}$ is dense in \mathcal{H} and contains interior.
- A specific state that is singled out in our study is one introduced by Love

$$
L=\frac{1}{\sqrt{3}}\left(u_{0}+\zeta u_{1}+\zeta^{2} u_{2}\right)
$$

with $\zeta=e^{\frac{2 \pi i}{3}}$.

- For the simple Lie algebra of type D_{4} there is an involution (corresponding to the real form $S O(4,4)$ with the fixed algebra $\mathfrak{k} \cong A_{1} \oplus A_{1} \oplus A_{1} \oplus A_{1}$ and the -1 eigenspace $\mathfrak{p} \cong \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$ as a \mathfrak{k} module .
- For the simple Lie algebra of type D_{4} there is an involution (corresponding to the real form $S O(4,4)$ with the fixed algebra $\mathfrak{k} \cong A_{1} \oplus A_{1} \oplus A_{1} \oplus A_{1}$ and the -1 eigenspace $\mathfrak{p} \cong \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$ as a \mathfrak{k} module.
- The space \mathfrak{a} is a Cartan subspace. The orbit of L in the full Lie algebra is the set of cyclic elements in the sense of Kostant. (All the invariants of degree below 6 vanish).
- For the simple Lie algebra of type D_{4} there is an involution (corresponding to the real form $S O(4,4)$ with the fixed algebra $\mathfrak{k} \cong A_{1} \oplus A_{1} \oplus A_{1} \oplus A_{1}$ and the -1 eigenspace $\mathfrak{p} \cong \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$ as a \mathfrak{k} module .
- The space \mathfrak{a} is a Cartan subspace. The orbit of L in the full Lie algebra is the set of cyclic elements in the sense of Kostant. (All the invariants of degree below 6 vanish).
- If we add the permutations of the qubits to the action of $K=S L(2, \mathbb{C})^{4}$ We get a subgroup of F_{4}. The corresponding invariants are of degrees $2,6,8,12$ and there is a corresponding cyclic element.
- For the simple Lie algebra of type D_{4} there is an involution (corresponding to the real form $S O(4,4)$ with the fixed algebra $\mathfrak{k} \cong A_{1} \oplus A_{1} \oplus A_{1} \oplus A_{1}$ and the -1 eigenspace $\mathfrak{p} \cong \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$ as a \mathfrak{k} module .
- The space \mathfrak{a} is a Cartan subspace. The orbit of L in the full Lie algebra is the set of cyclic elements in the sense of Kostant. (All the invariants of degree below 6 vanish).
- If we add the permutations of the qubits to the action of $K=S L(2, \mathbb{C})^{4}$ We get a subgroup of F_{4}. The corresponding invariants are of degrees $2,6,8,12$ and there is a corresponding cyclic element.
- We have $D_{4} \subset B_{4} \subset F_{4}$ and for B_{4} there is a cyclic element. Except for one orbit the special elements that Gour and I found are cyclic for these groups.

Hyperdeterminants.

- An invariant of degree 24 for the group, G, (the descriminant of D_{4}) of transformations of 4 qubits of the form $g_{1} \otimes g_{2} \otimes g_{3} \otimes g_{4}$ with $g_{i} \in S L(2, \mathbb{C})$ pointed to way of separating out certain states as "most generic".

Hyperdeterminants.

- An invariant of degree 24 for the group, G, (the descriminant of D_{4}) of transformations of 4 qubits of the form $g_{1} \otimes g_{2} \otimes g_{3} \otimes g_{4}$ with $g_{i} \in S L(2, \mathbb{C})$ pointed to way of separating out certain states as "most generic".
- As it turns out we rediscovered Cayley's hyperdeterminant.

Hyperdeterminants.

- An invariant of degree 24 for the group, G, (the descriminant of D_{4}) of transformations of 4 qubits of the form $g_{1} \otimes g_{2} \otimes g_{3} \otimes g_{4}$ with $g_{i} \in S L(2, \mathbb{C})$ pointed to way of separating out certain states as "most generic".
- As it turns out we rediscovered Cayley's hyperdeterminant.
- In the mid 19th century Cayley invented a generalization of the determinant to tensors $A_{i_{1} i_{2} \cdots i_{m}}$ which in the context of qubits exists for all $m \geq 2$. The degrees are respectively $2,4,24,128,880$ for $m=2,3,4,5,6$. The degrees grow extremely rapidly.

Hyperdeterminants.

- An invariant of degree 24 for the group, G, (the descriminant of D_{4}) of transformations of 4 qubits of the form $g_{1} \otimes g_{2} \otimes g_{3} \otimes g_{4}$ with $g_{i} \in S L(2, \mathbb{C})$ pointed to way of separating out certain states as "most generic".
- As it turns out we rediscovered Cayley's hyperdeterminant.
- In the mid 19th century Cayley invented a generalization of the determinant to tensors $A_{i_{1} i_{2} \cdots i_{m}}$ which in the context of qubits exists for all $m \geq 2$. The degrees are respectively $2,4,24,128,880$ for $m=2,3,4,5,6$. The degrees grow extremely rapidly.
- One can check easily that for 2,3 qubits the hyperdeterminant is nonzero on the "most entangled states" and its absolute value achieves its maximum on those states.

Hyperdeterminants.

- An invariant of degree 24 for the group, G, (the descriminant of D_{4}) of transformations of 4 qubits of the form $g_{1} \otimes g_{2} \otimes g_{3} \otimes g_{4}$ with $g_{i} \in S L(2, \mathbb{C})$ pointed to way of separating out certain states as "most generic".
- As it turns out we rediscovered Cayley's hyperdeterminant.
- In the mid 19th century Cayley invented a generalization of the determinant to tensors $A_{i_{1} i_{2} \cdots i_{m}}$ which in the context of qubits exists for all $m \geq 2$. The degrees are respectively $2,4,24,128,880$ for $m=2,3,4,5,6$. The degrees grow extremely rapidly.
- One can check easily that for 2,3 qubits the hyperdeterminant is nonzero on the "most entangled states" and its absolute value achieves its maximum on those states.
- To prove that the hyperdeterminant of the 5 qubit maximally entangled state is not zero involved a geometric study of the variety of tensors for which the hyperdeterminant vanishes.

Hyperdeterminants.

- An invariant of degree 24 for the group, G, (the descriminant of D_{4}) of transformations of 4 qubits of the form $g_{1} \otimes g_{2} \otimes g_{3} \otimes g_{4}$ with $g_{i} \in S L(2, \mathbb{C})$ pointed to way of separating out certain states as "most generic".
- As it turns out we rediscovered Cayley's hyperdeterminant.
- In the mid 19th century Cayley invented a generalization of the determinant to tensors $A_{i_{1} i_{2} \cdots i_{m}}$ which in the context of qubits exists for all $m \geq 2$. The degrees are respectively $2,4,24,128,880$ for $m=2,3,4,5,6$. The degrees grow extremely rapidly.
- One can check easily that for 2,3 qubits the hyperdeterminant is nonzero on the "most entangled states" and its absolute value achieves its maximum on those states.
- To prove that the hyperdeterminant of the 5 qubit maximally entangled state is not zero involved a geometric study of the variety of tensors for which the hyperdeterminant vanishes.
- In particular, there is now an effective method of seeing if a hyperdetrminant is zero using Groebner Bases.

