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Entanglement

Let H1, ...,Hm be complex finite dimensional Hilbert spaces and
H = H1 ⊗ · · · ⊗Hm with the tensor product Hilbert space structure.

A pure state in H can be looked upon in two ways:

A unit vector ignoring phase.

An element of P(H) the projective space of one dimensional
subspaces.

Thus there are two groups that act naturally on H, U(H) the unitary
transfomations and GL(H) the colineations.
We will call a transformation local if it is of the form T1 ⊗ · · · ⊗ Tm .
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A state is said to be a product state if it is represented by a unit
vector of the form φ1 ⊗ φ2 ⊗ · · · ⊗ φm .

The simplest definition of an entangled state is one that is not a
product state.

The dimension of the set of product states is

∑ di −m

di = dimHi . The dimension of the set of all states is ∏ di − 1.
Thus if m > 1 and all di > 1 almost all states are entangled.

N. Wallach (UCSD) Levels of Entanglement 09/10 3 / 13



A state is said to be a product state if it is represented by a unit
vector of the form φ1 ⊗ φ2 ⊗ · · · ⊗ φm .

The simplest definition of an entangled state is one that is not a
product state.

The dimension of the set of product states is

∑ di −m

di = dimHi . The dimension of the set of all states is ∏ di − 1.
Thus if m > 1 and all di > 1 almost all states are entangled.

N. Wallach (UCSD) Levels of Entanglement 09/10 3 / 13



A state is said to be a product state if it is represented by a unit
vector of the form φ1 ⊗ φ2 ⊗ · · · ⊗ φm .

The simplest definition of an entangled state is one that is not a
product state.

The dimension of the set of product states is

∑ di −m

di = dimHi . The dimension of the set of all states is ∏ di − 1.

Thus if m > 1 and all di > 1 almost all states are entangled.

N. Wallach (UCSD) Levels of Entanglement 09/10 3 / 13



A state is said to be a product state if it is represented by a unit
vector of the form φ1 ⊗ φ2 ⊗ · · · ⊗ φm .

The simplest definition of an entangled state is one that is not a
product state.

The dimension of the set of product states is

∑ di −m

di = dimHi . The dimension of the set of all states is ∏ di − 1.
Thus if m > 1 and all di > 1 almost all states are entangled.

N. Wallach (UCSD) Levels of Entanglement 09/10 3 / 13



Even so, if we have a state it is not necessarily easy to tell if it is
entangled.

There are two natural questions:

Is there a useful method to tell if a state is entangled?

Is there a natural ordering of entanglement and if so is there a way to
place an entangled state in the order?
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David Meyer and I came up with a measure of entanglement starting
with the following observation.

In each of the spaces Hi we choose an orthonormal basis
|0〉 , ..., |di − 1〉 .
If φ is a state then we can write a representative as

di−1
∑
j=0
|j〉 ⊗ φ1j

with φ1j ∈ H2 ⊗ · · · ⊗Hm .
The observation is that if φ is a product state then any pair of the φ1j
is linearly dependent. Further, if we do the expansion as above
relative to any tensor factor, say the i-th, getting φij then

φ is a product state if and only if any pair of the φij with the same
first index is linearly independent. This leads to our measure Q.
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Q(φ) = ∑m
i=1 ∑k<l ‖φik ∧ φil‖

2 up to normalization.

There is another formula for Q that follows from an identity of
Lagrange.

We define for each i a linear map from Hi to the tensor product with
Hi deleted. by

Ti (φ)(|j〉) = φij .

We set Ai (φ) = Ti (φ)∗Ti (φ) the reduced trace. Then

Q(φ) = m ‖φ‖4 −∑i trAi (φ)
2. This expression is usually called the

total linear entropy. In the case when all of the di have dimension 2
this formula is attributed to Brennan.
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Entropy as a measure.

If m = 2 then it is standard to define the Von Neumann entropy of φ
by

E (φ) = −∑
i

λi log λi

where the λi are the eigenvalues of A1(φ) counting multiplicity.

The linear entropy is

EL(φ) = 1−∑ λ2i .

These two measures have the same extreme states: if d1 ≤ d2 then
the maximal value of these entropies is attained if and only if

A1(φ) =
1
d1
I .
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We now return to the case of m factors but assume that all the
di = d . If J ⊂ {1, ...,m} then we can divide H into a tensor product
of the spaces whose index is in J and one with the rest of the indices.
We can thus look at φ as bipartite in this way. We can thus define
AJ (φ) a semidefinite matrix of size d |J |.

If for all J with at most m2 elements

AJ (φ) =
1
d |J |

I

then we can argue that φ is maximally entangled.

We look at some examples. Here we will only look at qubits ( d = 2).

m = 2. Then a state, φ, satisfies the condition for maximal
entanglement if and only if there is a transformation of the form
u = u1 ⊗ u2 with ui unitary such that uφ = 1√

2
(|00〉+ |11〉). That

is, a local unitary transformation transforms it to one state (usually
called Bell or GHZ).
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m = 3. There is a local unitary u = u1 ⊗ u2 ⊗ u3 such that
uφ = 1√

2
(|000〉+ |111〉).

m = 5. Define 〈i0i1i2i3i4〉 = |i0i1i2i3i4〉+ |i4i0i1i2i3〉+ ...+ |i1i2i3i4i0〉.
That is cycle over the tensor factors. Let
φ0 =

1
4 (|00000〉+ 〈11000〉 − 〈10100〉 − 〈11110〉). Then there exists

u = u1 ⊗ u2 ⊗ u3 ⊗ u4 ⊗ u5 such that uφ = φ0 (Rains).

m = 6. Let φ1 = Not(φ0). Then there exists a local untary
transformation such that uφ = |0〉 ⊗ φ0 + |1〉 ⊗ φ1 (also due to
Rains).

m = 4 no such state exists. m > 7 no such state exists. m = 7?

In part due to this Gilad Gour and I decided to determine the
“maximally entangled states for 4 qubits”.

As it turns out there is a vast physics literature on 4 qubits. For
example, Verstrade and his coworkers.
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As opposed to the case of 2, 3, 5, 6 qubits the maximally entangled
states relative to linear entropies are not the same as those for Von
Neumann. There is also a large zoo of “entropies”.

We found a finite number of states such that for any of the entropies
we studied an extremal state is conjugate up to local unitary
transformations to an element of this set.

Our paper is on the archive.

Thus in four qubits there are several answers to the question of
maximal entanglement.

N. Wallach (UCSD) Levels of Entanglement 09/10 10 / 13



As opposed to the case of 2, 3, 5, 6 qubits the maximally entangled
states relative to linear entropies are not the same as those for Von
Neumann. There is also a large zoo of “entropies”.

We found a finite number of states such that for any of the entropies
we studied an extremal state is conjugate up to local unitary
transformations to an element of this set.

Our paper is on the archive.

Thus in four qubits there are several answers to the question of
maximal entanglement.

N. Wallach (UCSD) Levels of Entanglement 09/10 10 / 13



As opposed to the case of 2, 3, 5, 6 qubits the maximally entangled
states relative to linear entropies are not the same as those for Von
Neumann. There is also a large zoo of “entropies”.

We found a finite number of states such that for any of the entropies
we studied an extremal state is conjugate up to local unitary
transformations to an element of this set.

Our paper is on the archive.

Thus in four qubits there are several answers to the question of
maximal entanglement.

N. Wallach (UCSD) Levels of Entanglement 09/10 10 / 13



As opposed to the case of 2, 3, 5, 6 qubits the maximally entangled
states relative to linear entropies are not the same as those for Von
Neumann. There is also a large zoo of “entropies”.

We found a finite number of states such that for any of the entropies
we studied an extremal state is conjugate up to local unitary
transformations to an element of this set.

Our paper is on the archive.

Thus in four qubits there are several answers to the question of
maximal entanglement.
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In 2 qubits Bell introduced the basis v0 = 1√
2
(|00〉+ |11〉),

v1 = 1√
2
(|00〉 − |11〉), v2 = 1√

2
(|01〉+ |01〉), v3 = 1√

2
(|01〉 − |01〉).

In 4 qubits we set ui = vi ⊗ vi for i = 0, 1, 2, 3. These vectors form
an orthonormal basis of a four dimensional subspace, a, of the 4 qubit
space.

If we set G = SL(2,C)4 acting on H by the tensor product action
then the algebra of polynomials on H invariant under the action of G
is a polynomial algbra in 4 homogeneous generators, f1, f2, f3, f4, of
degrees 2.4.4.6.

Given by ∑ ziui → ∑ z2i ,∑ z
4
i , z0z1z2z3,∑ z

6
i .

Furthermore, Ga is dense in H and contains interior.

A specific state that is singled out in our study is one introduced by
Love

L =
1√
3
(u0 + ζu1 + ζ2u2)

with ζ = e
2πi
3 .
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For the simple Lie algebra of type D4 there is an involution
(corresponding to the real form SO(4, 4) with the fixed algebra
k ∼= A1 ⊕ A1 ⊕ A1 ⊕ A1 and the −1 eigenspace
p ∼= C2 ⊗C2 ⊗C2 ⊗C2 as a k module.

The space a is a Cartan subspace. The orbit of L in the full Lie
algebra is the set of cyclic elements in the sense of Kostant. (All the
invariants of degree below 6 vanish).

If we add the permutations of the qubits to the action of
K = SL(2,C)4 We get a subgroup of F4. The corresponding
invariants are of degrees 2, 6, 8, 12 and there is a corresponding cyclic
element.

We have D4 ⊂ B4 ⊂ F4 and for B4 there is a cyclic element. Except
for one orbit the special elements that Gour and I found are cyclic for
these groups.
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Hyperdeterminants.
An invariant of degree 24 for the group, G , (the descriminant of D4)
of transformations of 4 qubits of the form g1 ⊗ g2 ⊗ g3 ⊗ g4 with
gi ∈ SL(2,C) pointed to way of separating out certain states as
“most generic”.

As it turns out we rediscovered Cayley’s hyperdeterminant.
In the mid 19th century Cayley invented a generalization of the
determinant to tensors Ai1 i2 ···im which in the context of qubits exists
for all m ≥ 2. The degrees are respectively 2, 4, 24, 128, 880 for
m = 2, 3, 4, 5, 6. The degrees grow extremely rapidly.
One can check easily that for 2, 3 qubits the hyperdeterminant is
nonzero on the “most entangled states”and its absolute value
achieves its maximum on those states.
To prove that the hyperdeterminant of the 5 qubit maximally
entangled state is not zero involved a geometric study of the variety
of tensors for which the hyperdeterminant vanishes.
In particular, there is now an effective method of seeing if a
hyperdetrminant is zero using Groebner Bases.
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