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Quantum entanglement

Two particles are entangled if a measurement of some property of one
implies a well defined value of a corresponding property of the other.

Schrödinger’s cat: A cat is in a box with an electron and a flask of
poison gas that will be released if a device measures the spin of the
electron to be down. Before the measurement the electron is spin up
with a probability p and spin down with probability 1− p. Is the cat
alive with probability p?

Einstein-Podolosky-Rosen: A pair of electrons are prepared with
opposite spins. Basic quantum mechanics says that they will always
have opposite spins. After some time one is measured and has spin
up. This means that wherever the other is it will have spin down.

Einstein: "Spooky action at a distance."
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Pure State Entanglement

We consider a Hilbert space H(over C) that is the tensor product of
m Hilbert spaces

H = H1 ⊗ · · · ⊗Hm .
The Hilbert spaces Hi will all be finite dimensional and usually 2
dimensional in this lecture.

A pure state in H is an element of the projective space on H, P(H).
This can be looked upon in two ways:

The set of unit vectors identified if they differ by a phase.

The set of one dimensional subspaces.

Thus there is an action of GL(H) on the states.
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A product state is a state that can be represented as a tensor product
φ1 ⊗ · · · ⊗ φm with φi a state in Hi .

The simplest algebraic definition of an entangled state is a state that
is not a product state.

If m > 1 then a randomly chosen state will be entangled Since the
dimension of the set of states is d1 · · · dm − 1 and the dimension of
the set of product states is d1 + ...+ dm −m+ 1.
Natural questions:

How does one tell if a state is entangled?

Are there natural levels of entanglement?
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We look at EPR from the perspective of entanglement. We denote
spin down by |0〉 and spin up by |1〉 . The Hilbert space of spins of
the electron is C2 with orthonormal basis |0〉, |1〉. That is qubits.

We can therefore look at the state of the pair of EPR electrons as

1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉).

The pair of electrons are in state |0〉 ⊗ |1〉 with probability 1
2 and in

state |1〉 ⊗ |0〉 with probability 1
2 . This says that if we measure the

spin of the first electron and get spin up the state of spins of the
electrons collapses to |1〉 ⊗ |0〉 and a measurement of the second
electron is spin down.

Thus the state of the two electrons is entangled by the vague
definition.
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SLOCC

SLOCC stands for stochastic local operations and classical
communication.

Invertible SLOCC is just the action of GL(H1)× · · · × GL(Hm) on
P(H). This is the same as the action of SL(H1)× · · · × SL(Hm).
We will denote it by SL.

We will consider SL to be the product of the SL(Hi ) in this lecture.
We note that the product states form a single orbit under the action
of SL. So an SL invariant function on H is constant on the product
states.

Observe that the product states form the image, U , of the Segre
imbedding of P(H1)× · · · ×P(Hm) in P(H).
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If IU is the homogeneous ideal of U in in the polynomials on H and if
f is homogeneous function in IU then f (U ) = 0. So if one such
function on state v is non-zero the state is entangled.

Returning to two qubits. We note that if

v = ∑ aij |ij〉 = a00 |00〉+ a01 |01〉+ a10 |10〉+ a11 |11〉 .

Then
f (v) = det [aij ]

has the property that if v is a product state then f (v) = 0.

Also f (EPR) = 1
2 . So it is entangled in the algebraic sense.

One checks that in the case of qubits IU is the ideal generated by f .
Furthermore f is invariant under changes by SL.
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It is reasonable to think that a state (as an element of norm one) v
that maximizes |f | should be considered maximally entangled.

It is an exercise to show that the maximum of |f | on sphere is 12 .
Although this is over—kill, the Kemph-Ness theory implies that the
states with |f (v)| = 1

2 are precisely the elements of the orbit
(U(2)⊗ U(2))EPR.
We will come back to Kemph-Ness. But first what about
entanglement in 3 qubits?
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By three qubits we mean H3 = C2 ⊗C2 ⊗C2. The action of SL is
by outer tensor product action. If v ∈ H3 then we can write

v = |0〉 ⊗ v0 + |1〉 ⊗ v1

with v0, v1 ∈ H2.

Polarizing f on H2 we have a non-degenerate SL invariant,
symmetric, bilinear form on H2 which we denote by (..., ...) . This
leads to the tangle

ϕ(v) = det
[
(v0, v0) (v0, v1)
(v1, v0) v1, v1)

]
.

An SL invariant homogeneous of degree 4 and known classically as
the hyperdeterminant of a 2× 2× 2 matrix.
If v = v1 ⊗ v2 ⊗ v3 with vi 6= 0. Then there exists an element of SL
that will transform v to |0〉 ⊗ |0〉 ⊗ |0〉 = |000〉 so ϕ(v) = 0.
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The state studied by Greenberger, Horne and Zielinger:

GHZ =
1√
2
(|000〉+ |111〉)

has v0 = 1√
2
|00〉 , v1 = 1√

2
|11〉. Thus

ϕ(GHZ ) = det

[
0 1√

2
1√
2

0

]
= −1

4
.

Thus GHZ is entangled. We note that

max
‖v‖=1

|ϕ(v)| = 1
4
.

Furthermore, if [GHZ ] is the class of GHZ in P(H3) then the set
SL·[GHZ ] is open and dense in P(H3). Implying that the algebra of
SL invariants is generated by ϕ. Kempf-Ness implies that 14 is the
maximum value and that the set of v ∈ H3, ‖v‖ = 1 with
|ϕ(v)| = 1

4 is exactly (U(2)⊗ U(2)⊗ U(2))GHZ .
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If we consider the hypersurface ϕ = 0 the there is a state

W =
1√
3
(|001〉+ |010〉+ |100〉)

with SL ·W open in the hypersurface.

This state is entangled and many physicists list it and GHZ as equally
entangled.
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The Kempf-Ness Theorem

Let G be a connected reductive algebraic subgroup of GL(H) (This
implies that we may and do assume that if g ∈ G then so is g ∗ = g †.) Set
K = U(H) ∩ G . We say that v ∈ H is critical if 〈Xv |v〉 = 0 for all
X ∈ Lie(G ). We note that the set of critical points is invariant under the
action of K . Here is the theorem.

Theorem
Let G ,K be as above. Let v ∈ H.
1. v is critical if and only if ‖gv‖ ≥ ‖v‖for all g ∈ G.
2. If v is critical and w ∈ Gv is such that ‖v‖ = ‖w‖then w ∈ Kv .
3. If Gv is closed then there exists a critical element in Gv.
4. If v is critical then Gv is closed.
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If H = H1 ⊗ · · · ⊗Hm and G = SL(H1)⊗ · · · ⊗ SL(Hm) then the
hypotheses of the above theorem are satisfied.

If φ is a homogeneous SL—invariant of degree d > 0 and if v is a
state with φ(v) 6= 0 then

φ(
gv
‖gv‖ ) = ‖gv‖

−d φ(gv) = ‖gv‖−d φ(v).

Thus v maximizes |φ| on the set{
gv
‖gv‖ |g ∈ G

}
if and only if it minimizes ‖gv‖ for g ∈ G .
For 2 and 3 qubits respectively and v = EPR or GHZ we have{

gv
‖gv‖ |g ∈ G

}
= {u ∈ H| ‖u‖ = 1, h(u) 6= 0},h(u) = (u, u) or h is

the tangle.
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If v is a state in H1 ⊗ · · · ⊗Hm the j—th factor of dimension dj then
we can expand v in terms of an orthonormal basis of H1,
|0〉 , |1〉 , ..., |dj − 1〉 as

d1−1
∑
j=0
|j〉 ⊗ v1j .

If we permute the factors we have a similar expansion fro each factor.
Thus getting vij for i = 1, ...,m and j = 0, ..., di − 1.
v is critical if and only if

〈vik |vil 〉 =
δkl
di
.

This means that if I consider v to be a bipartite state by permuting
the i—th factor to be first and thinking of the state as an element of

Hi ⊗
(
H1 ⊗ · · · ⊗ Ĥi ⊗ · · · ⊗Hm

)
The reduced trace of v is 1

di
I .
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We can rephrase this as follows: If v is a state then for each i there is
an operator Ti ,v : Hi → H1 ⊗ · · · ⊗ Ĥi ⊗ · · · ⊗Hm that sends |j〉 to
vij . The reduced trace is the operator T †

i Ti .

The von Neumann Entropy of the mixed state (i.e. a non-negative
operator of trace 1), A = T †

i T , is

−trA logA.

v is critical if and only if T †
i Ti =

1
di
I . Thus Kempf-Ness implies

The von Neumann entropy of each mixed state gotten by tracing out
all factors but one of v for all choiced is maximal if and only if it is
critical.

If there exists a closed non-zero SL orbit then 2 dimHi ≤ dimH for
all i .

This is precisely the condition for the existence of the
d1 × d2 × · · · × dm hyperdeterminant.
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Another basic result in the theory is the extended Hilbert-Mumford
theorem (which is used in the proof of the hard part of the Kempf-Ness
Theorem). Let G , H be as in the Kempf-Ness theorem. Then one knows
that a G orbit contains a unique closed orbit in its closure.

Theorem

Let v ∈ H and let Gw be the closed orbit in Gv. Then there exists an
algebraic group homomorphism ϕ : C× → G such that
limz→0 ϕ(z)v ∈ Gw. Furthermore ϕ can be chosen so that ϕ(z) = ϕ(z)∗.
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We also note that in the context of the theorems the set of zeros of
homogeneous polynomial invariants of positive degree is called the
null cone. The only closed orbit in the null cone is {0}.

For 3 qubits the invariants are polynomials in the tangle so the W
state is in the null cone. Thus the Hilbert-Mumford theorem implies
the existence of ϕ : C× → G such that limz→0 ϕ(z)W = 0.

Relative to the reduced trace we can choose any k of the factors of
H1 ⊗ · · · ⊗Hm , i = i1 < · · · < ik and consider j = j1 < · · · < jm−k
the complementary indices and get a linear map

Ti,j : Hi1 ⊗ · · · ⊗Hik → Hj1 ⊗ · · · ⊗Hjm−k .

Set di = dimHi1 ⊗ · · · ⊗Hik then assuming di ≤ dj we can ask does
there exist a state such that T †

i,jTi,j =
1
di
I for all such choices of i?
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Arguably such a state should be considered maximally entangled.

For 2 qubits this condition describes the orbit of EPR.up to local
unitary transformations. For 3 qubits it describes GHZ up to local
unitary transformations.

Rains has shown that if |0〉 7−→ u, |1〉 7−→ v defines the perfect 5
qubit error correcting code then the orbit of u (or or v) is described
by this condition. For 6 qubits we have

1√
2
(|0〉 ⊗ u + |1〉 ⊗ v) .

For 4 qubits no such state exists. One can show that there are 90
orbit types using Kostant-Rallis theory for the group D4.
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The Bell states

u0 =
1√
2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉), u1 =

1√
2
(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉),

u2 =
1√
2
(|0〉 ⊗ |1〉+ |0〉 ⊗ |1〉), u3 =

1√
2
(|0〉 ⊗ |1〉 − |0〉 ⊗ |1〉).

All in the orbit of EPR (the last one) leads to a basis for the space of
4 qubits ui ⊗ uj .

The 4 dimensional space A with basis vj = uj ⊗ uj is particularly
interesting.
The polynomial invariants under SL are generated by 4 invariants,
f2, f4, ph, f6, whose restriction to the elements ∑ xivi are given as

∑ x2i ,∑ x4i , x0x1x2x3,∑ x6i .

The critical elements consist of the set
(U(2)⊗ U(2)⊗ U(2)⊗ U(2))A.
A complete discussion of entanglement for 4 qubits can be found in
my paper with Gilad Gour, "All maximally entangled 4 qubit states"
most easily found on the archive.
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Among the 9 closed orbit types 2 examples stand out.

L =
1√
3

(
v0 +ωv1 +ω2v2

)
,ω = e

2πi
3 ,

M =
i√
2
v0 +

1√
6
(v1 + v2 + v3) .

The various total entropies that depend on parameters have values running
between the value at each of these. That both maximize total Von
Neumann 2,2 entropy and considering other total 2,2 entropies of states
with maximal Von Neuman 2,2 entropy one is maximal and the other is
minimal.
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