1) Given a word $w=w_{1} \ldots w_{n} \in\{1, \ldots, k\}^{*}$, let $|w|=n$ denote the length of $w, Z(w)=\prod_{i=1}^{n} z_{w_{i}}$, and $\operatorname{lev}(w)=\left|\left\{i: w_{i}=w_{i+1}\right\}\right|$. Define a ring homomorphism ϕ on $\Lambda\left(x_{1}, x_{2}, \ldots\right)$ by defining

$$
\phi\left(e_{n}\right)=(-1)^{n-1} p_{n}\left(x_{1}, \ldots, x_{k}\right)(x-1)^{n-1}
$$

where p_{k} is the power symmetric function. Show that

$$
\phi\left(\sum_{n \geq 0} h_{n} t^{n}\right)=\sum_{w \in\{1, \ldots, k\}^{*}} x^{l e v(w)} Z(w) t^{|w|}
$$

(2) Do problem 3.9 in the book.
(3) Do problem 3.10 in the book.
(4) Do problem 3.11 in the book.
(5) Do problem 3.16 in the book.
(6) Let $E_{n}^{(3)}$ denote the set of permutations $\sigma=\sigma_{1} \ldots \sigma_{n} \in S_{n}$ such that $\sigma_{i}>\sigma_{i+1}$ if and only if $i \equiv 0 \bmod 3$. Find the generating funtion

$$
1+\sum_{n \geq 1} \frac{t^{n}}{n!}\left|E_{n}^{(3)}\right|
$$

(Hint: Modify the proof of the generating function for up-down permutations by finding separate expressions for the generating functions
$\sum_{n \geq 0} \frac{t^{3 n}}{(3 n)!}\left|E_{3 n}^{(3)}\right|$,
$\sum_{n \geq 0} \frac{t^{3 n+1}}{(3 n+1)!}\left|E_{3 n+1}^{(3)}\right|$, and
$\sum_{n \geq 0} \frac{t^{3 n+2}}{(3 n+2)!}\left|E_{3 n+2}^{(3)}\right|$.

