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1 Rook and Hit numbers and File and Fit numbers

1.1 Preliminaries

Throughout this book, we abbreviate left-hand-side and right-hand-side by LHS and RHS, re-
spectively. We let [n] = {1, . . . , n}. We let N = {0, 1, 2, . . .} denote the natural numbers,
P = {1, 2, . . .} denote the positive integers, Z = {0,±1,±2, . . .} denote the integers, C denote
the complex numbers, and R denote the real numbers. For any statement A, we let χ(A) = 1 is
A is true and χ(A) = 0 if A is false.

Given a ring R, we let R[x] denote the ring of polynomials in x, i.e. R[x] consists of all
polynomials a0 + a1x + · · ·+ anxn where ai ∈ R for all i and the operations on R[x] is the usual
addition and multiplication of polynomials. Let R[[x]] denote the ring of formal power series in
x, i.e. R[[x]] consists of all formal power series f =

∑

n≥0 fnxn where fn ∈ R. If f =
∑

n≥0 fnxn

and g =
∑

n≥0 gnxn are elements of R[[x]] and c ∈ R, then

cf =
∑

n≥0

cfnxn,

f + g =
∑

n≥0

(fn + gn)xn and

fg =
∑

n≥0

(

n
∑

k=0

fkgn−k)x
n.

If f =
∑

n≥0 fnxn is an element of R[[x]], we shall let f |xk = fk denote the operation of taking

the coefficient of xk of n. If ~a = a0, a1, . . . is a sequence of elements from R, then the ordinary
generating function of ~a is just the formal power series OGF~a(x) =

∑

n≥0 anxn and if Q ⊂ R,
the exponential generating function of ~a is just the formal power series EGF~a(x) =

∑

n≥0
an

n! x
n.

We shall write 1
1−x

for the formal power series
∑

n≥0 xn. Finally, we need to define when a
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sequence of formal power series {gm}m≥0 converges to a formal power series g in R[[x]]. If
gm =

∑

n≥0 gn,mxn for m ≥ 0 and g =
∑

n≥0 gnxn, then we write

lim
m→∞

gm = g (1)

if and only if for all k ≥ 0, there is an number Nk > 0 (depending on k) such that for all m ≥ Nk,
gm,k = gk.

1.2 Introduction to Rook Theory

The theory of rook polynomials was introduced by Kaplansky and Riordan [?], and developed
further by Riordan [48]. We refer the reader to Stanley [50, Chap. 2] for a nice exposition of
some of the basics of rook polynomials and permutations with forbidden positions.

A board is a subset of an P×P. We label the rows of P×P from bottom to top with 1, 2, 3, . . . ,
and the columns of P×P from left to right with 1, 2, 3, . . . , and let (i, j) denote the square in the
i-th row and j-th column. Given b1, . . . , bn ∈ N, we let F (b1, . . . , bn) denote the board consisting
of all the cells {(i, j) : 1 ≤ i ≤ n & 1 ≤ j ≤ bi}. If a board B is of the form B = F (b1, . . . , bn),
then we say that B is skyline board and if, in addition, b1 ≤ b2 ≤ · · · ≤ bn, then we say that
B is a Ferrers board. For example, Figure 1 pictures the skyline board F (2, 1, 0, 3) on the left
and the Ferrers board F (1, 2, 2, 3) on the right where we have shaded the cells belonging to the
board.

F(2,1,0,3) F(1,2,2,3)

Figure 1: A skyline board and a Ferrers boards.

Next we introduce the two of the key objects of study of rook theory which are the rook
numbers and file numbers of a board B.

Definition 1. Given a board B ⊆ [n]× [n], we let

1. Nk(B) denote the set of all placements of k rooks in B such that no two rooks lie in the
same row or column and

2. Ck(B) denote the set of placements of k rooks in B such that there is at most one rook in
each column.

We shall refer to an element P ∈ Nk(B) as a placement of k non-attacking rooks in B and
element Q ∈ Ck as a file placement of k rooks in B. For k = 1, . . . , n, we let rk(B) = |Nk(B)|
and fk(B) = |Ck(B)|. By convention, we set r0(B) = f0(B) = 1. We refer to rk(B) as the k-th
rook number of B and fk(B) as the k-th file number of B.

Another important set of numbers associated with a board B are the hit numbers and the fit
numbers. Let Sn denote the symmetric group, i.e. Sn is the set of all 1:1 functions σ : [n]→ [n]
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under composition. Elements of Sn can be thought of as permutations of 1, 2, . . . , n. That is, if
σ ∈ Sn and σ(i) = σi for i = 1, . . . , n, then we shall write σ in two-line notation as

1 2 3 · · · n
σ1 σ2 σ3 · · · σn

.

We shall also write σ in one-line notation as σ = σ1 . . . σn. We shall also use cycle nota-
tion for permutations. For example, if σ = 3 2 4 5 1 7 6 8, then in cycle notation, σ =
(1, 3, 4, 5)(2)(6, 7)(8). Given a permutation σ = σ1 . . . σn ∈ Sn, we identify each σ ∈ Sn with
the rook placement {(σi, i) : i = 1, . . . , n} on [n]× [n]. We let Fn denote the set of all functions
f : [n] → [n]. We will identify f ∈ Fn with the rook placement {(f(i), i) : i = 1, . . . , n} on
[n]× [n]. For example, if σ = 2 3 1 5 4 ∈ Sn and f is the function given by f(1) = 3, f(2) = 1,
f(3) = 3, f(4) = 1, and f(5) = 4, then the rook placement associated with σ is given on the left
in Figure 2 and the file placement associated with f is given on the right in Figure 2. We let

Hk,n(B) = |{σ ∈ Sn : |σ ∩B| = k}| and

Fk,n(B) = |{f ∈ Fn : |f ∩B| = k}|.

We shall refer to Hk,n(B) as the k-th hit number of B relative to [n]× [n] and Fk,n(B) as
the k-th fit number of B relative to [n]× [n].

X

X

X

X

X

1 2 3 4 5 1 2 3 4 5
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1

3

4

5

1
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3
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5

X

X

X

X
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Figure 2: Rook placements associated with permutations and functions.

Kaplansky and Riordan [38] proved the following fundamental relationship between the rook
numbers and the hit numbers of a board B ⊆ [n]× [n].

Theorem 1. For any board B ⊆ [n]× [n],

n
∑

k=0

Hk,n(B)xk =
n
∑

k=0

rk(B)(n− k)!(x − 1)k. (2)

Proof. Replacing x by x + 1 in equation (2), we see that it is enough to prove

n
∑

k=0

Hk,n(B)(x + 1)k =

n
∑

k=0

rk(B)(n − k)!xk. (3)

To interpret the LHS of (2), consider the set of objects O obtained by first picking a a rook
placement on [n]× [n] associated with some permutation σ ∈ Sn and then for each rook r which
is in σ ∩B, we either circle the rook or not. For each such object O constructed in this way, we
define the weight of O as xcirc(O) where circ(O) is the number of circled rooks in O. If OB is
the set of objects constructed in this way, it is easy to see that

∑

O∈OB

xcirc(O) =

n
∑

k=0

Hk,n(B)(x + 1)k. (4)
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However, we can also count the LHS of (4) by first picking the number k of circled rooks, then
picking the k circled rooks as a placement P of k non-attacking rooks on B which can be done
in rk(B) ways, and finally extending P to a placement corresponding to a permutation σ ∈ Sn

by adding n− k non-circled rooks which can done in (n − k)! ways. Thus

∑

O∈OB

xcirc(O) =

n
∑

k=0

rk(B)(n − k)!xk (5)

which proves (3).

We can prove the fundamental relation between the file and fit numbers of a board B ⊆
[n]× [n] in the same way.

Theorem 2. For any board B ⊆ [n]× [n],

n
∑

k=0

Fk,n(B)xk =
n
∑

k=0

fk(B)nn−k(x− 1)k. (6)

Proof. Again, replacing x by x + 1 in equation (6), we see that it is enough to prove

n
∑

k=0

Fk,n(B)(x + 1)k =

n
∑

k=0

fk(B)nn−kxk. (7)

To interpret the LHS of (7), consider the set of objects Q obtained by first picking a file placement
on [n] × [n] associated with some function f ∈ Fn and then for each rook r which is in f ∩ B,
we either circle the rook or not. For each such object Q constructed in this way, we define the
weight of Q as xcirc(Q) where circ(Q) is the number of circled rooks in Q. If QB is the set of
objects constructed in this way, it is easy to see that

∑

Q∈QB

xcirc(O) =
n
∑

k=0

Fk,n(B)(x + 1)k. (8)

However, we can also count the LHS of (8) by first picking the number k of circled rooks, then
picking the k circled rooks as a file placement P of k rooks on B which can be done in fk(B)
ways, and finally extending P to a placement corresponding to a function f ∈ Fn by adding
n− k non-circled rooks which can done in nn−k ways. Thus

∑

Q∈QB

xcirc(O) =
n
∑

k=0

fk(B)nn−kxk (9)

which proves (7).

Next we shall prove two factorization theorems for polynomials associated with the rook
numbers associated to a Ferrer’s board and the file numbers associated with a skyline board.
First we present a result of Goldman, Joichi, and White [21] for polynomials associated with
rook numbers of Ferrers boards. We define the falling factorial polynomial (x) ↓k by (x) ↓0= 1
and (x) ↓k= x(x− 1)(x− 2) · · · (x− (k − 1)) for k ∈ P.
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Theorem 3. (Goldman, Joichi, and White [21])
Let B = F (b1, . . . , bn) be a Ferrers board. Then

n
∏

i=1

(x + bi − (i− 1)) =

n
∑

k=0

rn−k(B)(x) ↓k . (10)

Proof. Since the polynomials are of finite degree, it is enough to prove the (10) holds for all
positive integers x. Given a positive integer x, we let Bx be the board which is obtained from
B = F (b1, . . . , bn) by attaching x rows of length n below B. For example, if B = F (1, 2, 4, 4, 6),
then B4 is pictured in Figure 3. We shall call the line that separates B from the x rows that we
added below B the bar. We shall then refer to the cells that lie in B as the cells that lie above
the bar and the cells that lie in the x rows that were added below B as the cells below the bar.

bar

Figure 3: The board B4 where B = F (1, 2, 4, 4, 6).

Let Nn(Bx) denote the set of all placements of n nonattacking rooks in Bx. We claim that
(10) is the result of two different ways of counting |Nn(Bx)|. That is, if we think of counting
the number of ways of placing a rook in each column, reading from left to right, then we clearly
have x+ b1 ways to place the rook in the first column. Next we have x+ b2−1 ways to place the
rook in the second column where the −1 comes from the fact that we can not place the rook in
the second column in the same row as the rook in the first column. Here we are using the fact
that b1 ≤ b2 so that every row in the first column is also a row in the second column. Next we
have x+ b2− 2 ways to place a rook in the third column where the −2 comes from the fact that
we can not place a rook in the third column in the rows of the rooks in the first two columns.
Continuing on in this way, it is easy to see that

|Nn(Bx)| =
n
∏

i=1

(x + bi − (i− 1)).

Next, suppose that we first fix a placement P of n − k non-attacking rooks above the bar
in Bx. We claim that there are (x) ↓k ways to extend P to a placement Q ∈ Nn(Bx) such
that Q ∩ B = P . That is, we want to count the number of ways to extend P to a placement
Q ∈ Nn(Bx) by placing an additional k rooks below the bar. If we look at the leftmost available
column in which to place a rook below the bar, then there will be x possible cells in which to
place it. As we move to the right, the next available column in which to place a rook below the
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bar will have x− 1 cells left to place the rook below the bar in that column. Continuing on in
this way, we see that number of such Q is x(x− 1) · · · (x− (k − 1)) = (x) ↓k. Thus we see that

|Nn(Bx)| =

n
∑

k=0

∑

P∈Nn−k(B)

(x) ↓k=
n
∑

k=0

(x) ↓k |Nn−k(B)|

=

n
∑

k=0

(x) ↓k rn−k(B)

as desired.

We have a similar result for file numbers, see Miceli-Remmel [?].

Theorem 4. Let B = F (b1, . . . , bn) be a skyline board. Then

n
∏

i=1

(x + bi) =

n
∑

k=0

fn−k(B)xk. (11)

Proof. Since the polynomials are of finite degree, it is enough to prove the (11) holds for all
positive integers x.

Let Cn(Bx) denote the set of all file placements of n rooks in Bx. We claim that (11) is the
result of two different ways of counting |Cn(Bx)|. That is, if we think of counting the number
of ways of placing a rook in each column, reading from left to right, then we clearly have x + bi

ways to place the rook in the column i. Thus

|Cn(Bx)| =
n
∏

i=1

(x + bi).

Next, suppose that we first fix a file placement P of n − k rooks above the bar in Bx. We
claim that there are xk ways to extend P to a placement Q ∈ Fn(Bx) such that Q ∩ B = P .
That is, we want to count the number of ways to extend P to a placement Q ∈ Nn(Bx) by
placing an additional k rooks below the bar. Clearly there are x ways to place a rook below the
bar in any of columns that do not have a rook in P in them. Thus we see that

|Fn(Bx)| =

n
∑

k=0

∑

P∈Cn−k(B)

xk =

n
∑

k=0

xk|Cn−k(B)|

=

n
∑

k=0

xkfn−k(B)

We end this section with some basic recursions for rook numbers and file numbers for Ferrers
boards. First assume that B = F (b1, . . . , bn) is a Ferrers board and that B− = F (b1, . . . , bn−1).
Then for any k ≥ 1, we have that

rk(B) = rk(B
−) + (bn − k + 1)rk−1(B

−). (12)

and
fk(B) = fk(B

−) + bnfk−1(B
−). (13)

6



That is, it is easy to see that (12) follows by classifying the elements of Nk(B) according to
whether there is a rook in the last column. Clearly if there is no rook in the last column, then
all k rooks must be placed in B− so that there are rk(B

−) such rook placements. However, if
there is a rook in the last column, then we must place k − 1 rooks in B− which we can do in
rk−1(B

−) ways. For each placement of Q ∈ Nk−1(B
−), we can extend Q to a rook placement

of k non-attacking rooks in B in bn − (k − 1) ways since we can not place the extra rook
in the last column in any of the rows which contain rooks in Q. Thus it follows that there
(bn− k +1)rk−1(B

−) elements of Nk(B) which contain a rook in the last column. The recursion
(13) is proved in the same manner.

1.3 Some special cases of rook and file numbers

In this section, we shall look at some special cases of rook and file numbers. For example,
consider the staircase board Stn = (0, 1, . . . , n − 1). Note that in this case, (10) and becomes

xn =
n
∑

k=1

rn−k(Stn)(x) ↓k . (14)

Now the Stirling numbers of the second kind Sn,k are defined by

xn =

n
∑

k=1

Sn,k(x) ↓k (15)

from which it immediately follows that

Sn,k = rn−k(Stn). (16)

Now the usual combinatorial interpretation of Sn,k is that Sn,k is the number of set partitions
of {1, . . . , n} into k parts. Thus it follows that the number of placements of n− k non-attacking
rooks in Stn is equal to the number of set partitions of {1, . . . , n} into k parts. There is a
simple bijection Θn which takes the set SPn,k of set partitions of {1, . . . , n} into k parts onto
Nn−k(Stn). That is, suppose that we are given a set partition P = (C1, . . . , Ck) ∈ SPn,k

where min(C1) < min(C2) < · · · < min(Ck). Then for each i, we add no rooks to Θ(P ) if
|Ci| = 1 and we add rooks in positions (ci

1, c
i
2), (c

i
2, c

i
3), . . . , (c

i
si−1, c

i
si

) if |Ci| = si where si ≥ 2
and Ci = {ci

1 < · · · < ci
si
}. For example, if P = ({1, 3, 8}, {2}, {4, 7, 8}, {5, 9}, then the rook

placement Θ9(P ) has rooks in positions (1, 3), (3, 8), (4, 7), (7, 8), and (5, 9). We picture Θ9(P )
in Figure 4. The inverse map in this case is also easy to describe. That is, given a rook placement
Q ∈ Nn−k(Stn), label the cells which are just to left of Stn in row i with i as pictured in Figure
4. Then Θ−1

n (Q) is the set partition determined by placing i and j in the same part if there is
a rook in cell (i, j) which lies at the intersection of the row labeled i and the column labeled j
in Q.

Note that in this case (12) becomes

Sn+1,k = rn+1−k(Stn+1) = rn+1−k(Stn) + (n− (n− k))rn−k(Stn)

= Sn,k−1 + kSn,k (17)

which is the usual recursion for the Stirling numbers of the second kind.
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Figure 4: Θ9(P ).

For B = Stn, (11) becomes

x(x + 1) · · · (x + n− 1) =
n
∑

k=1

fn−k(Stn)xk. (18)

Then replacing x by −x and multiplying both sides by (−1)n, we obtain that

(x) ↓n=
n
∑

k=1

(−1)n−kfn−k(Stn)xk. (19)

Now the Stirling numbers of the first kind sn,k are defined by

(x) ↓n=

n
∑

k=1

sn,kx
k. (20)

from which it immediately follows that

sn,k = (−1)n−kfn−k(Stn). (21)

Now cn,k = (−1)n−ksn,k is called a signless Stirling number of first kind. This implies that
fn−k(Stn) = cn,k.

The usual combinatorial interpretation of cn,k is that cn,k is the number permutations of Sn

with k-cycles. Thus it follows that the number of file placements of n− k rooks in Stn is equal
to the number of permutations of n into k cycles. There is a simple bijection ∆n which takes
the set PERMn,k of permutations of Sn into k cycles onto Cn−k(Stn). That is, suppose that we
are given a permutation σ = (C1, . . . , Ck) ∈ PERMn,k. We assume that the cycles of σ which
are arranged so that the minimal elements of each cycle Ci is at the left and the cycles are
arranged by increasing minimal elements. Then for i = 1, . . . , n we let σ(i) be the permutation
of Si that results by erasing all the elements i+1, . . . , n in the cycle structure of σ. For example,
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if σ = (1, 7, 3) (2, 4) (5, 9, 8) (6), then

σ(1) = (1),

σ(2) = (1) (2),

σ(3) = (1, 3) (2),

σ(4) = (1, 3) (2, 4),

σ(5) = (1, 3) (2, 4) (5),

σ(6) = (1, 3) (2, 4) (5) (6),

σ(7) = (1, 7, 3) (2, 4) (5) (6),

σ(8) = (1, 7, 3) (2, 4) (5, 8) (6), and

σ(9) = (1, 7, 3) (2, 4) (5, 9, 8) (6)

This given, we define ∆n(σ) to be the file placement f ∈ Cn−k(Stn) such that

1. There is no rook in column i if i is in a 1-cycle in σ(i) and

2. there is a rook in row j of column i if i immediately follows j in the cycle structure of σ(i).

For example, we picture ∆9(σ) in Figure 5

X

X

X

X X

Figure 5: ∆9(σ) where σ = (1, 7, 3) (2, 4) (5, 9, 8) (6).

Note that in this case (13) becomes

cn+1,k = fn+1−k(Stn+1) = fn+1−k(Stn) + nfn−k(Stn)

= cn,k−1 + ncn,k (22)

which is the usual recursion for the cn,k’s.
Because the Stirling numbers of the first and second kind are the connections coefficients

between the basis {xn : n ≥ 0} and {x ↓n: n ≥ 0}, it immediately follows that the infinite
matrices ||Sn,k||n,k≥0 and ||sn,k||n,k≥0 are inverses of each other.

In fact, we can give a direct combinatorial proof the matrices ||sn,k|| and ||Sn,k|| are inverses
of each other. Our argument is a simplified version of a more general argument due to Remmel
and Wachs [47].

That is, if we start with our combinatorial interpretations of sn,k and Sn,k in terms of rook
placements, then we can give a combinatorial proof of the following for all 0 ≤ r ≤ n.

n
∑

k=r

Sn,ksk,r = χ(r = n). (23)

9



Note that if r = n, then (23) reduces down to

1 = Sn,nsn,n. (24)

But (24) holds since both Nn−n(Stn) and Cn−n(Stn) consist solely of the empty placement E so
that automatically (24) holds.

Now suppose that n > r. Then

n
∑

k=r

Sn,ksk,r

=
n
∑

k=r

|Nn−k(Stn)|(−1)k−r|Ck−r(Stk)|

=
∑

(P,Q)∈
Sn

k=rNn−k(Stn)×Ck−r(Stk)

sgn(Q)

where sgn(Q) = (−1)no. of rooks in Q. Then consider the elements

(P,Q) ∈
n
⋃

k=r

Nn−k(Stn)× Ck−r(Stk).

We can partition these elements into three classes.

Class I. There is a rook of P in the last column of Stn.

Class II. There is no rook of P in the last column of Stn, but there is a rook of Q in the
last column of Stk.

Class III. There is no rook of P in the last column of Stn and there is no rook of Q in the
last column of Stk.

Next we define a sign-reversing bijection f from Class I to Class II. Suppose that we are given
an element (P,Q) ∈ Nn−k(Stn)× Ck−r(Stk) in Class I. We will say that a rook r in P attacks
all the cells in its row of Stn that lie strictly to the right of r. Thus since there are a total of
n−k−1 rooks in P to the left of the last column of Stn, there are exactly k = (n−1)−(n−k−1)
cells of the last column of Stn that are not attacked by some rook of P in its row which lies
strictly to the left of the last column of Stn. Then define f((P,Q)) = (P ′,Q′) where

(i) P ′ is the result of taking the placement P and removing the rook in the last column of Stn
and

(ii) Q′ is the result of adding an extra column of height k to the right of the placement Q and
placing a rook fk in that column which is in row t if the rook rn in P in the last column
of Stn was in the t-th cell, reading from bottom to top, which was not attacked by a rook
in P to the left of rn.
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See Figure 6 for an example of this map when n = 6, k = 3 and r = 2. Clearly sgn(Q) =
(−1)k−r = −sgn(Q′) = (−1)k−r+1 so that f is a sign preserving bijection which for each
r ≤ k ≤ n maps the elements of Nn−k(Stn)×Ck−r(Stk) in Class I to the elements Nn−k−1(Stn)×
Ck+1−r(Stk+1) in Class II. Moreover f−1 is easily defined. That is, if (P ′,Q′) ∈ Nn−k−1(Stn)×
Ck+1−r(Stk+1) is in Class II and the rook in the last column of Q′ is in row t, then f−1(P ′,Q′)) =
(P,Q) where Q is results from Q′ by removing the last column of Stk+1 and P results from P ′

by adding a rook in the last column of Stn in the t-th cell from the bottom which is not attacked
by any rook in P ′. Thus f shows that

n
∑

k=r

∑

(P,Q)∈Nn−k(Stn)×Ck−r(Stk)

sgn(Q) =

n
∑

k=r

∑

(P,Q)∈Class III

sgn(Q).

(P,Q) =

,

,

X

X

f(P,Q)=

X

X

X

X

X

X

Figure 6: An example of the map f from Class I to Class II.

Note if r = 0, then there are no elements in Class III since every element of (P,Q) ∈
Nn−k(Stn)× Ck−0(Stk) has a rook of Q in the last column of Stk. Thus if r = 0, then f shows
that

∑n
k=0 Sn,ksk,0 = 0. Finally if r ≥ 1, then there is a bijection g which maps Class III onto

⋃n−1
k=r−1Nn−1−k(Stn−1) × Ck−(r−1)(Stk). That is, if (P,Q) is in Class III, then g((P,Q)) =

(P ′′,Q′′) where P ′′ is obtained from P by removing its last column and Q′′ is obtained from Q
by removing its last column. See Figure 7 for an example.

Thus if r ≥ 1, then our bijections f and g show that

n
∑

k=r

Sn,ksk,r =

n−1
∑

k=r−1

Sn−1,ksk,r−1 = χ(r − 1 = n− 1) (25)

where the last equality follows by induction. Thus we have proved that

n
∑

k=r

Sn,ksk,r = χ(r = n)

as desired.

11



X

(P,Q) =

,

X

X

X

X

X X

X ,

g(P,Q)=

Figure 7: An example of the map g.

The fact that the infinite matrices ||Sn,k||n,k≥0 and ||sn,k||n,k≥0 are inverses of each other is
really just a consequence of the form of the recursions for the Sn,k’s and sn,k’s. Since we will
see similar recursions of this form latter on when we discuss q-analogues and p, q-analogues of
our results, we will pause briefly to show that this fact is direct consequence of a more general
theorem. The following theorem is simplified version of a result of Milne [46].

Theorem 5. (Milne [46])
Let R be a ring and x0, x1, . . . be any sequence of elements from R. Define an infinite lower
triangular matrix ||An,k||n,k≥0 where An,k are defined by the following recursions:

A0,0 = 1, An,k = 0 if n < k or k < 0

An+1,k = An,k−1 + xkAn,k for 0 ≤ k ≤ n + 1.

Then the entries of A−1 = B = ||Bn,k||n,k≥0 are defined by the following recursions:

B0,0 = 1, Bn,k = 0 if n < k or k < 0

Bn+1,k = Bn,k−1 − xnBn,k for 0 ≤ k ≤ n + 1.

Proof. We must show that for all n, k ≥ 0,
∑

ℓ

Bn,ℓAℓ,k = χ(n = ℓ). (26)

To this end, we shall consider two generating functions.

Ak(t) =
∑

n≥k

An,kt
n and

Bn(t) =

n
∑

k=0

Bn,kt
k.

Note that by definition B0(x) = 1. Now it is easy to prove by induction that An,0 = xn
0 . That

is, A0,0 = 1 = x0
0 and if An,0 = xn

0 , then

An+1,0 = An,−1 + x0An,0 = 0 + x0x
n
0 = xn+1

0 .

12



Thus

A0(t) =
∑

n≥0

xn
0 tn =

1

1− x0t
. (27)

Hence, for k ≥ 1,

Ak(t) =
∑

n≥k

An,kt
n

=
∑

n≥k

(An−1,k−1 + xkAn−1,k)t
n

= t
∑

n≥k

An−1,k−1t
n−1 + xkt

∑

n≥k

An−1,kt
n−1

= tAk−1(t) + xktAk(t).

But then we have that for all k ≥ 1.

Ak(t) =
t

(1− xkt)
Ak−1(t). (28)

Iterating (28) and using (27), we see that

Ak(t) =
tk

(1− x0t)(1 − x1t) · · · (1− xkt)
. (29)

Similarly for n ≥ 1,

Bn(t) =
n
∑

k=0

Bn,kt
k

=

n
∑

k=0

(Bn−1,k−1 − xn−1Bn−1,k)t
k

= t

n
∑

k=0

Bn−1,k−1t
k−1 − xn−1

n
∑

k=0

Bn−1,kt
k

= tBn−1(t)− xn−1Bn−1(t) = (t− xn−1)Bn−1(t).

Hence, for all n ≥ 1,
Bn(t) = (t− xn−1)Bn−1(t). (30)

Iterating (30) and using the fact that B0(t) = 1, we see that for all n ≥ 1,

Bn(t) = (t− x0)(t− x1) · · · (t− xn−1). (31)

But then for n ≥ 1,

Bn,k = (t− x0)(t− x1) · · · (t− xn−1)|tk

= (
1

t
− x0)(

1

t
− x1) · · · (

1

t
− xn−1)|t−k

=
1

tn
((1 − x0t)(1− x1t) · · · (1− xn−1t))|t−k

= (1− x0t)(1− x1t) · · · (1− xn−1t))|tn−k .

13



We are now in a position to prove (26). That is, when n = 0,

∑

ℓ

B0,ℓAℓ,k = B0,0A0,k = χ(k = 0)

by our initial conditions in the definitions of Bn,k and An,k. For n ≥ 1,

∑

ℓ

Bn,ℓAℓ,k =

∑

ℓ

((1− x0t) · · · (1− xn−1t)) |tn−ℓ

(

tk

(1− x0t) · · · (1− xkt)

)

tℓ
=

((1− x0t) · · · (1− xn−1t))

(

tk

(1− x0t) · · · (1− xkt)

)

|tn . (32)

But it is easy to see that (32) is equal to

(1− txk+1) · · · (1− txn−1)t
k|tn = 0 if n > k,

tk

1− txk

|tk = 1 if n = k, and

tk

(1− txn) · · · (1− txk)
|tn = 0 if n < k.

Thus (32) is equal to χ(n = k) as desired.

Note that since choosing xk = k in Theorem 5 gives that An,k = Sn,k, we have the following
corollary as a consequence of the (29).

Corollary 1. For all k ≥ 0,

∑

n≥k

Sn,kt
n =

tk

(1− x)(1− 2x) · · · (1− kx)
(33)

Exercises
(1) Let Fk(x) =

∑

n≥k Sn,k
xn

n! . Use the recursion satisfied by the Sn,k’s to show

d

dx
(Fk(x)) = Fk−1(x) + kFk(x). (34)

show that (34) plus the initial condition that Sk,k = 1 completely determines Fk(x) if we know
Fk−1(x). Then use this fact to prove by induction that

Fk(x) =
1

k!
(ex − 1)k. (35)

(2) Let Gk(x) =
∑

n≥k cn,k
xn

n! . Use the recursion satisfied by the cn,k’s to show

d

dx
(Gk(x)) = Gk−1(x) + xGk(x). (36)

14



show that (36) plus the initial condition that ck,k = 1 completely determines Gk(x) if we know
Gk−1(x). Then use this fact to prove by induction that

Gk(x) =
1

k!

(

ln

(

1

1− x

))k

. (37)

(3) Let Bn =
∑n

k=1 Sn,k denote the number of set partitions of {1, . . . , n}. The Bn are called
the Bell numbers.

(a) Show that the Bell numbers satisfy the recursion

Bn+1 =

n
∑

k=0

(

n

k

)

Bk. (38)

(b) Show that
∑

n≥0 Bn
xn

n! = eex−1.

Another interesting board is the board Ln which is the Ferrers board which consists of n
columns of height n− 1. We shall call Ln the Laguerre board and let Ln,k = rn−k(Ln). In that
case, (10) becomes

(x) ↑n=

n
∑

k=1

Ln,k(x) ↓k (39)

where we let (x) ↑0= 1 and (x) ↑n= x(x + 1) · · · (x + n − 1) for n ≥ 1. Thus the Ln,k’s are the
connection coefficients between rising factorial basis the falling factorial basis of the polynomial
ring Q[x]. The Ln,k are called the Lah numbers after Ivo Lah [?]. It is easy to count the number
of placements P of n− k non-attacking rooks in Ln. That is, we can pick the k− 1 rows that do
not contain a rook in P in

(

n−1
k−1

)

ways. Then let 1 < R1 < . . . Rn−k ≤ n− 1 be the rows which
will contain rooks in P. It is clear that we have n ways to pick where a rook goes in R1, n− 1
ways to pick where the rook in goes in R2, etc.. Thus

Ln,k = (n) ↓n−k

(

n− 1

k − 1

)

=
n!

k!

(

n− 1

k − 1

)

. (40)

Exercises
(4) Show that the Lah numbers Ln,k satisfy the following recursions:

Ln+1,k = Ln,k−1 + (k + n)Ln,k (41)

The standard combinatorial interpretation of the Lah numbers is that Ln,k is the number of
ways to place n labeled balls in k unlabeled tubes. Let Tn,k be the set of placements of n balls
labeled 1, . . . , n in k unlabeled tubes. It is easy to describe a bijection F : Tn,k → Nn−k(Ln).
That is, suppose that we start with an element Q ∈ Tn,k. We order the tubes by increasing
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Figure 8: A placement of 7 labeled balls in 3 unlabeled tubes.

bottom elements and let Q̄ be the configuration that results by removing the bottom balls in
each tube as indicated in Figure 8.

Then let s1, s2, . . . , sk be the number of balls in the tubes of Q̄ reading from left to right. If
s1 = 0 so that the first tube of Q̄ is empty, then bottom row of F (Q) will be empty. Otherwise
if i11, . . . , i

1
s1

are the elements in the first tube of Q̄, reading from bottom to top, then we place
a rook in row t in column i1t for t = 1, . . . , s1 and then we ensure that row s1 + 1 is empty.
Thus if there are s1 balls in the first tube of Q̄, then we will have determined the placement
or non-placement of rooks in the first s1 + 1 rows of F (Q). In general, the first j tubes of Q̄
will determine the placement or non-placement of rooks in rows 1, . . . , s1 + · · ·+ sj + j. Then if

sj+1 = 0, we ensure that row 1 + s1 + · · ·+ sj + j is empty in F (Q). Otherwise, if ij+1
1 , . . . , ij+1

sj+1

are the elements in the j + 1-st tube of Q̄, reading from bottom to top, then we place a rook
in row t + s1 + · · · + sj + j in column ij+1

t for t = 1, . . . , sj+1. If j + 1 < k we ensure that row
sj+1 + 1 + s1 + · · · + sj + j is empty and go on to tube j + 2. However if j + 1 = k, then we
simply stop. For example,the image under F of the Q pictured in Figure 8 is given in Figure 9.

X

X

X

X

F(Q) =

Figure 9: F (Q).

1.4 Rook equivalence for Ferrers boards

Given two rook boards B1 and B2, we say that B1 and B2 are rook equivalent if rk(B1) = rk(B2)
for all k ≥ 1. In this section, we shall prove a number of results about the rook equivalence for
Ferrers boards.
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If F (b1, . . . , bn) is a Ferrers board, we let S(b1, . . . , bn) be the multiset {b1, b2 − 1, . . . , bn −
(n−1)}. For example, if S(0, 0, 1, 1, 2, 2) = {0,−1,−1,−2,−2,−3}. Then we have the following
characterization of rook equivalence for Ferrers boards due to Foata and Schützenberger [14].

Theorem 6. Let B1 = F (a1, . . . , an) and B2 = F (b1, . . . , bn) be two Ferrers boards contained
in [n] × [n]. Then B1 and B2 are rook equivalent if and only if S(a1, . . . , an) and S(b1, . . . , bn)
are equal as multisets.

Proof. By Theorem 3,

n
∏

i=1

(x + ai − (i− 1)) =

n
∑

k=0

rn−k(B1)(x) ↓k and

n
∏

i=1

(x + bi − (i− 1)) =

n
∑

k=0

rn−k(B2)(x) ↓k .

Thus if S(a1, . . . , an) = S(b1, . . . , bn), then we have

n
∑

k=0

rn−k(B1)(x) ↓k=
n
∑

k=0

rn−k(B2)(x) ↓k

which clearly implies that rn−k(B1) = rn−k(B2) for all k = 0, . . . , n since {(x) ↓k: k ≥ 0} is a
basis for Q[x]. Similarly, if the B1 and and B2 are rook equivalent, then

n
∏

i=1

(x + ai − (i− 1)) =
n
∏

i=1

(x + bi − (i− 1))

which implies S(a1, . . . , an) and S(b1, . . . , bn) are equal as multisets.

We say that F (b1, . . . , bn) is a strictly increasing Ferrers board if the non-zero columns of B
are strictly increasing from left to right, i.e. if there is a k ≥ 0 such that bi = 0 for i < k and
0 < bk < bk+1 < · · · < bn. Then Foata and Schützenberger [] proved the following.

Theorem 7. (Foata-Schützenberger [])
For any Ferrers board B1, there is a unique increasing Ferrers board B2 which is rook equivalent
to B1.

Proof. For any Ferrer board B of size n, add enough 0 columns to the left of B so that B =
F (b1, . . . , bn+1). For example, if B = F (2, 2, 3), then |B| = 7 and we let B = F (0, 0, 0, 0, 0, 2, 2, 3).
In such a situation, we claim that bi−(i−1) ≤ 0 for all i = 1, . . . , n+1. That is, b1 = 0 since B has
at most n non-zero columns. Note that for any pair of positive integers x and y, xy ≥ x+ y− 1.
Thus if bi ≥ i, then B would have at least i(n+1− (i− 1)) = i(n+2− i) > n+1 squares. Thus
bi ≤ i− 1 for all i = 2, . . . , n + 1.

Now suppose that B1 = F (a1, . . . , an+1) where |B| = n. Then by our remarks above
S(a1, . . . , an+1) consists only of numbers which are less that 0. Moreover since B is a Fer-
rers board, then bi+1 − i ≥ bi − (i − 1) − 1 so that we can only decrease by a maximum of
1 in going form bi − (i − 1) to bi+1 − i. Now suppose that −k is the minimum element in
S(a1, . . . , an+1). Then it must be the case that 0,−1,−2, . . . ,−k are also in S(a1, . . . , an+1).
Thus we can rearrange elements of S(a1, . . . , an+1) to obtain a sequence

(s1, . . . , sn+1) = (0,−1,−2, . . . ,−k ≤ sk+2 ≤ · · · ≤ sn+1.
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But then if bi = si + (i − 1) it is easy to see that bi = 0 for i ≤ k + 1 and bk+2 < · · · < bn+1

so that F (b1, . . . , bn+1) is an increasing Ferrers board with S(b1, . . . , bn+1) = S(a1, . . . , an+1),
Hence, B1 is rook equivalent to B2 by Theorem 6. For example, if B = F (0, 0, 0, 0, 0, 2, 2, 3),

S(0, 0, 0, 0, 0, 2, 2, 3) = {0,−1,−2,−3,−4,−3,−4,−4}

so we would consider the rearrangement (s1, . . . , s8) = (0,−1,−2,−3,−4,−4,−4,−3). Then
(b1, . . . , b8) = (0, 0, 0, 0, 0, 1, 2, 4).

For uniqueness, suppose that B2 = F (b1, . . . , bn+1) is increasing board with |B2| = n and
k ≥ 0 is such that bi = 0 for i ≤ k + 1 and 0 < bk+2 < · · · < bn+1. Then it is easy to see
that sequence (b1, b2 − 1, . . . , bn+1 − n) is of the form (0 − 1 − 2 . . . − k ≤ sk+2 ≤ · · · ≤ sn+1)
so that there is only one increasing Ferrers board B2 = F (b1, . . . , bn+1) with S(a1, . . . , an+1) =
S(b1, . . . , bn+1).

Goldman, Joichi, and White [21] proved the following formula for the number of Ferrers
boards which are rook equivalent to a given Ferrers board. As in the proof the Theorem 7,
we can write any Ferrers board B of size n in the form B = F (b1, . . . , bn+1) by adding an
appropriate number of 0’s to the sequence for B.

Theorem 8. Suppose that B is a Ferrers board of size n and B = F (b1, . . . , bn+1) where |B| = n.
Suppose that S(b1, . . . , bn+1) is a rearrangement of 0a0(−1)a1 . . . (−k)ak . Then the number of
Ferrers boards which are rook equivalent to B equals

(

a0 + a1 − 1

a1

)(

a1 + a2 − 1

a2

)

· · ·

(

ak−1 + ak − 1

ak

)

.

Proof. By Theorem 6, if B∗ = (b∗1, . . . , b
∗
n+1) is rook equivalent to B, then S(b∗1, . . . , b

∗
n+1) =

(d1, . . . , dn+1) must be a rearrangement of 0a0(−1)a1 . . . (−k)ak that starts with 0 and satisfies
di − di+1 ≥ −1. Thus we need only count the number of such sequences (d1, . . . , dn+1). Now
if we consider the 0’s and the −1’s in such a sequence it is easy to see that the −1’s must be
placed in spaces following the 0’s. Since there are a0 − 1 such spaces, there are

(

a0+a1−1
a1

)

ways

to place the −1’s in such spaces. That is any rearrangement of 0a0−1(−1)a1 determines such an
arrangement. Similarly, having placed the 0’s and −1’s, then the −2’s must be in the spaces
following the −1’s. Since there are a1 − 1 such spaces, there are

(

a1+a2−1
a2

)

ways to place the
−2’s in such spaces. Continuing on in this way yield the desired formula.

1.5 Applications to Permutation Enumeration

In this section, we shall give several applications of the simple rook theory theorems proved in
the previous section to permutation enumeration. The basic idea is that we think of a board
B ⊆ [n]× [n] as a set of “forbidden positions” for permutations. Thus H0(B) is the number of
permutations which avoid these forbidden positions.

Example 1: Derangements

Given a permutation σ = σ1 . . . σn ∈ Sn, we say that i is fixed point of σ if σi = i. We
let Dn denote the set of permutations with no fixed points. A permutation σ ∈ Dn is called a
derangement and we let Dn = |Dn| denote the number of derangements in Sn.
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Now consider the diagonal board Diagn = {(i, i) : i = 1, . . . , n} ⊆ [n] × [n]. Then clearly,
H0,n(Diagn) = Dn and, more generally, Hk,n(Diagn) is the number of permutations with exactly
k fixed points. It is easy to see that rk(Dgn) =

(

n
k

)

so that by Riordan and Kaplansky’s theorem,
Theorem 1, we have that

n
∑

k=0

Hk,n(Dgn)xk =

n
∑

k=0

(

n

k

)

(n− k)!(x− 1)k. (42)

Taking the coefficients of xk on both sides of (42), we see that

Hk,n(Dgn) =
n
∑

s=k

(−1)s−k

(

s

k

)(

n

s

)

(s− k)! (43)

Thus, in particular,

Dn =

n
∑

s=0

(−1)s
(

n

s

)

(s − k)!

or, equivalently,

Dn

n!
=

n
∑

s=0

(−1)s

s!
(44)

Multiplying both sides of (44) by tn and summing, we find that the exponential generating
function of derangements is given by

∑

n≥0

Dn
tn

n!
=

∑

n≥0

tn
n
∑

s=0

(−1)s

s!

= (
∑

s≥0

(−1)s

s!
ts)(
∑

n≥0

tn)

=
e−t

1− t

Equation (44) also immediately implies a simple recursion for Dn. That is, for n ≥ 1,

Dn

n!
=

n
∑

s=0

(−1)s

s!

=

n−1
∑

s=0

(−1)s

s!
+

(−1)n

n!

=
Dn−1

(n− 1)!
+

(−1)n

n!
.

Multiplying both sides of the above equation by n! yields the following recursion.

Dn = nDn−1 + (−1)n for all n ≥ 1. (45)
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Applying (45) twice we get the following recursion

Dn = nDn−1 +−1n

= (n− 1)Dn−1 + Dn−1 +−1n

= (n− 1)Dn−1 + (n− 1)Dn−2 + (−1)n−1 +−1n

= (n− 1)Dn−1 + (n− 1)Dn−2 for all n ≥ 2. (46)

We note (45) has a simple combinatorial proof. That is, we simple simply partition the set
of derangements σ ∈ Dn into two classes depending on whether n lies in a 2-cycle in σ or n
lies in a k-cycle in σ where k ≥ 3. If n is in a two cycle (i, n) in σ, then we can remove this
two cycle and the remaining cycle structured can be renumbered to give the cycle structure
of a derangment in Dn−2. Since we have n − 1 choices for i, it is easy to see that there are
(n − 1)Dn−2 σ ∈ Dn where n lies in a 2-cycle in σ. Next suppose that n lies in a k-cycle in
σ ∈ D where k ≥ 3. Write the cycles of σ so that the smallest element in each cycle in on
the left and we order the cycles by increasing smallest elements. For example, suppose that
σ = (1, 4, 6, 5)(2, 11, 8, 3)(6, 9, 10). We can remove n from σ to obtain the cycle structure of a
permutation τ ∈ Dn−1. In our example, τ = (1, 4, 6, 5)(2, 8, 3)(6, 9, 10). It is then easy to see
that if we insert n after element in the cycle structure of τ , we will obtain n − 1 permutations
σ̄ ∈ Dn such that n lies in a k-cycle in σ̄ ∈ D where k ≥ 3 and where removing n from σ̄ gives τ .
Thus the number of σ ∈ Dn such that n lies in a k-cycle in σ where k ≥ 3 is equal to (n−1)Dn−1.

Example 2. Counting permutations by the number of k-excedances or the number of k-drops.

Given a permutation σ = σ1 . . . σn ∈ Sn and k ≥ 1, we let

Des(σ) = {i : σi > σi+1} des(σ) = |Des(σ)|
Desk(σ) = {i : σi − σi+1 = k} desk(σ) = |Desk(σ)|
Exc(σ) = {i : i < σi} exc(σ) = |Exc(σ)|
Exck(σ) = {i : σi − i = k} exck(σ) = |Exck(σ)|

.

Elements of Des(σ) are called the descents of σ and pairs (σi, σi+1) with i ∈ Des(σ) are called
descent pairs of σ. Similarly, elements of Exc(σ) are called the excedances of σ and pairs (i, σi)
with i ∈ Exc(σ) are called excedance pairs of σ. For k ≥ 1, we shall call the elements of Desk(σ)
k-decents and the pairs (σi, σi+1) with i ∈ Desk(σ) k-descent pairs of σ. Similarly, elements of
Exck(σ) are called the k-excedances of σ and pairs (i, σi) with i ∈ Exck(σ) are called k-excedance
pairs of σ.
Foata’s First Fundamental Transformation

There is a fundamental bijection, called Foata’s First Transformation [15], which is a bijec-
tion Φ : Sn −→ Sn which shows that distributions of descents and excedances in over Sn are
equal. For a permutation σ = σ1 . . . σn, we say that σj is a left-to-right maximum (minimum)
if σj > σi (σj < σi) for all i < j. Foata’s transformation can most easily be explained with

an example. Let ω = 61437258 =

(

1 2 3 4 5 6 7 8
6 1 4 3 7 2 5 8

)

. This permutation has three

excedances pairs (1, 6), (3, 4), and (5, 7). The first step in Foata’s transformation is to write ω
in cycle form: (162)(34)(57)(8). Next, write each cycle with largest element last, and order the
cycles by increasing largest element: (34)(216)(57)(8). Finally, to compute Φ(ω), reverse each
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cycle and erase the parentheses: Φ(ω) = 43612758. In this example the descents of Φ(ω) are
43, 61, and 75. In general, it is not hard to see that (i, j) is a descent pair of Φ(ω) if and only if
(j, i) is an excedance of ω. To go backwards, given σ = 43612758, cut before each left-to-right
maxima: 43|612|75|8, then reverse each block to get the cycles of Φ−1(σ): (34)(216)(57)(8).
Thus for each k ≥ 1, (i, j) is a k-descent pair of Φ(ω) if and only if (j, i) is a k-excedance pair
of ω.

Thus Foata’s first fundamental transformation shows for all k, n ≥ 1,

∑

σ∈Sn

xdesk(σ) =
∑

σ∈Sn

xexck(σ). (47)

Note that Exck(σ) makes sense when k = 0 because in that case, Exc0(σ) is just the set of
fixed points of σ. Thus for any k ≥ 0, we define

Pn,k(x) =
∑

σ∈Sn

xexck(σ) =
n−k
∑

s=0

Pn,k,sx
s. (48)

By convention, we also define P0,0,0 = 1. Note for example, Pn,0,0 is the number derangements.
Rakotondrajao [49] was the first to study the numbers Pn,k,s. In fact, Rakotondrajao called

elements of Exck(σ) k-successions. He proved a number of basic recursions for the numbers
Pn,k,s as well as gave explicit expressions for some simple generating functions involving the
Pn,k,s. Later Liese and Remmel [41] studied q-analogues of the Pn,k,ss, gave the alternative
interpretation of Pn,k,s in terms of k-descents, and showed that the polynomial Pn,k(x) is just
a special case of a hit polynomial. That is, let Bn,k be the board contained in [n] × [n] which
consists of the diagonal connecting (1, 1 + k) and (n − k, n). For example, the board B7,2 is
pictured in figure 10.
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Figure 10: The board B7,2.

It is then easy to see that the number of σ ∈ Sn with s k-excedances is the s-th hit number
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of Bn,k, i.e. Pn,k,s = Hs(Bn,k). it is also clear that rs(Bn,k) =
(

n−k
s

)

. Thus by Theorem 1,

Pn,k(x) =

n
∑

s=0

Pn,k,sx
s

=
n
∑

s=0

hs,n(Bn,k)x
s

=

n
∑

s=0

rs(Bn,k)(n − s)!(x− 1)s

=

n
∑

s=0

(

n− k

s

)

(n− s)!(x− 1)s. (49)

Taking the coefficient of xs on both sides, we have the following theorem due to Rakotondrajao
[49].

Theorem 9. For n ≥ 1, 0 ≤ k ≤ n, and s ≥ 0,

Pn,k,s =
n−k
∑

t=s

(−1)t−s(n− t)!

(

t

s

)(

n− k

t

)

. (50)

Now Rakotondrajao [49] and Liese and Remmel [41] proved that (50) implies a number of
simple relations among the coefficients Pn,k,s. For example, the following hold.

1. For n ≥ 2, 0 ≤ k < n, and s ≥ 1,

Pn,k,s = (n− s− 1)Pn−1,k,s + (s + 1)Pn−1,k,s+1 + Pn−1,k,s−1. (51)

2. For n ≥ 1, 0 ≤ k < n, and s ≥ 0,

Pn,k,s =

(

n− k

s

)

Pn−s,k,0. (52)

3. For n ≥ 2 and 0 ≤ k < n,

Pn,k,0 = (n− 1)Pn−1,k,0 + (n− 1− k)Pn−2,k,0. (53)

4. For n ≥ 2 and 0 < k < n,

Pn,k,0 = kPn−1,k−1,0 + (n− k)Pn−1,k,0. (54)

5. For n ≥ 1 and 0 ≤ k < n,

Pn,k,0 = k!
k
∑

r=0

(

k

r

)(

n− k

k − r

)

Pn−k,k−r,0. (55)

6. For n ≥ 2 and 0 ≤ k < n,
Pn,k,0 = Pn,k+1,1 + kPn−1,k,0. (56)
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7. For n ≥ 2 and 0 < k < n,

Pn,k,0 = Pn,k−1,0 + Pn−1,k−1,0. (57)

8. For n ≥ 1 and 0 ≤ k < n,

Pn,k,0 =

k
∑

r=0

(

k

r

)

Dn−k+r. (58)

Here Rakotondrajao [49] prove (51), (52), and (53) and Liese and Remmel [41] proved (54),
(55), (56) and (58). Note (57) is just the usual recursion for the number of derangements. Liese
and Remmel [41] showed that these recursions have simple combinatorial proofs when we think
of Pn,k,s as counting Hs(Bn,k). We will give a couple of examples of such proofs and leave the
proofs of the rest of recursions as exercises.

Theorem 10. For n ≥ 2, 0 ≤ k < n, and s ≥ 1,

Pn,k,s = (n− s− 1)Pn−1,k,s + (s + 1)Pn−1,k,s+1 + Pn−1,k,s−1. (59)

Proof. We shall consider two different ways to insert n + 1 into a permutation σ = σ1 . . . σn−1 ∈
Sn−1. In our first type of insertion process, when we insert n into the i-th position, we obtain
the permutation

I1
i (σ) = σ1 . . . σi−1 n σi+1 . . . σn−1σi

if i ≤ n− 1 and
I1
n(σ) = σ1 . . . σn−1 n

if i = n. Thus in our first insertion process, when we insert n into the i-th position for i < n, n
replaces σi and bumps σi to the end. Our second insertion process is more standard. That is,
when we insert n into the i-th position, we obtain the permutation

I2
i (σ) = σ1 . . . σi−1 n σi . . . σn−1

if i < n and
I2
n+1(σ) = σ1 . . . σn−1 n

if i = n. Thus in our second insertion process, when we insert n into the i-th position for i < n,
n is inserted immediately in front of σi.

Given our first insertion process, it is easy to see that insertion of n can cause one extra
k-excedance if we insert n into position n− k, we can decrease the excedances by 1 if we insert
n into position i where σi − i = k, and we leave the number of k-excedances fixed otherwise.
Thus it easily follows that

Pn,k,s = (n− s− 1)Pn−1,k,s + (s + 1)Pn−1,k,s+1 + Pn−1,k,s−1

for all n ≥ 2, k ≥ 0, and s ≥ 1.
Similarly we can use the second insertion process to do the same thing where we interpret

Pn,k,s as the number of permutations with s k-descents when k ≥ 1. That is, we can create an
extra k-descent if we insert n immediately in front of n− k, we can lose a k-descent if we insert
n immediately in front of σi+1 where σi− σi+1 = k, and we keep the number of k-descents fixed
otherwise.
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Theorem 11. For n ≥ 1, 0 ≤ k < n, and s ≥ 0,

Pn,k,s =

(

n− k

s

)

Pn−s,k,0. (60)

Proof. The easiest way to give a combinatorial proof of this theorem is to think of the rook board
Bn,k. Since Pn,k,s counts the number of permutations of Sn having s k-excedances, it follows
that Pn,k,s is the number of placements of n non-attacking rooks in [n]× [n] that intersect Bn,k

in exactly s squares. If we then remove the rows and columns of those rooks which hit the
diagonal connecting (1, 1 + k) and (n − k, n), it easy to see that we will reduce ourselves to a
permutation that is counted by Pn−s,k,0. This process is pictured in Figure 11.
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Figure 11: Removing rooks that lie in Bn,k.

Theorem 12. For n ≥ 2 and 0 ≤ k < n,

Pn,k,0 = (n− 1)Pn−1,k,0 + (n− 1− k)Pn−2,k,0. (61)

Proof. Think of reversing the first insertion process described in Theorem 10. That is, given a
permutation σ = σ1 . . . σn ∈ Sn, we let

σ̄ = σ1 . . . σi−1 σn σi+1 . . . σn−1

if σi = n for i < n and let
σ̄ = σ1 . . . σn−1

if σn = n. There are now two cases.

Case 1 σ̄ had no k-excedances.
Note σ̄ will have no k-excedances if either σn = n or σi = n with i < n and σn 6= i + k. Vice
versa, given a τ ∈ Sn−1 with no k-excedances, we can use the first insertion process and insert n
into τ in every position except n− k to obtain a permutation in Sn with no k-excedances. Thus
there are a (n− 1)Pn−1,k,0 permutations in case 1.

Case 2 σ̄ has 1 k-excedance.
This happens only if there is an i ≤ n − 1 − k such that σi = n and σn = i + k. However in
this case, we let σ̃ denote the permutation of Sn−2 which results by removing the i-column and
i + k-th row from the rook placement that corresponds to σ̄ in Bn−1,k as we did in the proof of
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Theorem 11. It is easy to see that σ̃ has no k-excedances. Vice versa, it is easy to see that we
can start with any permutation τ̃ ∈ Sn−2 that has no k-excedances and i ≤ n−1−k and obtain
a permutation τ̄ ∈ Sn−1 so that its corresponding rook placement has a rook in column i and
row i + k and reduces to the rook placement corresponding to τ̃ when we remove the i-th and
i + k-th row. Then we can obtain a σ ∈ Sn with no k-excedances by inserting n into position
i in τ̄ and moving i + k to the end. Thus there are (n − 1 − k)Pn−2,k,0 permutations in Case
2.

We note that Theorem 12 is a nice generalization of the basic theorem for the number of
derangements. That is, Pn,0,0 = Dn where Dn is the number of derangements of Sn and (61)
reduces to

Dn = (n− 1)Dn−1 + (n− 1)Dn−2. (62)

In fact, a moments thought will convince one that our proof reduces to the usual proof of this
recursion in this case. That is, the permutations in Case 2 are the derangements where n in in
2-cycle and the permutations in Case 1 are derangements when n is not in a 2-cycle.

Theorem 13. For n ≥ 2 and 0 < k < n,

Pn,k,0 = kPn−1,k−1,0 + (n− k)Pn−1,k,0. (63)

Proof. This recursion is simply the result of classifying the rook placements corresponding to
permutations σ ∈ Sn with no k-excedances by the position of the rook in row 1. That is, there
are two cases.

Case 1. The rook in the bottom row lies in column i where i ≤ n− k.
In this case, we consider the rook placement that results by removing column i and row i + k.
This will result in a placement of n − 2 non-attacking rooks such no rook lies in Bn−1,k. We
need to add a rook in bottom row and we do this so that the resulting rook placement is non-
attacking. This will leave us with a rook placement of n− 1 rooks in [n− 1]× [n− 1] that does
not intersect Bn−1,k. Hence there are (n − k)Pn−1,k,0 such placements. This type of reduction
is pictured at the top of Figure 12.

Case 2. The rook in the bottom row lies in column i where i > n− k.
In this case, removing row 1 and column i will result in a rook placement that does not intersect
Bn−1,k−1. Thus there are kPn−1,k−1,0 such rook placements. This type of reduction is pictured
at the bottom of Figure 12

Theorem 14. For n ≥ 1 and 0 ≤ k < n,

Pn,k,0 = k!
k
∑

r=0

(

k

r

)(

n− k

k − r

)

Pn−k,k−r,0. (64)

Proof. Pn,k,0 the number of placements of n non-attacking rooks on the n × n grid that never
hit Bn,k. Consider the lightly shaded cells in the lower right hand corner of the board shown
in Figure 13. There can be anywhere from 0 to k rooks placed in this square area. Suppose
that we choose to place r rooks in this area. First we choose the r rows which will contain the
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Figure 12: Reducing rook placements corresponding to Pn,k,0 by the position of the rook the
first row.

rooks in this area in
(

k
r

)

ways. Since there must be k rooks in the last k columns, there must be
k− r rooks in the rectangular region above the lightly shaded cells and we can choose the k− r
rows which will contain these rooks in

(

n−k
k−r

)

. Having picked the k rows that contain the rooks
in the last k columns, there are k! ways to place the rooks in the last k columns. Thus there
k!
(

k
r

)(

n−k
k−r

)

ways to pick a placement P of k non-attacking rooks in the last k columns so that
r rooks fall in the lightly shaded area. Finally, we must count the number of ways to extend
such a placement P to a placement Q of n non-attacking rooks in [n]× [n] so that no rook lies
in Bn,k. If one thinks of removing the rows and columns of the rooks in P , it is easy to see that
we are left with the board Bn−k,k−r so that are Pn−k,k−r,0 ways to pick Q. Summing over all
possible values of r yields the result.

Rakotondrajao [49] also derived the following generating functions for the Pn,k,s.

Theorem 15.

Pk(x, t) =
∑

n≥0

n
∑

s=0

Pn+k,k,s

xstn

n!
=

k!et(x−1)

(1− t)k+1
(65)

Proof. We need only show that the coefficient of xstn−k in
(n− k)!k!et(x−1)

(1− t)k+1
is in fact equal to the

formula for Pn,k,s that we previously demonstrated in (50). Using the fact that (1− t)−(k+1) =
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Figure 13: The board, B8,3, with some lightly shaded cells.

∑

m≥0

(

m + k

k

)

tm, we find that

(n− k)!k!et(x−1)

(1− t)k+1
= (n− k)!k!





∑

m≥0

(x− 1)mtm

m!









∑

m≥0

(

m + k

k

)

tm





= (n− k)!k!





∑

m≥0

tm

m!

m
∑

j=0

(

m

j

)

(−1)m−jxj









∑

m≥0

(

m + k

k

)

tm



 .

Now taking the coefficient of tn−k gives

(n− k)!k!

n−k
∑

i=0

i
∑

j=0

(

i

j

)

(−1)i−j

i!
xj

(

n− i

k

)

.

Finally, we take the coefficient of xs and arrive at

Pn,k,s = (n − k)!k!

n−k
∑

i=s

(

i

s

)

(−1)i−s

i!

(

n− i

k

)

=

n−k
∑

i=s

(−1)i−s

(

i

s

)

(n− i)!(n − k)!

(n− i− k)!i!

=

n−k
∑

i=s

(−1)i−s(n− i)!

(

i

s

)(

n− k

i

)

which matches formula (50).

Notice that (65) is a generalization of the well known generating function for derangements.
Namely that

∑

n≥0

n
∑

s=0

Pn,0,s
xstn

n!
=
∑

n≥0

n
∑

s=0

Ds(n)
xstn

n!
=

et(x−1)

1− t
,
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where Ds(n) is the number of permutations on n elements having exactly s fixed points.
We can now generalize this generating function even further and consider

P (x, t, z) :=
∑

k≥0

∑

n≥0

n
∑

s=0

Pn+k,k,s

xstnzk

n!k!
. (66)

Theorem 16.

P (x, t, z) =
et(x−1)

1− t− z
(67)

Proof. Simply multiplying both sides of (65) by zk and summing over all k ≥ 0 gives this
result.

Notice again that when z = 0, this reduces to the generating function for derangements.

Example 3: (X,Y )-descents.

Given subsets X,Y ⊆ N and a permutation σ ∈ Sn, let

DesX,Y (σ) = {i : σi > σi+1 & σi ∈ X & σi+1 ∈ Y }, and

desX,Y (σ) = |DesX,Y (σ)|.

If i ∈ DesX,Y (σ), then we call the pair (σi, σi+1) an (X,Y )-descent.
For example, if X = {2, 3, 5}, Y = {1, 3, 4}, and σ = 54213, then DesX,Y (σ) = {1, 3} and

desX,Y (σ) = 2.
For fixed n we define the polynomial

PX,Y
n (x) =

∑

s≥0

PX,Y
n,s xs :=

∑

σ∈Sn

xdesX,Y (σ). (68)

Thus the coefficient PX,Y
n,s is the number of σ ∈ Sn with exactly s (X,Y )-descents.

Kitaev and Remmel [39, 40] were the first to consider the distribution of desX,Y (σ) for certain
X and Y when the studied descents according to the equivalence class mod k of either the top
or bottom of a descent pair. For any set X ⊆ {1, 2, 3, . . .}, they defined

•
←−−
DesX(σ) = {i : σi > σi+1 & σi ∈ X} and

←−
desX(σ) = |

←−−
DesX(σ)|, and

•
−−→
DesX(σ) = {i : σi > σi+1 & σi+1 ∈ X} and

−→
desX(σ) = |

−−→
DesX(σ)|.

It is easy to see that
←−−
DesX(σ) = DesX,N(σ) and

−−→
DesX(σ) = DesN,X(σ). In [39], Kitaev and

Remmel studied polynomials such as

Rn(x) =
∑

k≥0

Rk,nxk :=
∑

σ∈Sn

x
←−
desE(σ), and

Qn(x) =
∑

k≥0

Qk,nxk :=
∑

σ∈Sn

x
−→
desE(σ),
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where E is the set of positive even integers. In these cases, they found surprisingly simple
formulas for the coefficients. For example, they showed that

R2n,k =

(

n

k

)2

(n!)2. (69)

Kitaev and Remmel originally proved (69) by recursion. However, in this example, we will
show how we can derive such a formula from a rook theory point of view following ideas of Hall
and Remmel [36]. That is, it is not difficult to use Foata first fundamental transformation as
described in example 2 to reduce the problem of computing PX,Y

n,s to that a computing a hit
number for a given board.

Given set X,Y,Z ⊆ P and σ = σ1 . . . σn ∈ Sn, let

DesX,Y,Z(σ) = {i : σi > σi+1, σi ∈ X,σi+1 ∈ Y, & σi − σi+1 ∈ S} and (70)

desX,Y,Z(σ) = |DesX,Y,Z(σ)|. (71)

Let O denote the set of odd numbers in P. Now suppose we want to compute
∑

σ∈Sn

xdesX,Y,Z(σ)

where X = E, Y = O, and and Z = {1, 3} . For n = 8, the board BU
8 consists of the squares

(i, j) ∈ [8] × [8] such that i ∈ E, j ∈ O, and i− j = 1 or 3. We have pictured this board as the
shaded squares in Figure 14. Now consider the placement, shown in Figure 15, of eight non-
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Figure 14: The board BU
8 .

attacking rooks (marked by X’s) on the 8×8 board so that two rooks lie on BU
8 . This placement

corresponds to the permutation ω =

(

1 2 3 4 5 6 7 8
4 1 5 7 6 2 3 8

)

, with the rooks placed on

BU
8 corresponding to the excedances

1
4

and
5
6

.Then Foata’s first fundamental transformation

maps ω to the permutation σ = Φ(ω) = 74126538 with exactly two X,Y,Z-descents: 41 and 65.
Thus

∑

σ∈S8

xdesX,Y,Z(σ) =

8
∑

k=0

Hk,8(B
U
8 ).

Now consider the the case where X = E and Y = N so that desX,Y (σ) = desE(σ). Using
Foata’s first fundamental transformation, it is easy to see that a descent σi > σi+1 where σi ∈ E

29



1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

X

X

X

X

X

X

X

X

Figure 15: A placement of rooks on the 8× 8 board.

corresponds to an excedance pair (σi+1, σi) in Φ1(σ) where σi is even. Thus in this case, we
should study hit polynomials for the board BE,N

n which consists of squares of the form (i, 2k)
where i < 2k. For example, the board BE,N

8 corresponding to even descents of permutations
σ ∈ S8 is shown in Figure 16.
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Figure 16: The board BE,N
8 .

Now it is easy to see that permuting the rows of a board does not change the hit numbers.
Similarly, permuting the columns of rook board does not change the hit numbers. Thus the
board BE,N

8 has the same hit numbers as the Ferrers board is shown in Figure 17.

Thus, in general, BE,N
2n has the same hit numbers as F (0, 1, 1, 2, 2, . . . , n − 1, n − 1, n) rel-

ative to [2n] × [2n] and BE,N
2n+1 has the same hit numbers as F (0, 0, 1, 1, 2, 2, . . . , n − 1, n −

1, n)F (0, 0, 1, 1, 2, 2, . . . , n− 1, n− 1, n) relative to [2n + 1]× [2n + 1]. However it is easy to see
from Theorem 6 that F (0, 0, 1, 1, 2, 2, . . . , n−1, n−1, n) is rook equivalent to f(0n, nn). That is,
it is easy to see that S(0, 0, 1, 1, 2, 2, . . . , n− 1, n − 1, n) and S(0n, nn) are both rearrangements
of 02(−1)2 · · · (−n)2. Similarly, it is easy to check that F (0, 0, 1, 1, 2, 2, . . . , n−1, n−1, n) is rook
equivalent of F (0n+1, nn). It thus follows that

P E,N
2n,s = Hs,2n(F (0n, nn)) and (72)

P E,N
2n+s,s = Hs,2n+1(F (0n+1, nn)). (73)
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Figure 17: The Ferrers board B corresponding to BE,N
8 .

But it is easy to see that

Hs,2n(F (0n, nn)) = (n!)2
(

n

s

)2

. (74)

That is, suppose that we want to place s rooks in B = F (0n, nn). There are
(

n
s

)

ways to pick
the s rows in which to place those rooks in B and

(

n
s

)

ways to pick the s columns in which to
place those rooks in B. Once we have picked the rows and columns for the s rooks in B, there
are s! ways to place those rooks. Thus there are

(

n
s

)2
s! ways to place s rooks in B. Next we

n− s columns empty columns in the last n columns of [2n]× [2n]. Such rooks must lie in rows
n + 1, . . . , 2n so that there there n(n− 1) . . . (n− (n− s) + 1 ways to place such rooks. Finally
having chosen a placement of n rooks in the last n columns, there will be n! ways to place the
rooks in the first n columns. Thus

Hs,2n(F (0n, nn)) =

(

n

s

)2

s!(n) ↓n−s n! = (n!)2
(

n

s

)2

.

Similarly, suppose that we want to place s rooks in B′ = F (0n+1, nn). Then as before, there

are
(

n
s

)2
s! ways to place s rooks in B′. Next we n − s columns empty columns in the last n

columns of [2n + 1]× [2n + 1]. Such rooks must lie in rows n + 1, . . . , 2n + 1 so that there there
(n + 1)n . . . (n + 1− (n− s) + 1 = (n + 1) ↓n−s ways to place such rooks. Finally having chosen
a placement of n rooks in the last n columns, there will be (n + 1)! ways to place the rooks in
the first n + 1 columns. Thus

Hs,2n+1(F (0n+1, nn)) =

(

n

s

)2

s!(n + 1) ↓n−s (n + 1)! =
1

s + 1
((n + 1)!)2

(

n

s

)2

.

It should be clear from the two examples above that it is easy to compute the hit numbers
for rectangular boards. Thus it is natural to ask whether there are other sets X such that
the board corresponding to X-descents is rook equivalent to a rectangular board. In fact, Hall
and Remmel [36] showed that S of the form X = {u + 2, u + 4, u + 6, . . . , u + 2m}) covers all
possibilities. For example, consider the 2×3 rectangular board B shown in Figure 18. We place
this board in the lower right corner of an 8× 8 board, as shown in Figure 19.

Note that for any set X the board associated to X-descents has distinct rows, since the
row corresponding to i ∈ X has length i − 1. Rearranging the elements of s(B) in weakly
decreasing order gives the unique board B′ with distinct rows that is rook-equivalent to B. In
our example, we compute s(B) = (0,−1,−2,−3,−4,−3,−4,−5). Thus B is rook-equivalent to
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Figure 18: The 2× 3 board B.
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Figure 19: The board B placed in an 8× 8 board.

the board B′ with structure vector s(B′) = (0,−1,−2,−3,−3,−4,−4,−5) and height vector
h(B′) = (0, 0, 0, 0, 1, 1, 2, 2). B′ is the board shown in Figure 20. Finally, to get the board
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Figure 20: The board B′, rook-equivalent to B.

for X-descents, we take the mirror image, and shift the rows upwards so that a row of length
i − 1 is in position i, as shown in Figure 21. Thus in our example, X = {3, 5}. In general,
Hall and Remmel observed that if one starts with a rectangular a × b board (a ≤ b), then the
corresponding set is X = {u + 2, u + 4, u + 6, . . . , u + 2m}, where m = a and u = b − a. For
n = 2m + u + v, we get

PX
n,s =

(

a

s

)(

b

s

)

s! ·

(

n− a

b− s

)

(b− s)! · (n− b)!

=

(

m

s

)(

m + u

s

)

s! ·

(

m + u + v

m + u− s

)

(m + u− s)! · (m + v)!

=

(

m

s

)(

m + u + v

v + s

)

(m + u)!(m + v)!.

In many cases, one can use the fact that each Ferrers board is rook equivalent to a unique
increasing Ferrers board to show that the problem counting (X,Y )-descents can be reduced the
problem of counting X ′-descents for an appropriate X ′. That is, Hall and Remmel proved the
following.
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Figure 21: The board BX
8 .

Proposition 1. Given subsets X,Y ⊆ N, let B be the Ferrers board corresponding to the
potential descent pairs (i, j), where i ∈ Xn and j ∈ Yn. Let B′ be the unique Ferrers board rook-
equivalent to B that has distinct rows. Let X ′ ⊆ [n] be the unique subset whose corresponding
board (once empty rows and columns are deleted, and taking the mirror image) is B′. Then

PX,Y
n,s = PX′

n,s.

Proof. By the previous discussion, we have PX,Y
n,s = Hs,n(B) and PX′

n,s = Hs,n(B′). But B and
B′ are rook-equivalent, and thus Hs,n(B) = Hs,n(B′) for all s.

For example, suppose that X = {2, 3, 5, 7, 8}, Y = {1, 2, 4, 5, 6}, and n = 8, so that the
potential descent pairs are 21, 31, 32, 51, 52, 54, 71, 72, 74, 75, 76, 81, 82, 84, 85, and 86. Then
PX,Y

8,s = Hs,8(B
X,Y
8 ), where BX,Y

8 is the board shown on the left in Figure 22. This board
is clearly hit-equivalent to the Ferrers board F (0, 0, 0, 2, 2, 3, 4, 5) shown on the right in Figure
22. It is easy to check that the unique increasing Ferrers board B′ which rook equivalent to
F (0, 0, 0, 2, 2, 3, 4, 5) is F (0, 0, 0, 1, 2, 3, 4, 6) which is shown on the left in Figure 23. It is easy to
see that B′ is hit-equivalent to the board for X ′ = {2, 3, 4, 5, 7} which is shown on the right in
Figure 23. Thus PX,Y

8,s = PX′

8,s for all s.
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Figure 22: The board BX,Y
8 .

Hall and Remmel [36] were able to find general formulas for PX,Y
n,s . In fact, they gave direct

combinatorial proofs of a pair of formulas for PX,Y
n,s . Their proofs did not use rook theory
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Figure 23: The board B′, rook-equivalent to BX,Y
8 .

methods, but we state them for completeness. First of all, for any set A ⊆ N, let

An = A ∩ [n], and

Ac
n = (Ac)n = [n]−A.

Then we have

Theorem 17.

PX,Y
n,s = |Xc

n|!
s
∑

r=0

(−1)s−r

(

|Xc
n|+ r

r

)(

n + 1

s− r

)

∏

x∈Xn

(1 + r + αX,n,x + βY,n,x), (75)

Theorem 18.

PX,Y
n,s = |Xc

n|!

|Xn|−s
∑

r=0

(−1)|Xn|−s−r

(

|Xc
n|+ r

r

)(

n + 1

|Xn| − s− r

)

∏

x∈Xn

(r + βX,n,x − βY,n,x), (76)

where for any set A and any j, 1 ≤ j ≤ n, we define

αA,n,j = |Ac ∩ {j + 1, j + 2, . . . , n}| = |{x : j < x ≤ n & x /∈ A}|, and

βA,n,j = |Ac ∩ {1, 2, . . . , j − 1}| = |{x : 1 ≤ x < j & x /∈ A}|.

Example 1. Suppose X = {2, 3, 4, 6, 7, 9}, Y = {1, 4, 8}, and n = 6. Thus X6 = {2, 3, 4, 6},Xc
6 =

{1, 5}, Y6 = {1, 4}, Y c
6 = {2, 3, 5, 6}, and we have the following table of values of αX,6,x, βY,6,x,

and βX,6,x.

x 2 3 4 6

αX,6,x 1 1 1 0

βY,6,x 0 1 2 3

βX,6,x 1 1 1 2

Equation (75) gives

PX,Y
6,2 = 2!

2
∑

r=0

(−1)2−r

(

2 + r

r

)(

7

2− r

)

(2 + r)(3 + r)(4 + r)(4 + r)

= 2 (1 · 21 · 2 · 3 · 4 · 4− 3 · 7 · 3 · 4 · 5 · 5 + 6 · 1 · 4 · 5 · 6 · 6)

= 2(2016 − 6300 + 4320)

= 72.
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while (76) gives

PX,Y
6,2 = 2!

2
∑

r=0

(−1)2−r

(

2 + r

r

)(

7

2− r

)

(1 + r)(0 + r)(−1 + r)(−1 + r)

= 2 (1 · 21 · 1 · 0 · (−1) · (−1)− 3 · 7 · 2 · 1 · 0 · 0 + 6 · 1 · 3 · 2 · 1 · 1)

= 2(0− 0 + 36)

= 72.

Example 4. Eulerian numbers and Simon Newcomb’s problem.

Another way to identify rook placements with permutations is to start with a permutation π
in one-line notation, then create another permutation β(π) by viewing each left-to-right minima
of π as the last element in a cycle of β(π). For example, if π = 361295784, then β(π) =
(361)(2)(95784). In this example P (β(π)) consists of rooks on

{(3, 6), (6, 1), (1, 3), (2, 2), (9, 5), (5, 7), (7, 8), (8, 4), (4, 9)}. (77)

Note that the number of permutations with k cycles is hence equal to the number of permutations
with k left-to-right minima. Now for the rook placement P (β(π)), a rook on (i, j) can be
interpreted as meaning j immediately follows i in some cycle of β, and if i > j, this will happen
iff π contains the descent · · · ij · · · . If we let Stn denote the “staircase board” consisting of
squares (i, j), 1 ≤ j < i ≤ n, then rooks on Bn in P (β(π)) correspond to descents in π. Hence
we have

Hk,n(Stn) = Ak+1(n), (78)

where Aj(n) is the jth “Eulerian number”, i.e. the number of permutations in Sn with j − 1
descents.

Identity (78) has a nice generalization to multiset permutations. Given v ∈ Np, define a map
ζ from Sn to the set of multiset permutations M(v1, v2, . . . , vp) of {1v1 · · · pvp} by starting with
π ∈ Sn and replacing the smallest v1 numbers by 1’s, the next v2 smallest numbers by 2’s, etc.
For example, if π = 361295784 and v = (3, 5, 1), then ζ(π) = 121132222. Note that with this v,
rooks on squares (2, 1), (3, 1), (3, 2) no longer correspond to descents, and neither do rooks on
(5, 4), (6, 4), (6, 5), . . . , (8, 7).

Let Nk(v) denote the number of multiset permutations of elements of M(v) with k − 1
descents. The Nk(v) are named after British astronomer Simon Newcomb who, while playing a
card game called patience, posed the following problem: if we deal the cards of a 52 card-deck
out one at a time, starting a new pile whenever the face value of the card is less than that of the
previous card, in how many ways can we end up with exactly k piles? MacMahon noted this is
equivalent to asking for a formula for Nk(13, 13, 13, 13), and studied the more general question
of finding a formula for Nk(v) [42]. Riordan [48] noted that since ζ is a 1 to

∏

i vi! map, if we let
Gv denote the Ferrers board whose first v1 columns are of height 0, next v2 of height v1, next
v3 of height v1 + v2, . . ., and last vp of height v1 + . . . vp−1, it follows that

Hk,n(Gv) =
∏

i

vi!Nk+1(v). (79)
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Example 5: Problème des ménages.
The problème des ménages is a typical arrangement problem. In this case, the problem is

that we start our with n husbands and wives (H1,W1), . . . (Hn,Wn) that we want to sit around
a circular table in such a way that (i) husbands and wives alternate and (ii) no husband sits
next to his wife. The question is to find the number An of seating arrangements that satisfy
conditions (i) and (ii) up to circular rearrangements?

We solve this problem is several steps. First we seat the wives around the table in some
order V1, . . . , Vn. Clearly there are (n − 1)! ways to do this up to circular rearrangements. For
example, if n = 8, we have a seating arrangement as pictured in Figure 24. We let Pi be the
place just to the right of Vi. Now if Gi is the husband of Vi for i = 1, . . . , n, then our goal is to
find the number of ways to place G1, . . . , Gn into the place P1, . . . , Pn so that G1 is not in either
P1 or Pn and, for i = 2, . . . , n, Gi is not in either Pi−1 or Pi. Clearly, we can think of assignment
of the husbands to the places a permutation σ = σ1 . . . σn ∈ Sn such that σ1 6∈ {1, n} and, for
i = 2, . . . , n, σi 6∈ {i−1, i}. The number of such permutations is the hit number H0,n(Cn) where
Cn is board contained in [n]× [n] where

Cn = {(1, n), (1, 1)} ∪ {(i, i − 1), (i, i) : i = 2, . . . n}.

For example, the board C8 is pictured in Figure 25 on the left where the shaded squares corre-
spond to the board C8. Thus we know An = (n− 1)!H0,n(Cn).

V

V

V

V

V

V

V

1

2

3

4

5

6

V8

7

P

P

PP

P

P

PP

1

3

45

6

27

8

Figure 24: First step of the seating arrangement.

We can then use Theorem 1 to conclude that

H0,n(Cn) =
n
∑

k=0

rk(Cn)(−1)k(n− k)!. (80)

Hence, we can obtain a formula for An if we can find a formula of rk(Cn) for k = 0, . . . , n.
If one adds put a vertex in each of the squares of Cn and connect consecutive vertices by

an edge, one obtain a cycle C2n. For example, in Figure 25, we see the cycle that corresponds
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Figure 25: The board C8.

to the board C8 is cycle C16. It is then easy to see that rs(Cn) is just the number of ways of
picking s vertices in the cycle C2n so that no two elements are connected by an edge. We then
have the following lemma that can be found in Stanley’s book [50].

Lemma 19. Let Cn denote the graph of an n-cycle. Let f(n, s) be the number of ways a picking
s vertices from Cn such that no two are connected by an edge. Then f(n, s) = n

n−s

(

n−s
s

)

.

Proof. First, let g(n, s) be the number of ways a picking s vertices from Cn such that no two are
connected by an edge and then circling one of the remaining n − s vertices. Clearly, g(n, s) =
(n − s)f(n, s). Thus we need only show that g(n, s) = n

(

n−s
s

)

. Imagine that the vertices of Cn
are labeled consecutive with 1, 2, . . . , n as we traverse the circle in clockwise fashion.

To construct a configuration counted by g(n, s), we first pick the circled point in n ways.
Then we place n− s− 1 unlabeled points around the circle. These will correspond to the points
that are not chosen when we label the points. For example, suppose that n = 9 and s = 3 and
we choose the circled point to be 4. Then n− s− 1 = 9− 3− 1 = 5 so that we would have the
configuration pictured in Figure 26.

4

Figure 26: Placing the circled point plus n− s− 1 other points.

At this point, we have n− s spaces between consecutive vertices that we have placed on the
circle so we choose s of them in

(

n−s
s

)

ways. Once we have chosen the s points, then we know
how to label the points on the circle. For example, if we continue with our example above, then
in Figure 27 we have pictured such a labeling where we indicate the s chosen points with Xs.
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Figure 27: Completing a labeling.

Thus it follows that

An = (n− 1)!H0,n(Cn) = (n− 1)!

n
∑

k=0

2n

2n− k

(

2n − k

k

)

(−1)k(n− k)!.

1.6 Rook numbers and Weyl Algebra

The Weyl Algebra is the algebra generated by two operators D and U subject to the relation
DU = UD + 1. The simplest example of such an algebra to consider the polynomial ring Q[x]
where we let D be the differentiation operator d

dx
, U be the multiplication by x operator, and I

be the identity operator on Q[x]. Then

DU(xn) = D(xn+1) = (n + 1)xn and

(UD + I)(xn) = UD(xn) + I(xn) = U(nxn−1) + xn = nxn + xn = (n + 1)xn.

For any alphabet A, we let A∗ denote the set of all words w = w1 . . . wn such that wi ∈ A
and we let An denote the set of all words in A∗ of length n. For any word w ∈ A∗, we let |w|
denote the length of w. We let ǫ denote the empty word and declare |ǫ| = 0.

The problem that we want to consider is to start out with a word w ∈ {D,U}∗ and find an
expressions for the so-called normal form of w. That is, we want to find coefficients ci,j so that

w =
∑

i,j

ci,jU
iDj. (81)

We claim that the ci,j ’s are just rook numbers of a certain Ferrers board Bw associated
with w. That is, we create a path P (w) consisting of north and east steps of length 1 from
w by having each D correspond to a north step and each U correspond to east step. Then
Bw will be the Ferrers board whose left boundary corresponds the path P (W ). For example,
w = DDUDUDU , then P (W ) and Bw are pictured in Figure 28.

Note that it is easy to see that if u = U jwDk, then Bu = Bw. Then Navon [43] proved the
following Theorem.
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Figure 28: The rook board associated with the word w = DDUDUDU .

Theorem 20. Let w ∈ {D,U}∗ consists of n D’s and m Us. Then

w =

n
∑

k=0

rk(Bw)Um−kDn−k (82)

Proof. The proof is a consequence of a simple recursion for the rook numbers of Ferrers boards.
That is, suppose that c is outside corner square of a Ferrers board B = F (b1, . . . , bn). Then we
let B/c denote the Ferrers board which results from B by removing cell c and we let B/c̄ denote
the Ferrers board which results from B by removing the row and column that contains c. For
example, if B = F (1, 3, 4, 4, 5) and c is the cell (3,2), then Figure 29 pictures both B/c and B/c̄.
Here we have put dots in cells besides c that we remove when we form B/c̄.

c

B

B/c cB/

Figure 29: The boards B/c and B/c̄.

By classifying the rook placements P ∈ Nk(B) according to whether P has a rook in cell c
or not, it easy to see that for any k ≥ 1,

rk(B) = rk(B/c) + rk−1(B/c̄). (83)

That is, we can clearly partition the rook placements P ∈ Nk(B) into N1, consisting of those
rook placement that do not have a rook in cell c and N2, consisting of those rooks that have a
rook in cell c. Then it is easy to see that |N1| = rk(B/c) and |N2| = rk−1(B/c̄).

We can then prove (82) by induction on the number of cells in Bw. If Bw is empty, then w
must be UmDn so that (82) automatically holds in this case since by definition r0(Bw) = 1
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Now suppose that w is of the form DsUv. Then clearly, the cell c = (1, s) will be a corner
square of Bw. Now

w = U sDtUv = U sDt−1(UD + 1)v = U sDt−1UDv + U sDt−1v.

But if a = U sDt−1UDv and b = U sDt−1v, then it is easy to see that Ba = Bw/c and Bb = Bw/c̄.
See Figure ?? for an example. But then by induction we have that

w = U sDtUv = U sDt−1UDv + U sDt−1v

=
n
∑

k=0

rk(Ba)U
m−kDn−k +

n−1
∑

k=0

rk(Bb)U
m−1−kDn−1−k

=
n
∑

k=0

(r(Ba) + rk−1(Bb))U
m−kDn−k

=
n
∑

k=0

rw(B)Um−kDn−k.

In fact, Theorem 20 can be used to show that classical combinatorial numbers such as the
Stirling numbers of the second kind and the Lah numbers appear in normal form expansions in
Weyl Algebra. That is, if w = (UD)n−1, then Bw is the staircase board Stn. Thus by Theorem
20

(UD)n−1 =

n−1
∑

k=0

rk(Stn)Un−1−kDn−1−k

=

n
∑

k=1

Sn,kU
k−1Dk−1.

Similarly if w = Dn−1Un, then Bw is the Laguerre board Ln. Thus by Theorem 20

Dn−1Un =
n−1
∑

k=0

rk(Ln)Un−1−kDn−k

=
n
∑

k=1

Ln,kU
k−1Dk.

We should also observe that Theorem 20 and the theory of rook equivalences of Ferrers boards
leads to non-trivial polynomial identities in the Weyl Algebra. That is, consider w = DUDU2D
and u = UD2UDU Then Bw = F (1, 2, 2) and Bu = F (2, 3). But it easy to see that F (1, 2, 2)
and F (2, 3) are rook equivalent so that by Theorem 20

DUDU2D =

2
∑

k=0

rk(F (1, 2, 2))U3−kD3−k =

2
∑

k=0

rk(F (2, 3))U3−kD3−k = UD2UDU.

Exercise: Show that in Weyl algebra, DU2D2U2D = UDUD2UDU .
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1.7 Recursions for hit and fit numbers of Ferrers boards

In the next few sections, we shall develop some properties of hit and fit numbers of Ferrers boards.
We start by looking at the recursion for rook numbers considered in the previous section. That
is, suppose the c is outside corner square of a Ferrers board B = F (b1, . . . , bn). Recall that B/c
denotes the Ferrers board which results from B by removing cell c and B/c̄ denote the Ferrers
board which results from B by removing the row and column that contains c. Then we showed
that

rk(B) = rk(B/c) + rk−1(B/c̄).

Similarly, suppose that A = F (a1, . . . , an) is a skyline board and c = (ai, i) is the top cell of a
non-zero column. Then we let A/¯̄c denote the skyline board F (a1, . . . , ai−1, 0, ai+1, . . . , an) be
the board that results from A by removing all the cells in i-th column of A. Again by classifying
the file placements Q ∈ Ck(A) according to whether they have a rook in cell c or not, it is easy
to see that

fk(A) = fk(A/c) + fk−1(A/¯̄c). (84)

We can then use these two recursions and Theorems 1 and 2 to develop recursions for the hit
numbers and fit numbers of Ferrers boards. That is, suppose that c is outside corner square of
a Ferrers board B = F (b1, . . . , bn) ⊆ [n]× [n]. Then since we remove a row and column from B
to obtain B/c̄, it follows that we can view B/c̄ as a Ferrers board contained in [n− 1]× [n− 1].
Then we have that

n
∑

k=0

Hk,n(B)xk =
n
∑

k=0

rk(B)(n− k)!(x− 1)k

=
n
∑

k=0

(rk(B/c) + rk−1(B/c̄))(n − k)!(x − 1)k

=

n
∑

k=0

rk(B/c)(n − k)!(x− 1)k + (x− 1)

n
∑

k=1

rk−1(B/c̄)(n − 1− (k − 1))!(x − 1)k−1

=
n
∑

k=0

rk(B/c)(n − k)!(x− 1)k + (x− 1)
n−1
∑

k=0

rk(B/c̄)(n− 1− k)!(x− 1)k

=
n
∑

k=0

Hk,n(B/c)xk +
n−1
∑

k=0

Hk,n−1(B/c̄)xk. (85)

Taking the coefficient of xk on both sides of (85), we obtain the following theorem.

Theorem 21. Let c be an outside corner square of a Ferrers board B = F (b1, . . . , bn) ⊆ [n]× [n].
Then for all k ≥ 0,

Hk,n(B) = Hk,n(B/c) + Hk−1,n−1(B/c̄)−Hk,n−1(B/c̄). (86)

We can also give a combinatorial proof of Theorem 21. That is, fix 0 ≤ k ≤ n. We partition
Ek = {σ ∈ Sn : |σ ∩B| = k} into two sets: Ek,1 which is equal to the set of all σ ∈ Ek such that
there is a rook in c and Ek,0 which is equal to the set of all σ ∈ Ek such that there is a no rook in
c. Now if start with σ ∈ Ek,1 and we remove the row and column containing c, then it is easy to
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see that we will be reduced to a τ ∈ Sn−1 such that |τ ∩B/c̄| = k− 1. Thus |Ek,1| = Hk−1(B/c̄)
and Hk,n(B)−Hk−1(B/c̄) = |Ek,0|.

Similarly, we can partition Fk = {σ ∈ Sn : |σ ∩B/c| = k} into two sets: Fk,1 which is equal
to the set of all σ ∈ Fk such that there is a rook in c and Fk,0 which is equal to the set of all
σ ∈ Fk such that there is a no rook in c. Again if we start with a σ ∈ Fk,1 and remove the row
and column containing c, then it is easy to see that we will be reduced to a τ ∈ Sn−1 such that
|τ ∩B/c̄| = k. Thus |Fk,1| = Hk(B/c̄) and Hk,n(B/c)−Hk(B/c̄) = |Fk,0|. But it is easy to see
that Ek,0 = Fk,0 so that we must have

Hk,n(B)−Hk−1(B/c̄) = Hk,n(B/c)−Hk(B/c̄)

which is what we wanted to prove.
Next suppose that A = F (a1, . . . , an) ⊆ [n]× [n] is a skyline board and c = (ai, i) is the top

cell of a non-zero column. Then clearly A/¯̄c is another skyline board in [n]× [n]. Then we have
that

n
∑

k=0

Fk,n(B)xk =
n
∑

k=0

fk(B)nn−k(x− 1)k

=
n
∑

k=0

(fk(B/c) + fk−1(B/¯̄c))nn−k(x− 1)k

=
n
∑

k=0

fk(B/c)nn−k(x− 1)k +
(x− 1)

n

n
∑

k=1

fk−1(B/¯̄c)nn−(k−1)(x− 1)k−1

=
n
∑

k=0

fk(B/c)(n − k)!(x− 1)k +
(x− 1)

n

n−1
∑

k=0

fk(B/¯̄c)nn−k(x− 1)k

=
n
∑

k=0

Fk,n(B/c)xk +
n
∑

k=0

Fk,n(B/¯̄c)xk. (87)

Taking the coefficient of xk on both sides of (87), we obtain the following theorem.

Theorem 22. Let c be cell which is at the top of some column of skyline board A = F (a1, . . . , an) ⊆
[n]× [n]. Then for all k ≥ 0,

Fk, n(A) = Fk,n(A/c) +
1

n
Fk−1,n−1(A/¯̄c)−

1

n
Fk,n−1(A/¯̄c). (88)

We can also give a combinatorial proof of Theorem 22. That is, fix 0 ≤ k ≤ n. We partition
Uk = {f ∈ Fn : |f ∩B| = k} into two sets: Uk,1 which is equal to the set of all f ∈ Uk such that
there is a rook in c and Uk,0 which is equal to the set of all f ∈ Ek such that there is a no rook
in c. Now suppose c is in column i. If we start with an f ∈ Ek,1 and remove the rook and all
the cells of A in column i, then we will create a file placement Pf such that Pf contains rooks
in each of the columns except i. Clearly |P ∩ (A/¯̄c)| = k − 1. Since the i-th column of A/¯̄c is
empty, there are n ways to extend Pf by adding a rook in column i to obtain a file placement
g ∈ Fn such that |g ∩ (A/¯̄c)| = k − 1. Thus each f ∈ Uk,1 gives rise to n functions counted by
Hk−1,n(A/¯̄c). It follows that U1,k = 1

n
Hk−1,n(A/¯̄c) and Fk,n(B)− 1

n
Fk−1(B/c̄) = |Uk,0|.

Similarly, we can partition Vk = {f ∈ Fn : |f ∩ A/c| = k} into two sets: Vk,1 which is equal
to the set of all f ∈ Vk such that there is a rook in c and Vk,0 which is equal to the set of all
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f ∈ Vk such that there is a no rook in c. Again each f ∈ Fk,1 corresponds to n elements g ∈ Fn

such that |g ∩ (A/¯̄c)| = k. Thus |Vk,1| =
1
n
Fk(A/¯̄c) and Fk,n(B/c) − 1

n
Fk(A/¯̄c) = |Vk,0|. But it

is easy to see that Uk,0 = Vk,0 so that we must have

Fk,n(B)−
1

n
Fk−1(B/c̄) = Fk,n(B/c)−

1

n
Fk(A/¯̄c)

which is what we wanted to prove.

1.8 A Formula of Frobenius

In this section, we present another way in which the Eulerian numbers arise in rook theory by
proving a formula that relates the Stirling numbers of the second kind to the generating function
of descents of permutations in Sn which is due to Frobenious, see [18].

To prove this formula, we will consider a new type of board. Let B = F (b1, . . . , bn) be a
Ferrers board. We then let the board B∞ consist of the board B together with infinitely many
rows of size n attached below B. We again call the line separating B from the extra rows in B,
the bar. We also label the extra row starting from the top with 1, 2, . . .. For example, Figure 30
picture B∞ where B = F (2, 2, 3, 4, 4).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

2

3

4

5

Figure 30: The board B∞ where B = F (2, 2, 3, 4, 4).

Next let Nn(B∞) denote the set of all placements of n non-attacking rooks in B∞. For any
P ∈ Nn(B∞), we let max(P ) = k if the lowest rook in P is in row k below the bar and we let
max(P ) = 0 if P has no rooks below the bar. We then have the following theorem.

Theorem 23. Let B = F (b1, . . . , bn) be a Ferrers board. Then

1

1− x

∑

P∈Nn(B∞)

xmax(P ) =
∑

k≥0

xk
n
∏

i=1

(k + bi − (i− 1)) (89)

=

n
∑

k=0

rn−k(B)k!xk

(1− x)k+1
. (90)

Proof. We shall consider two different ways to sum the LHS of (89). First, it is easy to see that

1

1− x

∑

P∈Nn(B∞)

xmax(P ) =
∑

k≥0

xk|{P ∈ Nn(B∞) : max(P ) ≤ k}|. (91)
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However |{P ∈ Nn(B∞) : max(P ) ≤ k}| is just the number of placements of n non-attacking
rooks in Bx where x = k. By Theorem 3,

|{P ∈ Nn(B∞) : max(P ) ≤ k}| =
n
∏

i=1

(k + bi − (i− 1)).

Thus
1

1− x

∑

P∈Nn(B∞)

xmax(P ) =
∑

k≥0

xk
n
∏

i=1

(k + bi − (i− 1)). (92)

On the other hand, we can classify the placements P ∈ Nn(B∞) by how many rook in P lie
above the bar. That is, suppose that we fix a placement Q of n− k rooks in B where 1 ≤ k ≤ n.
We then wish to compute

SQ(x) =
1

1− x

∑

P∈Nn(B∞);P∩B=Q

xmax(P ).

We can code such a placement P ∈ Nn(B∞) such that P ∩ B = Q by a sequence sequence
(p1, . . . , pk) ∈ Nk and permutation σ ∈ Sk where p1 is the distance from row 1 to highest rook in
P below the bar, p2 is the distance between the highest rook in P , etc. and σ is the permutation
that corresponds to the rook placement of the the rows and columns that contain rooks below
the bar. For example, the rook configuration pictured in Figure 31 would by coded the sequence
(2, 0, 4, 1) and the permutation σ = 4 1 2 3. It is easy to see that if P is coded by 〈(p1, . . . , pk), σ〉,
then

max(P ) = p1 + · · · + pk + k.

X

X

X

X

X

X

X

1

2

3

4

5

6

7

8

9

10

11

X

X

X

X

σ = 

2

3

4

1p  = 2

p  = 0

p  = 4

p  = 1

Figure 31: Coding for a rook placement in Nn(B∞).
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It follows that

SQ(x) =
1

1− x

∑

P∈Nn(B∞);P∩B=Q

xmax(P )

=
1

1− x

∑

σ∈Sn

∑

p1≥0

· · ·
∑

pk≥0

xp1+···+pk+k

=
1

1− x
k!xk

k
∏

i=1

∑

pi≥0

xpi

=
k!xk

(1− x)k+1
.

Since there are clearly rn(B) rook placements in Nn(B∞) that have no rooks below the bar, we
have that

1

1− x

∑

P∈Nn(B∞)

xmax(P ) =
1

1− x
rn(B) +

n
∑

k=1

∑

Q∈Nn−k(B)

SQ(x)

=
n
∑

k=0

rn−k(B)k!xk

(1− x)k+1

Note that Theorem 23 does not require that bn ≤ n. If we start with B = F (b1, . . . , bn)
where bn ≤ n, then we have that

n
∑

k=0

Hk,n(B)xk =

n
∑

k=0

rn−k(B)k!(x− 1)n−k. (93)

replacing x by 1/x in (93) and then multiplying by xn gives

n
∑

k=0

Hk,n(B)xn−k =
n
∑

k=0

rn−k(B)k!xk(1− x)n−k. (94)

Then dividing (94) by (1− x)n+1 yeilds

∑n
k=0 Hk,n(B)xn−k

(1− x)n+1
=

n
∑

k=0

rn−k(B)k!xk

(1− x)k+1
. (95)

Thus we have the following corollary.

Corollary 2. Let B = F (b1, . . . , bn) be a Ferrers board where bn ≤ n.

1

1− x

∑

P∈Nn(B∞)

xmax(P ) =

n−1
∑

k=0

rn−k(B)k!xk

(1− x)k+1

=

∑n
k=0 Hk,n(B)xn−k

(1− x)n+1
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Now consider the special case where B = Stn, then we know that rn−k(Stn) = Sn,k and
Hn,k(Stn) is the number of permutations of Sn with k descents. For any permutation, σ =
σ1 · · · σn ∈ Sn, we let the complement of σ, σc, be defined by

σc = (n + 1− σ1) · · · (n + 1− σn).

It is then easy to see that σ has k descents if and only if σc has n − 1 − k descents so that
Hn,k(Stn) is the number of permutations of Sn with n− 1− k descents. It then follows that

n−1
∑

k=0

Hk,n(Stn)xn−k =
∑

σ∈Sn

xdes(σ)+1. (96)

Combining (96) with Corollary 2 we have the following formula of Frobenius.

Theorem 24.
∑

σ∈Sn
xdes(σ)+1

(1− x)n+1
=

n
∑

k=1

Sn,kk!xk

(1 − x)k+1
. (97)

Next consider the special case where B = F (b1, . . . , bn) where bi = n − 1 for all i. Thus
B = Ln is the Laguerre board and rn−k(Ln) = Ln,k. Clearly |σ ∩ Ln| = n− 1 for all σ ∈ Sn, so
that

n−1
∑

k=0

Hn,k(Ln)xn−1 = n!x. (98)

Hence corollary 2 then yields the following theorem

Theorem 25.
n!x

(1− x)n+1
=

n
∑

k=1

Ln,kk!xk

(1− x)k+1
. (99)

Next we prove an analogue of Theorem 23 for file placements. Given a skyline board B =
F (b1, ldots, bn), let Cn(B∞) denote the set of all file placements of n rooks in B∞. For any
P ∈ Cn(B∞), we let max(P ) = k if the lowest rook in P is in row k below the bar and we let
max(P ) = 0 if P has no rooks below the bar. We then have the following theorem.

Theorem 26. Let B = F (b1, . . . , bn) be a skyline board. Then

1

1− x

∑

P∈Cn(B∞)

xmax(P ) =
∑

k≥0

xk
n
∏

i=1

(k + bi) (100)

=
fn(B)

1− x
+

n
∑

k=1

fn−k(B)

k
∑

j=1

j!Sn,j

(1− x)j+1
. (101)

Proof. It is easy to see that the sum 1
1−x

∑

P∈Cn(B∞) xmax(P ) is invariant if we permute the
columns so that there is no loss in generality in assuming the B is a Ferrers board. We shall
consider two different ways to sum the LHS of (89). As in Theorem 23, it is easy to see that

1

1− x

∑

P∈Cn(B∞)

xmax(P ) =
∑

k≥0

xk|{C ∈ Cn(B∞) : max(P ) ≤ k}|. (102)
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However |{P ∈ Cn(B∞) : max(P ) ≤ k}| is just the number of file placements of n rooks in Bx

where x = k. By Theorem 4,

|{P ∈ Cn(B∞) : max(P ) ≤ k}| =
n
∏

i=1

(k + bi).

Thus
1

1− x

∑

P∈Cn(B∞)

xmax(P ) =
∑

k≥0

xk
n
∏

i=1

(k + bi). (103)

On the other hand, we can classify the file placements P ∈ Cn(B∞) by how many rook in
P lie above the bar. That is, suppose that we fix a placement Q of n − k rooks in B where
1 ≤ k ≤ n. We then wish to compute

TQ(x) =
1

1− x

∑

P∈Cn(B∞);P∩B=Q

xmax(P ).

Now if P ∈ Cn(B∞) and P ∩ B = Q, then there must be k rooks in P which lie below the
bar. However because we are considering file placements, the number of rows which can contain
rooks below the bar can be any j where 1 ≤ j ≤ k. So fix j with 1 ≤ j ≤ k and consider all
the set of all file placements P ∈ Cn(B∞) such that P ∩ B = Q and there are j rooks below
the bar which contain rooks in P . We can code such a placements P by a sequence sequence
(p1, . . . , pj) ∈ Nj and a surjective function f from [k] onto j. That is, we p1 be the distance
from row 1 to highest row that contain rooks in P below the bar, p2 be the distance between
the highest row containing rooks in P below the bar and the second highest row that contains
rooks in P below the bar, etc. in P , etc. The f is the function that corresponds to the file
placement of the the rows and columns that contain rooks below the bar. For example, the
file placement pictured in Figure 32 would by coded the sequence (2, 5) and the permutation f
where f(1) = f(4) = 2, f(2) = f(3) = 1. If f : [k] → [j] is a surjective function, then clearly
we can code f by the ordered set partition of [k] consisting of (f−1(1), . . . , f−1(j)) so that there
are j!Sk,j such functions. It is easy to see that if P is coded by 〈(p1, . . . , pj), f〉, then

max(P ) = p1 + · · ·+ pj + j.

It follows that

TQ(x) =
1

1− x

∑

P∈Cn(B∞);P∩B=Q

xmax(P )

=
1

1− x

k
∑

j=1

∑

f :[k]→[j] is surjective

∑

p1≥0

· · ·
∑

pj≥0

xp1+···+pk+k

=
1

1− x

k
∑

j=1

j!Sk,jx
j

j
∏

i=1

∑

pi≥0

xpi

=

k
∑

j=1

j!Sk,jx
j

(1− x)j+1
.
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Figure 32: Coding for a file placement in Cn(B∞).

Clearly there are fn(B) file placements in Cn(B∞) that have no rooks below the bar. Thus

1

1− x

∑

P∈Cn(B∞)

xmax(P ) =
fn(B)

1− x
+

n
∑

k=1

∑

Q∈Nn−k(B)

TQ(x)

=
fn(B)

1− x
+

n
∑

k=1

fn−k(B)
k
∑

j=1

j!Sk,jx
j

(1− x)j+1
.

It is natural to ask whether there is an analogue of Corollary 2 for file placements when
B = F (b1, . . . , bn) is a Ferrers board contained [n] × [n]. That is, it follows from Theorem 26
that if fn(B) = 0, then

1

1− x

∑

P∈Cn(B∞)

xmax(P ) =

∑n
k=1 fn−k(B)

∑k
j=1 j!Sk,jx

j(1− x)n−j

(1− x)n+1
. (104)

Hence one can ask whether the polynomial

UB,n(x) =

n
∑

k=1

fn−k(B)

k
∑

j=1

j!Sk,jx
j(1− x)n−j (105)

is a polynomial with non-negative integer coefficients. This is not true in general. For example,
if B = F (0, 2), then one can easily calculate that UB,n(x) = 3x− x2. However, we can identify
a large set of boards where FB,n(x) ∈ N[x]. That is, suppose that B = F (b1, . . . , bn) is a
Ferrers board where b1 = 0 and bi+1 ≤ bi + 1. Then consider the sequence (a1, . . . , an) =
(bn, . . . , b1) + (0, 1, 2, . . . , n− 1), i.e. ai = bn+1−i + i− 1 for i = 1, . . . , n. Since our assumptions
on the sequence (b1, . . . , bn) force that bn+1−i ≤ n − i, we must have ai ≤ n − 1 for all i.
Moreover, it is easy to check that our assumption that bi+1 ≤ bi + 1 ensures that ai ≤ ai+1 for
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all i = 1, . . . , n − 1. Thus A = F (a1, . . . , an) is a Ferrers board contained in [n − 1] × [n] and,
hence, rn(A) = 0. Moreover, it is easy to see that

∏n
i=1(k + ai − (i − 1)) =

∏n
i=1(k + bi). But

then if follows from Theorems 23 and 26 and Corollary 2 that

1

1− x

∑

P∈Nn(A∞)

xmax(P ) =

∑n
k=0 Hk,n(A)xn−k

(1− x)n+1

=
∑

k≥1

xk

n
∏

i=1

(k + ai − (i− 1))

=
∑

k≥1

xk
n
∏

i=1

(k + bi)

=
1

1− x

∑

P∈Cn(B∞)

xmax(P )

=

∑n
k=1 fn−k(B)

∑k
j=1 j!Sk,jx

j(1− x)n−j

(1− x)n+1
.

Thus UB,n(x) =
∑n

k=0 Hk,n(A)xn−k in this case. Thus we have proved the following.

Theorem 27. Suppose that B = F (b1, . . . , bn) is a Ferrers board such that b1 = 0 and bi+1 ≤
bi +1 for all i. Then if (a1, . . . , an) = (bn, . . . , b1)+(0, 1, 2, . . . , n−1), F (a1, . . . , an) is a Ferrers
board contained in [n− 1]× [n] and

n
∑

k=0

Hk,n(A)xn−k =

n
∑

k=1

fn−k(B)

k
∑

j=1

j!Sk,jx
j(1− x)n−j . (106)

Consider the special case of Theorem 106 where B = Stn = F (0, 1, 2, . . . , n − 1). In that
case, A = (n − 1, . . . , n − 1) = Ln. By (98), we have

∑n−1
k=0 Hn,k(Ln)xn−1 = n!x. Thus in this

case, we have the following analogue of the Frobenius formula for file numbers.

Corollary 3. Let Stn = F (0, 1, 2, . . . , n − 1). Then

1

1− x

∑

P∈Cn(B∞)

xmax(P ) =
n!x

(1− x)n+1
. (107)

1.9 Algebraic Identities for Ferrers Boards

If B = B(c1, . . . , cn) is a Ferrers board, let

PR(x,B) =

n
∏

i=1

(x + ci − i + 1). (108)

Recall that by Theorem 3, we have that

n
∑

k=0

x(x− 1) · · · (x− k + 1)rn−k(B) = PR(x,B). (109)

We can use this formula to prove the following proposition
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Proposition 2. Let B = B(c1, . . . , cn) be a Ferrers board. Then

k!rn−k(B) =

k
∑

j=0

(

k

j

)

(−1)k−jPR(j,B) (110)

Hn−k,n(B) =

k
∑

j=0

(

n + 1

k − j

)

(−1)k−jPR(j,B). (111)

Proof. By (109), the RHS of (110) equals

k
∑

j=0

(

k

j

)

(−1)k−j
∑

s

(

j

s

)

s!rn−s (112)

=
∑

s≥0

s!rn−s

∑

j≥s

(

k

j

)

(−1)k−j

(

j

s

)

=
∑

s≥0

s!rn−s
(1− z)k

(1− z)s+1
|zk−s (113)

=
∑

s≥0

s!rn−sδs,k,

where

δk,j =

{

1 if k = j

0 else.

Also using (109), the RHS of (111) equals

k
∑

j=0

(

n + 1

k − j

)

(−1)k−j
∑

s≤j

(

j

s

)

s!rn−s (114)

=
∑

s

s!rn−s

∑

j≥s

(

n + 1

k − j

)

(−1)k−j

(

j

s

)

=
∑

s

s!rn−s
(1− x)n+1

(1− x)s+1
|xk−s

by the binomial theorem. Now use (2).

A unitary vector is a nonzero vector all of whose coordinates are 0 or 1. For a vector v of
nonnegative integers, let gk(v) denote the number of ways of writing v as a sum of k unitary
vectors. By convention we set g0(0) = 0. For example, g2(2, 1) = 2 and g3(2, 1) = 3 since

(2, 1) = (1, 1) + (1, 0) (115)

= (1, 0) + (1, 1)

= (1, 0) + (1, 0) + (0, 1)

= (1, 0) + (0, 1) + (1, 0)

= (0, 1) + (1, 0) + (1, 0).
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Letting 1n stand for the vector with n ones, it is easy to see that gk(1
n) = k!S(n, k), where

S(n, k) is the Stirling number of the second kind. MacMahon derived a number of identities
for gk(v) in connection with his work on Simon Newcomb’s problem. Here we show how these
numbers can be connected with rook theory. We let n = v1 + . . . vp.

Theorem 28. For any v,

gk(v) =
k!rn−k(Gv)
∏

i vi!
. (116)

Proof. By definition we have

∑

v

∏

i

xvi

i gk(v) = (
∏

i

(1 + xi)− 1)k. (117)

Hence

∏

i

(1 + xi)
z =

∑

k≥0

(

z

k

)

(
∏

i

(1 + xi)− 1)k (118)

=
∑

k≥0

(

z

k

)

∑

w

∏

i

xwi

i gk(w).

Taking the coefficient of
∏

i xvi

i on both sides above yields

∏

i

(

z

vi

)

=
∑

k≥0

(

z

k

)

gk(v). (119)

Next note that PR(z,Gv) =
∏

i vi!
(

z
vi

)

. Comparing (119) with the B = Gv case of (109) we
obtain (116).

Corollary 4.

∑

k

gk(v)xn−k =
∑

j

Nj+1(v)(x + 1)j . (120)

Proof. This follows from (116), (79), and (2). We also provide a direct combinatorial proof,
which is based on a argument in [?, p. 61] proving a closely related identity. By comparing
coefficients of xn−k on both sides of (120) we get

gk(v) =
∑

j

Nj+1(v)

(

j

n− k

)

. (121)

To prove (121), start with a unitary composition C into k parts, say

w1 + w2 + . . . + wk = v. (122)

For each vector wi in C, associate a subset S(wi) by letting p ∈ S(wi) iff wi,p = 1. For example,
if z = (1, 0, 0, 1, 1, 0, 1), S(z) = {1, 4, 5, 7}. Next form a multiset permutation M(C) with bars
between some elements by listing the elements of S(w1) in decreasing order, followed by a bar
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and then the elements of S(w2), in decreasing order, followed by a bar, . . ., followed by the
elements of S(wk), in decreasing order. If C is the composition

(1, 1, 0, 0, 0, 0) + (1, 0, 0, 0, 0, 0) + (0, 0, 1, 0, 0, 0) + (0, 0, 0, 1, 0, 0) + (0, 0, 0, 0, 0, 1)

+(1, 1, 0, 0, 1, 0) + (0, 0, 0, 1, 0, 0) + (0, 0, 0, 1, 0, 0) + (0, 1, 0, 0, 0, 0)

then M(C) = 21|1|3|4|6|521|4|4|2. Note that if M(C) has j descents, then we have bars at each
of the n−1− j non-descents, together with an additional j−n+k bars at descents for a total of
n− 1− j + j −n + k = k− 1 bars. Thus we have a map from unitary compositions with k parts
to multiset permutations with say j descents, with an additional j−n + k bars chosen from the
descents, which is counted by the RHS of (121). It is easy to see the map is invertible.

Theorem 29. For any Ferrers board B,

∞
∑

j=0

PR(j,B)zj =

∑n
k=0 zkHn−k,n(B)

(1− z)n+1
. (123)

Proof.

(1− z)n+1
∞
∑

j=0

PR(j,B)zj |zk =

k
∑

j=0

(

n + 1

k − j

)

(−1)k−jPR(j,B) (124)

= Hn−k,n(B)

by (111).

Letting v = 1n in (123) we get

Corollary 5.
∑n

k=0 zkNk+1(1
n)

(1− z)n+1
=
∞
∑

j=0

zjjn. (125)

Theorem 30. For any Ferrers board B,

n
∑

k=0

(

x + k

n

)

Hk,n(B) = PR(x,B). (126)

Proof. It suffices to prove (126) under the assumption that x ∈ N. Then the RHS of (126) equals
(

∞
∑

k=0

ykPR(k,B)

)

|yx =

(

∑

j Hn−j,n(B)yj

(1− y)n+1

)

|yx (127)

=





∑

j

Hn−j,n(B)yj





(

∞
∑

m=0

ym

(

n + m

m

)

)

|yx

=

x
∑

j=0

Hn−j,n(B)

(

n + x− j

x− j

)

=
∑

k≥0

Hk,n(B)

(

x + k

n

)

.
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By letting B = Gv in (126) and using (79) we get

Corollary 6. For any v ∈ Np,

n
∑

k=0

(

x + k

n

)

Nk+1(v) =

p
∏

i=1

(

x

vi

)

. (128)

Remark 1. When v = 1n, (128) is known as Worpitsky’s identity.

1.10 Vector Compositions

For v ∈ Np, let fk(v) denote the number of ways of writing

v = w1 + . . . + wk, (129)

where wi ∈ Np with |wi| =
∑

j wij > 0. For example if v = (2, 1), in addition to the ways of
decomposing v into unitary vectors as in (115), we have

(2, 1) = (2, 1) (130)

= (2, 0) + (0, 1) = (0, 1) + (2, 0), (131)

so f1(2, 1) = 1, f2(2, 1) = 4, and f3(2, 1) = 3. MacMahon first defined and studied fk(v),
deriving of (132) and (136) below.

Proposition 3. For any v ∈ Np,

∏

i

(

z + vi − 1

vi

)

=
∑

k≥0

(

z

k

)

fk(v), (132)

where we define f0(v) = δn,0.

Proof. By definition we have

∑

v

∏

i

xvi

i fk(v) = (
∏

i

1

(1− xi)
− 1)k. (133)

Hence

(
∏

i

1

(1− xi)
)z =

∑

k≥0

(

z

k

)

(
∏

i

1

(1− xi)
− 1)k (134)

=
∑

k≥0

(

z

k

)

∑

w

∏

i

xwi

i fk(w).

Taking the coefficient of
∏

i xvi

i on both sides above yields (132).

Corollary 7. Let Fv be the Ferrers board whose first v1 columns are of height v1−1, whose next
v2 columns are of height v1 +v2−1, . . ., and whose last vp columns are of height v1 + . . .+vp−1,
so PR(z, Fv) =

∏

i vi!
(

z+vi−1
vi

)

. Then

fk(v) =
k!rn−k(Fv)
∏

i vi!
. (135)
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Theorem 31. (MacMahon [42, ]).

∑

k

fk(v)xn−k =
∑

j

Nj(v)(x + 1)n−j . (136)

Exercise 1. Prove (136) combinatorially using an argument similar to the one above proving
(120).

By combining (2), (135) and (136) we obtain

Corollary 8.

Nk(v) =
1

∏

i vi!
Hn−k,n(Fv). (137)
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