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Computation

Math 260A - Mathematical Logic

September 23, 1988

This course will deal with the notions of truth, proof, and computation.
It will combine ideas from the philosophy of mathematics, mathematics
itself, and computer science.

“Effective computation” is a philosophical notion. The following are
characteristics of effective computation:

• there is an effective process for finding an answer,

• it proceeds in a deterministic fashion; i.e.,

– no luck or randomness

– no appeal to deities

– no intuition

• a finite amount of information fully describes procedure;

• however time and space considerations may make it impractical.

Feasible computation is “practical” effective computation. As an example,
factoring an integer is effectively computable; whether or not it is feasible is
an open question.

A function mapping N → N might be effectively computable without
having any proof that it is effectively computable. For example, let h : N →
N be a function which is not effectively computable, and let

f(x) =

{

0 if Riemann’s hypothesis is true
h(x) otherwise

Then f might be effectively computable, but we can’t prove it (yet). On the
other hand,
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g(x) =

{

0 if Riemann’s hypothesis is true
1 otherwise

is effectively computable because it is a constant function (but we don’t
know which constant it is, yet). Finally, consider the decimal expansion of
π. There is an effective procedure for writing out the decimal expansion
of π, but it never halts. If instead we let f(n) = nth digit of φ, then f

is effectively computable. These two notions are different but essentially
equivalent since we could use either one to accomplish the other.

Definition: A function f : N → N is effectively computable iff there is an
effective procedure which for every n ∈ N will produce (i.e., eventually halt)
the value f(n).

Definition: A relation is a subset of Nk. The characteristic function of a
relation R is

χR(~n) =

{

1 if ~n ∈ R

0 otherwise

A relation is decidable or solvable iff its characteristic function is effec-
tively computable.

Turing Machines

Introduced in 1936 by Alan Turing, Turing machines (TM) are charac-
terized by

• a finite state control,

• an infinite tape with cells that can hold one symbol from a finite
alphabet, and

• a read/write head which can read and write symbols and can move
left or right one cell at a time.

Pictorially, we have
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· · · a b c a b c · · ·

FSC

6

Formally, a TM consists of

• a finite set Σ of cardinality ≥ 2 called the alphabet,

• a finite set Q of states with Q ∩ Σ = ∅,

• the symbols L and R with L, R 6∈ Q ∪ Σ, and

• a partial function f : Q × Σ → (Σ ∪ {L, R}) × Q.

So f(qi, aj) = (a new symbol in Σ or L or R, a new state). By convention,
Σ contains the blank symbol, ♭. Also, by convention, when a TM starts, all
but a finite number of cells on the tape contain ♭’s.

An instantaneous description (ID) of a TM computation is

• an infinite 2-way tape with a symbol in each square,

• a current state, qi, and

• a current tape head position with the square under the tape head
containing the symbol ai.

At the next instant of time, the next ID is an action and a new state, defined
by f(qi, aj) according to the following rules.

• If action ∈ Σ, then aj is changed to this symbol, and the tape head
remains at the same position.

• If action is L or R, then aj is unchanged and the tape head moves left
or right one square.

• The next state is the new state.

• If f(qi, aj) is undefined, then the TM is in a halting configuration.
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In comparing a TM with a modern day computer, we find that modern
day computers have more powerful instructions, they have random access
memory, and they can access more than one memory location per instruc-
tion. But TM’s have an infinite amount of memory.
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As a simple example of a TM, consider a TM which operates on a string
of 1’s. The alphabet, σ = {♭, 1}. We want the TM to halt over the rightmost
1 in the string. If the TM starts on a ♭, then it halts without doing anything.
The transition function can be defined as follows:

q01 : Rq0

q0♭ : Lq1

with f(q1, ♭) = f(q1, 1) = undefined. To handle the last condition, we need

q
−11 : Rq0

and f(q
−1, ♭) = undefined. So Q = {q

−1, q0, q1} with q
−1 the initial state.

Another method for defining a TM can be found in an example in Boolos
& Jeffrey on page 24; there, they use a transition diagram for defining a
doubling function.

Definition: The numbers (in unary) x1, . . . , xn > 0 are input in standard

notation if the TM starts with x1 1’s, ♭, x2 1’s, ♭, . . ., ♭, xn 1’s, and otherwise
all ♭’s, and with the tape head at the leftmost 1.

So, for example, the string . . . ♭111♭11♭ . . . codes the pair (3, 2).

Definition: A function f : (N+)k → N+ (N+ = {1, 2, . . .}) is turing

computable iff there is a TM M such that for all x1, . . . , xn ∈ N+ if M is
started with x1, . . . , xn in standard notation, then M eventually halts with
f(x1, . . . , xn) output in standard notation.

Example: n 7→ 2n is turing computable by the example on page 24 of
Boolos & Jeffrey.
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Example: The TM which just halts computes the identity n 7→ n. On two
or more inputs, its output is not in standard notation.

Definition: A relation R ⊆ (N+)k is turing computable or turing decidable

iff

χR(~x) =

{

1 if ~x ∈ R

0 otherwise

is turing computable.

Church’s Thesis: Turing computable ≡ effectively computable. That tur-
ing computable ⇒ effectively computable seems clear, but the converse is
not so obvious. But so far, every notion of effectively computable has turned
out to be turing computable. Remember, feasible computation is a much
stronger notion then effectively computable.

Example: of a more complicated TM. Find a TM which starts on the left-
most symbol of a string of 0’s and 1’s, and “palindromizes” it by appending
a reversed copy of it to itself. We’ll use a larger alphabet, Σ = {♭, 0, 1, 0

′

, 1
′

}
to keep track of where we are in the copying. To get started, we’ll first
design an algorithm:

1. Scan right to the first ♭.

2. Go left to the first unprimed symbol. If none, go to step 7.

3. Prime the symbol and remember it.

4. Go right to the first ♭.

5. Put the primed symbol there.

6. Go to step 2.

7. Unprime everything, go to the leftmost 0 or 1, and halt.

On input 01011, each loop of this algoritm would append one symbol:

01011

01011
′

1
′

0101
′

1
′

1
′

1
′
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...

0
′

1
′

0
′

1
′

1
′

1
′

1
′

0
′

1
′

0
′

0101111010

With the algorithm, we can then design the TM:
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Last time we saw an example of a TM that used the extra symbols 0
′

and 1
′

. We didn’t have to use extra symbols. The next theorem shows that
turing machines, as models of computation, are insensitive to the number
of alphabet symbols (as long as there are at least two symbols). Turing
machines are also insensitive to other details of the definition. Some other
variants are

• more than one tape,

• more than one tape head,

• a tape with more than one dimension, and

• a random access tape.

Theorem: Suppose that f is turing computable. Then f is computed by
some TM which has Σ = {♭, 1}.

Proof: The idea is to code the symbols of the larger alphabet with a set of
♭’s and 1’s. Suppose that f is computed by M0 with Σ0 of size s and states
q1, . . . , qt. Then we want to build a TM M which also computes f and has
Σ = {♭, 1}. A symbol from Σ0 will be coded by ⌈log2 s⌉ ♭’s and 1’s - a fixed
length binary code.

For example, suppose that Σ0 = {♭, a, c, d}. Then s = 4, and
log2 s = 2. So the codes are:

♭ - ♭♭

a - ♭1
c - 1♭

d - 11
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If M0’s tape is

· · · ♭ a c d ♭ · · ·

6

then M ’s tape is

· · · ♭ ♭ ♭ 1 1 ♭ 1 1 ♭ ♭ · · ·

6

M has t states, q
′

1, . . . , q
′

t, corresponding to q1, . . . , qt. Whenever M is in
state q

′

j , M ’s tape head is at the leftmost bit of a code. In state q
′

j , M

moves right k − 1 (let k = ⌈log2 s⌉) squares remembering the contents of
them. It ends up in one of s states unique to qj . This gives us

t states q
′

1, . . . , q
′

t,
2t states after moving one square,
4t states after moving two squares,
...

st states after moving k − 1 squares,

for a total of (2k + s − 1)t states so far.

For example, if in M0 we had

i¡
¡

¡µ

©
©

©*

H
H

Hj@
@

@R

♭

a

b

♭

then in M we would have
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i -♭ : R
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′
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6

Each of the st states corresponds to M0 reading a symbol from Σ0 in a state
qj . M0 would now do either

1. move left or right, or

2. overwrite the current symbol,

and possibly change state. So M has to either

1. move left 2k − 1 squares or move right one square, or

2. move left k − 1 squares overwriting the code as it goes,

and possibly change to a new state. This gives

((2k − 1) + 1 + s(k − 1))t = (2k + s(k − 1))t

more states. Without loss of generality, assume that ♭ ∈ Σ0 is coded by k

♭’s and that 1 ∈ Σ0 is coded by k 1’s. Then M does the following.
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• Stretch its input by changing ♭’s and 1’s to k ♭’s and k 1’s.1

• Simulate M0 as above until a halting configuratoin is reached.

• “Smash” the output back down. 2

Many functions are Turing computable. f(a, b) = a + b for a, b > 0 is
effectively computable; hence, by Church’s thesis, it is Turing computable.
So is g(n) = 2n. And so is h(n) = 2 ⇑ n, where

x ⇑ y = xxx
···

x

︸ ︷︷ ︸

y x′s

.

(Although h is very infeasible.) So a question to ask is “is there an integer
function which is not Turing computable?” The answer is yes, and now we’ll
find one.2

Definition: A TM M has productivity n if, when started in its initial state
with a completely blank tape, it eventually halts with n output in standard
notation. Otherwise, M ’s productivity is 0.

Definition: The function BB : N+ → N+ is defined by BB(n) = the
maximum productivity of any n state TM with alphabet {♭, 1}. (BB stands
for busy beaver.)

Claim: There are only finitely many such TM’s for any fixed n. So BB(n)
= the maximum of a finite set.3 And so BB(n) is well defined.

Claim: BB is not Turing computable, and hence, by Church’s thesis, not
effectively computable. (We’ll prove this next time.)

The problem with BB is that it grows too fast to be computable. As a
lower bound on BB(n), recall that we have a 12 state TM which computes
n 7→ 2n. Now, if we concatenate k copies of this machine;

1It shouldn’t try to double the ♭’s on either end of the input; otherwise, it would loop
forever. Remember, Turing computable means that the input consists of strings of 1’s
separated by ♭’s (standard input).

2Note: without Church’s thesis, it is probably impossible to give a concrete example
of a function which is provably not effectively computable.

3This is the reason for limiting TM’s to finite alphabets; i.e., so we don’t have to find
the maximum of an infinite set.
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i in 7→ 2n
machine

in 7→ 2n
machine

· · · i in 7→ 2n
machine

This machine has 11k + 1 states, and outputs 2k 1’s in standard notation.
So

BB(11k + 1) ≥ 2k, or

BB(n) ≥ 2⌊
n−1

11
⌋

≥ 2
n

11
−1.
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Last time, we introduced the busy beaver function BB(n) = the largest
number (in standard notation) output by some n-state TM started on a
blank tape with alphabet {♭, 1}. We then constructed a TM with 11k + 1
states that output 2k. This gave us the lower bound BB(11k + 1) ≥ 2k.

And so, BB(n) ≥ 2⌊
n−1

11
⌋ ≥ 2

n

11
−1 for all n.

Fact: BB(n + 1) ≥ BB(n) for all n. This is obvious since an n-state TM
which outputs BB(n) can have an unreachable state added to it.

Theorem: BB(1) ≥ 1.

Proof:

i

¤ ¡
?

♭ : 1

2

Theorem: For all n, BB(n + 1) > BB(n).

Proof: Suppose that M is an n-state TM machine with productivity BB(n).
Then modify M to get M∗ with n + 1 states of productivity BB(n) + 1 as
follows:
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So, for every halting state of M , we add transitions which move left one
square and write a 1. So when M halts in the configuration

· · · ♭ 1 1 · · · 1 ♭ · · ·

6

with BB(n) 1’s, M∗ moves the tape head one square to the left, writes a 1,
and halts. 2

Theorem: BB is not Turing computable.

Proof: For the sake of contradiction, suppose that M is a TM which com-
putes BB. By an earlier theorem, we may assume that M has alphabet
Σ = {♭, 1}. Let M have k states.

Claim 1: BB(BB(n)) is computed by a TM, M2, with 2k states.

Proof:

i

i
...
i

M

PPPPq
1 : 1

³³³³1

1 : 1

i

i
...
i

M

2

Claim 2: There is a TM, M3, with 2k+n states and productivity
BB(BB(n)).
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Proof:

i

¤ ¡
?

♭ : 1

-1 : L i

¤ ¡
?

♭ : 1

-1 : L · · · i

¤ ¡
?

♭ : 1

-1 : L
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n states

i M2

2

By claim 2, BB(2k + n) ≥ BB(BB(n)) for all n. Since BB is increasing,
we have 2k + n ≥ BB(n) for all n. Earlier we showed that BB(n) ≥ 2

n

11
−1

for all n. But 2k + n < 2
n

11
−1 for large enough n. 2

This theorem, combined with Church’s thesis, shows that BB is not
effectively computable.

The Halting Problem

As an example of a TM that does not halt, consider Fermat’s last theorem
(FLT): ∀a, b, c, n > 2, an + bn 6= cn. Now consider the following effective
procedure.

• List out (enumerate) all values a, b, c, n > 2.1

• For each set of values, check if an + bn = cn.

• If so, then halt; otherwise continue.

Let M be a TM that does this procedure. (M exists by Church’s thesis.)
Then M halts on input a blank tape iff FLT is false.

In order to prove the uncomputability of the halting problem, we will
represent a TM (with Σ = {♭, 1}) by a string of symbols written on a tape.
We’ll use the symbols ♭, 1, L, R, Q, and ‘,’ to “code” a TM.

For example, the TM

1To enumerate all 4-tuples (a, b, c, n > 2), use

for i = 8, 9, 10, . . .

list all (a, b, c, n) with a + b + c + n = i
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µ´

¶³

1

¨ ¥

?

1 : L

-♭ : 1
µ´

¶³

2

¨ ¥

?

1 : L

-♭ : 1
µ´

¶³

3

which computes n 7→ n + 2, will be coded by the string

q1, 1, Lq1
︸ ︷︷ ︸

f(q1,1)=(L,q1)

, q1, ♭, 1, q11
︸ ︷︷ ︸

f(q1,♭)=(1,q2)

, q11, 1, L, q11
︸ ︷︷ ︸

f(q2,1)=(L,q2)

, q11, ♭, 1, q111
︸ ︷︷ ︸

f(q2,♭)=(1,q3)

which gives the values of the transition function. (Note that the string
implicitly states that f(q3, 1) = f(q3, ♭) = undefined.)

Fact: Every TM has such a code.

Fact: There is an effective procedure for determining whether or not a string
of symbols codes a TM.

A string in {♭, 1, q, L, R, ‘,’} can be interpreted as a base 6 integer. Let

H(n) =











2 if n (in base 6) codes a TM
which halts on input a blank tape

1 otherwise

Claim: H(n) is not Turing computable.
I.e., there is no effective procedure which, given a code for a TM, can deter-
mine if that TM halts on input a blank tape.
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As we change from Turing computable functions to recursive functions,
we’ll change our convention regarding the domain of functions. Now we will
consider functions over the non-negative integers (N = {0, 1, . . .}) instead
of over the positive integers. The reason for doing this is historical.

Partial Functions

A k-ary partial function f is one whose domain is a subset of Nk and
whose co-domain1 is N ; i.e. f(a1, . . . , ak) may be undefined. Notationally,
f(a1, . . . , ak) ↑ means that f is undefined (diverges), and f(a1, . . . , ak) ↓
means that it is defined (converges).

Every TM, M , computes a partial function, since f(a1, . . . , ak) ↑ if M ,
on inputs a1 +1, . . . , ak +1, either never halts or halts in some non-standard
configuration, and f(a1, . . . , ak) ↓ and equals the output -1 of M on inputs
a1, . . . , ak otherwise.

Definition: A partial function is total if it converges for all arguments.

Later, we’ll show that if f is a k-ary recursive (to be defined) function
and g(a1, . . . , ak) = 1 + f(a1 − 1, . . . , ak − 1), then g is Turing computable
and conversely.

Composition

Let g be a k-ary partial function and let h1, . . . , hk be k m-ary partial
functions. Then f is defined by composition from g and h1, . . . , hk if and
only if

• f is an m-ary partial function,
1If f is a function, then the image of f is the set of values of f , and the co-domain is

the set in which f takes values. For example, consider the function Z(x) = 0. Its range is
0, while its co-domain is N .
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• f(a1, . . . , am) = g(h1(a1, . . . , am), . . . , hk(a1, . . . , am)) if all values are
defined,

• f(a1, . . . , am) ↑ if (∃i ≤ k)[hi(a1, . . . , am) ↑], and

• f(a1, . . . , am) ↑ if (∀i ≤ k)[hi(a1, . . . , am) ↓], but g(h1(a1, . . . , ak), . . .,
hk(a1, . . . , ak)) ↑.

This definition is like “call-by-value” because the arguments to g are
computed before g is. For example (k = m = 1), suppose that g(a) = 1 for
all a and that h(a) ↑ for all a. If f is defined by composition from g and h

as f(a) = g(h(a)), then for all a, f(a) ↑ (and not f(a) = 1).

Minimization

Suppose g is a total (k + 1)-ary partial function. Then f is defined by
minimization from g if and only if

• f is a k-ary partial function, and

• for all a1, . . . , ak, f(a1, . . . , ak) = least b such that g(a1, . . . , ak, b) = 0
or f(a1, . . . , ak) ↑ if there is no such b.

Notationally, if f is defined by minimization from g, then f(a1, . . . , ak) =
µb[g(a1, . . . , ak, b) = 0].

Definition: g is regular if for all a1, . . . , ak, µb[g(a1, . . . , ak, b) = 0] ↓.

In this case, f is defined by regular minimization from g and will be a
total partial function.

Partial Recursive Functions

The partial recursive functions (or recursive partial functions) are defined
inductively as follows (they are all partial functions):

• The following base functions are all partial recursive:

– S(x) = x + 1

– Im
k (x1, . . . , xm) = xk

– (x1, x2) 7→ x1 + x2

– (x1, x2) 7→ x1 · x2
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– (x1, x2) 7→ x1−̇x2, where

x1−̇x2 =

{

x − y if x > y

0 if x ≤ y

• If g, h1, . . . , hk are partial recursive and f is defined from them by
composition, then f is partial recursive.

• If g is partial recursive and f is defined from g by minimization, then
f is partial recursive.

• The only functions that are partial recursive are those that are forced
to be by the preceding conditions.

Theorem: Let Cj(a) = j be a constant function. Then Cj is partial recursive
(and recursive).

Proof: C0(a) = a−̇a = I1
1 (a)−̇I1

1 (a). (Defined by composition from −̇ and
I1
1 .)

C1(a) = S(C0(a)),

C2(a) = S(C1(a)),

...

Cj(a) = S(Cj−1(a)). 2

Definition: The class of recursive functions is the smallest class of functions
containing S, In

k , +, ·, and −̇, and closed under composition and regular min-
imization.

Note that every recursive function is a total partial recursive function.
Later, we’ll show that the total partial recursive functions are the recursive
functions.

Examples

The following functions are all recursive:

1−̇x = C1(x)−̇x

3



⌊
√

x⌋ = max(y : y2 ≤ x)

= min(y : (y + 1)2 > x)

= µy[(y + 1)2−̇x > 0]

= µy[1−̇((y + 1)2−̇x) = 0]

|x − y| = (x−̇y) + (y−̇x)

⌊x/y⌋ =

{

0 if y = 0
⌊x/y⌋ otherwise

= µb[(b + 1)y > x ∨ y = 0]

= µb[(b + 1)y−̇x > 0 ∨ y = 0]

= µb[1−̇((b + 1)y−̇x) = 0 ∨ y = 0]

= µb[(1−̇((b + 1)y−̇x)) · y = 0]

x mod y = x−̇⌊x/y⌋
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Definition: A k-ary relation (i.e. a subset of Nk) is recursive if and only if
its characteristic function is.

Notationally, the characteristic function for relation R is

χR(~x) =

{

1 if ~x ∈ R (or R(~x))
0 if ~x 6∈ R (or ¬R(~x))

For example, x = y is a 2-ary relation with characteristic function χ=(x, y) =
1−̇|x − y|, so = is recursive.

Theorem: If R and S are k-ary recursive relations, then R ∪ S, R ∩ S, and
Nk \ R are recursive.

Proof:

χNk
\R(~x) = 1−̇χR(~x),

χR∩S(~x) = χR(~x) · χS(~x),

χR∪S(~x) = Nk \ ((Nk \ R) ∩ (Nk \ S)). 2

Theorem: If S is a k-ary recursive relation and f1, . . . , fk are m-ary recursive
functions, then R, defined by R(~x) ⇔ S(f1(~x), . . . , fk(~x)) is a recursive m-
ary relation.

Proof: χR(~x) = χS(f1(~x), . . . , fk(~x)). 2

Theorem (definition by cases): If g1, . . . , gk are recursive m-ary functions,
R1, . . . , Rk are recursive m-ary relations, and for all x1, . . . , xm exactly one
of Ri(x1, . . . , xm) is true, then the following function is recursive:
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f(x1, . . . , xm) =











g1(~x) if R1(~x)
...

gk(~x) if Rk(~x).

Proof: f(x1, . . . , xk) = g1(~x) · χR1
(~x) + . . . + gk(~x) · χR

k
(~x). 2

Theorem (definition by bounded quantification): Let R be a recursive k +1-
ary relation, and let g be a recursive k-ary function. Then S(x1, . . . , xk) and
T (x1, . . . , xk), as defined next, are both k-ary recursive relations.

S(x1, . . . , xk) ⇔ (∃xk+1 < g(x1, . . . , xk))[R(x1, . . . , xk, xk+1)]

T (x1, . . . , xk) ⇔ (∀xk+1 < g(x1, . . . , xk))[R(x1, . . . , xk, xk+1)]

Proof: Consider the following function:

f(x1, . . . , xk) = µb[R(x1, . . . , xk, b) ∨ b = g(x1, . . . , xk)].

f is recursive since R, g, and = are recursive and since recursive relations
are closed under union.

Lemma: If U is a recursive relation, then h(x) = µb[U(~x, b)] is
partial recursive. Furthermore, if for all x there is a b such that
U(~x, b), then h is recursive.

Proof: Let h(~x) = µb[1−̇χU (~x, b) = 0]. This is just the original
definition of minimization. 2

By the lemma, f is recursive. So,

S(x1, . . . , xk) ⇔ f(x1, . . . , xk) < g(x1, . . . , xk),

and

χS(x1, . . . , xk) =

{

1 if f(~x) < g(~x)
0 if f(~x) ≥ g(~x) (in this case, f(~x) = g(~x)).

So χS and S are recursive. We can proceed the same way for T or we can
observe that
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T (x1, . . . , xk) ⇔ ¬(∃xk+1 < g(x1, . . . , xk))[¬R(x1, . . . , xk), xk+1)]. 2

Applications

Theorem: The following sets are recursive:

1. {(x, y) : x|y}

Proof: x|y ⇔ (∃z < y + 1)[xz = y]. 2

2. Prx = {x : x is prime}

Proof: Prx ⇔ (∀z < x)[(z = 1 ∨ z |/ x) ∧ x 6= 0]. 2

(Note that (∀z < 0)[R(z)] is trivially true no matter what R is.)

3. PP (x, y) = {(x, y) : Prx ∧ y is a power of x}

Proof:

PP (x, y) ⇔ Prx ∧ (∀z < y + 1)[(z|y ∧ Pr z) → z = x]

⇔ Prx ∧ (∀z < y + 1)[z |/ y ∨ ¬Pr z ∨ z = x]

or

PP (x, y) ⇔ Prx ∧ (∀z < y + 1)[z|y → x|z ∨ z = 1]

⇔ Prx ∧ (∀z < y + 1)[z |/ y ∨ x|z ∨ z = 1]

4. {(x, y) : y is a power of x}

Proof: HARD! We’ll do it later when we have more tools.

Primitive Recursion

The exponentiation relation above is hard to define in terms of the meth-
ods we currently have for generating recursive functions. But xy has the
following simple “recursive” definition:
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x0 = 1,

xy+1 = x · xy.

This form of definition is called definition by primitive recursion.

Definition: If g is a k-ary function and h is a k + 2-ary function, then f is
defined by primitive recursion from g and h if f is a k + 1-ary function and

f(x1, . . . , xk, 0) = g(x1, . . . , xk)

f(x1, . . . , xk, m + 1) = h(x1, . . . , xk, m, f(x1, . . . , xk, m))

In this definition, we allow for the possibility of k = 0 so that g can be a
constant. For example, x! is defined by setting g to the constant function 1
and h to the product function, since 0! = 1 and (x+1)! = (x+1) ·x!. Later,
we’ll see that functions defined by primitive recursion are recursive, so that
exponentiation is recursive.
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Review of Quantification

∀x means “for all” x

∃x means “there exists” x

(∀x ≤ y)[. . .] means (∀x)[if x ≤ y then . . .]

or (∀x)[x ≤ y → . . .]

or (∀x ∈ N)[x ≤ y → . . .]

or (∀x)[x ∈ N ∧ x ≤ y → . . .]

(note also that “if x ≤ y then . . .”

is equivalent to “¬(x ≤ y) ∨ . . .”)

(∃x ≤ y)[. . .] means (∃x)[x ∈ N ∧ x ≤ y ∧ . . .]

¬(∃x ≤ y)[x = 1] ≡ (∀x ≤ y)[x 6= 1]

≡ ¬(∃x)[x ≤ y ∧ x = 1]

≡ (∀x)[¬(x ≤ y ∧ x = 1)]

≡ (∀x)[¬(x ≤ y) ∨ x 6= 1)]

≡ (∀x)[(x ≤ y) → x 6= 1)]

≡ (∀x ≤ y)[x 6= 1)]

Primitive Recursive Functions

Definition: The primitive recursive functions are the smallest class of
functions on N which contain

1



Z(x) = 0

S(x) = x + 1

idm
k (x1, . . . , xm) = xk, ∀m ≥ k ≥ 0

and are closed under primitive recursion and composition.

Primitive recursion seems more natural than minimization, but it turns
out that primitive recursion is much less powerful.

Theorem: If g and h are k- and k + 2-ary recursive functions (not primitive
recursive) and if f is defined from g and h by primitive recursion, then f is
also recursive.

The proof of this is more longwinded than any we’ve done so far and will
require some preliminary theorems.

Corollary: Every primitive recursive function is recursive. (Since the base
functions are recursive.)

So, x!, xy, etc. are recursive.

Definition: The BJ-recursive functions (Boolos & Jeffrey) are the smallest
class of functions containing Z, S, and idm

k and closed under composition,
primitive recursion, and minimization.

Corollary: recursive = BJ-recursive.

Definition: A relation (a subset of Nk) is primitive recursive if and only if
its characteristic function is.

Theorem: If g is a k-ary primitive recursive function and R is a k + 1-ary
primitive recursive relation, then (∃ak+1 ≤ g(a1, . . . , ak))[R(a1, . . . , ak+1)] is
a primitive recursive relation. Similarly for ∀.

Examples

Addition is primitive recursive since

x + 0 = x,

x + (y + 1) = S(x + y).

Multiplication is primitive recursive since
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x · 0 = 0,

x · (y + 1) = x · y + x.

Exponentiation is primitive recursive since

x0 = 1

xy+1 = x · xy.

Super-exponentiation is primitive recursive since

x ⇑ 0 = 1

x ⇑ (y + 1) = xx⇑y.

Last time, we saw that it was hard to show that exponentiation is recur-
sive. So let’s start with a simpler version.

Definition:

p ↑ y =

{

py if Pr p ∧ y ≤ p

0 otherwise

Theorem: p ↑ y is recursive.

Lemma: pn
−1

p−1
≡ n (mod p − 1).

Proof:

pn − 1

p − 1
= pn−1 + pn−2 + · · · + p2 + p + 1

p ≡ 1 (mod p − 1)

pj ≡ 1 (mod p − 1)

pn − 1

p − 1
≡ n (mod p − 1) 2

Proof: Let

f(x, y) =

{

xy if Prx ∧ y < x − 1
0 otherwise

3



Then

f(x, y) = µb[(
b − 1

x − 1
≡ y (mod x − 1) ∧ b is a power of x) ∨

(¬Prx ∨ y ≥ x − 1)]

which is recursive. (Note that rem(
⌊ b−1

x−1
⌋

x−1
) = y.) So

x ↑ y =



















f(x, y) if y < x − 1
x · f(x, x − 2) if y = x − 1
x2 · f(x, x − 2) if y = x

0 if y > x. 2

Let pa be the (a + 1)st prime; e.g.

p0 = 2

p1 = 3

p2 = 5

p3 = 7
...

Theorem: f(x) = px is recursive.

Proof: Let NP (x) = the “next prime” after x; i.e.

NP (x) = µp[Pr p ∧ p > x].

Define g as follows:

g(0) = 20 = 1

g(1) = 20 · 31 = 3

g(2) = 20 · 31 · 52 = 75

g(3) = 20 · 31 · 52 · 73 = 25725

...

g(a + 1) = g(a) · (pa+1)
a+1

4



g is recursive since

g(x) = µb[2 |/ b ∧ (∀primes p < b + 2)[

(p|b ∨ p = 2) → (∃i < p)[

(p ↑ i)|b ∧ p ↑ (i + 1) |/ b

∧(i < x → ((NP (p) ↑ (i + 1))|b ∧ (NP (p) ↑ (i + 2)) |/ b))]]].

So,

f(x) = px = µp[(Pr p ∧ p|g(x) ∧ NP (p) |/ g(x)) ∨

(x = 0 ∧ p = 2)]. 2

Note that in the definition of g, “(p ↑ i)|b ∧ p ↑ (i + 1) |/ b” means that p

is in the prime factorization of b and that “NP (p) ↑ (i + 2) |/ ” means that
NP (p) ↑ (i + 1) is in the prime factorization of b.

5
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We want to see how primitive recursion can be used to define recursive
functions. To do this, we have to introduce a new topic.

Sequence Coding

Sequence coding uses a single integer to code a finite sequence of integers.
An integer of the following form

w = (p0)
a0+1 · (p1)

a1+1 · . . . · (pn)an+1

will code a sequence a0, a1, . . . , an. Note that every sequence has a unique
such code. But, not every integer codes a sequence; e.g. the odd integers.
The empty sequence is coded by 1. The ‘+1’s are included in the exponents
of the coding so that we can distinguish between sequences with a different
number of zeroes on the right and otherwise the same.

The relation Seq(x) ⇔ “x codes a sequence” is recursive since

Seq(x) ⇔ (∀primes p, q ≤ x)[(q < p ∧ p|x) → q|x].

The function lh(x) = the number of elements in the sequence coded by
x if x codes a sequence or 0 if x doesn’t code a sequence is recursive since

lh(x) = µb[pb |/ x ∨ ¬Seq(x)].

Now we want to define β(n, x) = nth element in the sequence coded by x,
where n = 0 represents the first element; i.e. β(n, (p0)

a0+1 · . . . · (pn)an+1) =
an. Because this is a little hard to do right now, we’ll instead use a restricted
function β−(n, x) = min(β(n, x), pn−1). β− is recursive since

β−(n, x) = µi[i = pn−1 ∨ (pn ↑ (i − 2)) 6 |x].

1



This definition of β− allows us to handle sequences a0 . . . an as long as
ai < pi for all i.

Notation: 〈a0 . . . an〉 will be defined to be the integer coding the sequence
a0 . . . an; i.e.

〈a0 . . . an〉 = 2a0+1 · 3a1+1 · . . . · (pn)an+1.

This is the Gödel number of the sequence.

Now we are ready to prove the unproven theorem from last lecture.

Theorem (restated from last lecture): If g and h are recursive and f is defined
from them by primitive recursion, then f is recursive.

Proof: The idea is to define the sequence

f̄(~x, m) = 〈f(~x, 0), f(~x, 1), . . . , f(~x, m)〉,

and ensure that

f(~x, 0) = g(~x), and

f(~x, i + 1) = h(~x, i, f(~x, i)).

First, we’ll find the Gödel number of a sequence of the form

〈0, 0, . . . , 0, f(~x, 0), . . . , f(~x, m)〉

(which = β(i, x)); i.e.

F (~x, m) = µb[Seq(b) ∧ (∃i < b)[β−(i, b) = g(~x) ∧ lh(b) = i + m + 1 ∧

(∀j < m)[β−(i + j + 1, b) = h(~x, j, β−(i + j, b)]]].

F is recursive since it is defined by regular minimization. So

f(~x, m) = β−(lh(F (~x, m))−̇1, F (~x, m)). 2

Corollaries:

• Exponentiation is recursive.

2



• By using pn instead of p ↑ n, we can define the unrestricted β(n, x)
recursively.

• 〈a0, . . . , an〉∗〈b0, . . . , bm〉 = 〈a0, . . . , an, b0, . . . , bm〉 is recursive. (x∗y =
0 if either x or y does not code a sequence.

Fact: Every function and predicate that we have proved to be recursive is
actually primitive recursive.
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Theorem: If f is a partial recursive function, then there is a Turing machine,
M , such that for all n ≥ 0,

1. if f(n) ↓, then M on input n+1 in standard notation halts and outputs
f(n) + 1 in standard notation, and

2. if f(n) ↑, then M on input n + 1 in standard notation never halts.

Proof (by induction on the complexity of the partial recursive definition of
f): We will actually prove a stronger result; i.e. that there is such an M

which never moves to the left of the starting position, and that there is such
an M for k-ary functions, k ≥ 1.

Basis: Easy but somewhat tedious for S, +, ·, −̇, idm
k .

Induction:

1. If it holds for g, h1, . . . , hk, then it holds for f(~x) = g(h1(~x), . . . , hk(~x)).
Assume that the machines for g, h1, . . . , hk are Mg, Mh1

, . . . , Mh
k
. M

will incorporate all of these internally. First, M copies ~x to the right
of its input and runs Mh1

on the copy. This leaves the tape in the
following configuration:

~x ♭ h1(~x)

6

Now M copies ~x to the right of h1(~x) and runs Mh2
on that copy. M

continues in this way until hk(~x) has been computed, and the tape
looks like:

1



~x ♭ h1(~x) ♭ · · · ♭ hk(~x)

6

At this point, M moves the tape head back to leftmost square of h1(~x)
and runs Mg to yield the following configuration:

~x ♭ g(h1(~x), . . . , hk(~x))

6

Finally, M shifts g(h1(~x), . . . , hk(~x)) back to the starting square, erases
the rest of the tape, and halts with the head at the leftmost square
of the output. The preceding construction works fine if all the inter-
mediate functions converge. If any of them diverge, then f ↑, and M

doesn’t halt.

2. If it holds for g, then it holds for f(~x) = µy[g(~x, y) = 0]. M first writes
a 1 to the right of its input. This will be a counter which represents
the current value of y that we are using for computing g. M now
copies ~x and the counter to the right and runs Mg. (Note that by the
definition of minimization, g is total.) This leaves the output tape in
the following configuration:

~x ♭ 1 ♭ g(~x, 0)

6

Suppose that g(~x, 0) > 0. Then M erases g(~x, 0), goes back to the
counter, increments it to 2 (remember, a string of i 1’s represents
the number i− 1), and repeats the above step; i.e. it copies ~x and the
counter to the right and runs Mg. Now, suppose that after k iterations
of this process, M finds that g(~x, k − 1) = 0. The tape will then look
like:

~x ♭ k 1’s ♭ 1

6

Now, M shifts the counter back to the starting position, erases the rest
of the tape, and returns the head to the starting position. If there is

2



no y such that g(~x, y) = 0, then the above process will iterate forever;
which is what we want, since in that case, f ↑. 2

Note that µy[g(~x, y) = 0] is a valid definition of a partial recursive func-
tion only if g is total. But there is no general way of knowing whether or
not g is total, so we don’t have an effective way of building partial recursive
functions. We could have defined minimization as

f(~x) = µy[g(~x, y) = 0 ∧ (∀z < y)[g(~x, z) ↓]].

Then, even if g is not total, f is partial recursive.

Turing computable functions are Partial Recursive

In order to show this, we need a Gödel numbering of Turing machine
computations. In this development, we’ll let 0 take the place of ♭ so that we
can think of tape squares as binary numerals. We’ll also restrict the Turing
machines to the alphabet {0, 1}.

Given a configuration of a Turing Machine, e.g.

· · ·0 0 1 0 1 0 1 1 0 0· · ·

6
q7

we will code it as the triple of integers 〈i, ℓ, r〉 where i is the state number
(e.g. 7), ℓ is the tape contents to the left of the tape head interpreted as a
binary integer (e.g. 2), and r is the tape contents under and to the right of
the tape head interpreted as a binary number in reverse (e.g. 13). The code
for the above configuration is

〈7, 2, 13〉 = 28 · 33 · 514.

The code tells us everything about the current configuration, but says
nothing about how we got there. A computation, or series of configurations,
is coded by the Gödel number of a sequence:

〈〈i0, ℓ0, r0〉, 〈i1, ℓ0, r0〉, . . . , 〈in, ℓn, rn〉〉.

This codes a computation of n steps.
Another function that we’ll need is NEXTM which, given a tape con-

figuration, finds the next configuration that M would go to; i.e.
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NEXTM (〈i, ℓ, r〉) =











〈i
′

, ℓ
′

, r
′

〉 (the configuration of M

one step after 〈i, ℓ, r〉
0 if M halts at 〈i, ℓ, r〉

NEXTM is defined in terms of the functions NEXTQM which gives the
next state, NEXTLM which gives the next left half of the tape, and NEXTRM

which gives the next right half of the tape. These functions are defined as
follows:

NEXTQM (i, r mod 2) = definition by cases according to M

NEXTLM (i, r mod 2, ℓ) =











ℓ if tape head doesn’t move
ℓ/2 if tape head moves left
2ℓ + (r mod 2) if tape head moves right

NEXTRM (i, r mod 2, ℓ mod 2, r) =



























r if tape head doesn’t move
2r + (ℓ mod 2) if tape head moves left
r/2 if tape head moves right
2⌊r/2⌋ if tape head writes a 0
2⌊r/2⌋ + 1 if tape head writes a 1

Note that r mod 2 is the symbol under the tape head, and ℓ mod 2 is the
symbol to the left of the tape head.
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Last time, we defined the function

NEXTM (〈i, ℓ, r〉) =











〈i
′

, ℓ
′

, r
′

〉 (the configuration of M

one step after 〈i, ℓ, r〉)
0 if M halts at 〈i, ℓ, r〉

which determined the next configuration of a Turing machine from the cur-
rent configuration. Now we want to describe

〈〈i0, ℓ0, r0〉 . . . 〈in, ℓn, rn〉〉

which codes a computation of M . Let NEXTe(〈i, ℓ, r〉) = NEXTM (〈i, ℓ, r〉)
where e ∈ N is the eth Turing machine (in a sequence without gaps; i.e. ev-
ery e corresponds to some Turing machine). Then we want relation Te(x, w)
to represent the fact that w codes a halting computation of the eth Turing
machine when started on input x + 1. (Note that w is a sequence of tuples;
the first is the starting configuration, and the last is the halting configura-
tion.)

Te(x, w) ⇔ Seq(w) ∧

β(0, w) = 〈1, 0, 2x+2 − 1〉 ∧

(∀i < lh(w)−̇1)[β(i + 1, w) = NEXTe(β(i, w))] ∧

β(lh(w)−̇1, w) 6= 0 ∧

NEXTe(β(lh(w)−̇1, w)) = 0.

β(0, w) = 〈1, 0, 2x+2 − 1〉 represents the fact that the starting state is 1,
the tape to the left of the head is blank, and there are x + 1 1’s as input.
β(lh(w)−̇1, w) 6= 0 eliminates the cases where w is padded on the right with

1



0’s; this doesn’t matter since we’ll use a minimization operator to define the
Turing machine code for a partial recursive function, but it doesn’t hurt to
specify it exactly what we mean.

Fact:

T (e, x, w) ⇔ Te(x, w)

is also primitive recursive, but is a lot harder to define. T (e, x, w) is known
as the Kleene T predicate.

Now, in addition to the code for a computation, we might also want to
get the answer of a Turing machine computation:

Result(w) = log2[β(2, β(lh(w)−̇1, w)) + 1] − 1.

The inside β is the last tuple in w. The outside β is the right-hand side of
the output tape. For example, suppose a Turing machine writes out five 1’s
for outputting 4. Then

rn = 111112

rn + 1 = 1000002 = 25

log2(rn + 1) = 5.

(Note that it is not hard to show that log2 is primitive recursive.)

Theorem: Suppose that f is partial recursive. Then there is an integer e

(for the eth Turing machine) such that for all x,

f(x) = Result(µw[Te(x, w)]).

Proof: We have already shown that there is a Turing machine, M , such
that for all x, M on input x + 1 1’s either outputs f(x) + 1 1’s in standard
notation or never halts if f(x) ↑. Let M be the eth Turing machine. 2

Kleene Normal Form

Theorem: For every partial recursive function f , there are primitive recursive
functions g and h such that

f(~x) = g(µy[h(~x, y) = 0]).

2



Proof: Let h = 1−̇χTe
. 2

This theorem is important because it says that every partial recursive
function can be expressed in terms of a single use of minimization. (Note
that you can convert any partial recursive to its normal form by first building
a Turing machine to compute it.)

Theorem: Every total partial recursive function is recursive.

Proof: Let f be a total partial recursive function, and let g and h be as
above. g and h are total since they are primitive recursive. For all ~x, there
is a y such that h(~x, y) = 0; otherwise, f(~x) ↑. So µy[h(~x, y) = 0] is regular
minimization, and so f is recursive. 2

Theorem (definition by cases): If g and h are partial recursive functions and
R is a recursive relation, then

f(x) =

{

g(x) if R(x)
h(x) otherwise

is partial recursive.

Proof: Homework. (Hint: use Kleene normal form. You can also use induc-
tion on the complexity of partial recursive functions, but it’s not as clear.
Note that our earlier proof for the recursive counterpart of this theorem
doesn’t work here.)

Primitive Recursive 6= Recursive

We have already shown that primitive recursive functions are recursive.
(We simulated primitive recursion using Gödel numbers of sequences.) Now
we want to show that not every recursive function is primitive recursive.
Just as we found a function (the busy beaver function) which grew too fast
to be recursive, we’ll show that there is a function (Ackermann’s function)
which is recursive, yet grows too fast to be primitive recursive.

Definition:

fn(x) = f(f(· · · f
︸ ︷︷ ︸

n f ’ s

(x) · · ·)).

For example,

f0(x) = x

f1(x) = f(x)
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and in general,

f i+1(x) = f(f i(x)).

Now we’ll define a family of fast growing functions.

Definition:

F0(x) = x + 1

Fi+1(x) = F x+1

i (x)

Proposition:

F0(x) = x + 1,

F1(x) = F x+1

0
(x) = 2x + 1,

F2(x) = F x+1

1
(x) = 2x+1x + 2x + 2x−1 + . . . + 1

= 2x+1x + 2x+1 − 1 > 2x,

F3(x) = F x+1

2
(x) > 2 ⇑ x.

F4(x) grows faster, F5(x) grows even faster, etc.

Proposition: Each Fn is primitive recursive.

Proof: By induction on n.

Definition: A function g eventually dominates h if ∃n[(∀m > n)[g(m) >

h(m)]].

We will construct a function A(n) (Ackermann’s function) which even-
tually dominates every primitive recursive function. A(n) will be built by
diagonalization over the F ’s, and will be recursive.

4



Primitive Recursive ⊂ Recursive

Math 260A - Mathematical Logic

October 19, 1988

Last time, we defined a family of functions,

F0(x) = x + 1

Fi+1(x) = F x+1

i (x)

We want to use these functions to define the function A(n) which is recursive,
but not primitive recursive. To do this, we first have to prove a few lemmas.

Lemma:

1. ∀i,∀x, Fi(x) > x.

2. ∀i > 1,∀x > 0, Fi(x) > Fi−1(x).1

Proof: We’ll prove (1) by induction on i and (2) will just happen along the
way.

Basis: i = 0. (1) is obvious because F0(x) = x + 1 > x.

Induction: Suppose (1) is known for values smaller than i. Then

Fi(x) = F x+1

i−1
(x) by definition

> F x
i−1

(x) by induction

> F x−1

i−1
(x) by induction

...
...

> Fi−1(x) by induction
> x by induction x + 1 times 2

1Note that we have ∀i > 1. For i = 1 and x = 0, we have F1(0) = F0(0) = 1.
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Question: What is Fi(0)?

Answer: Fi(0) = Fi−1(0) = . . . = F0(0) = 1.

Lemma: Fi is strictly increasing; i.e. for all i, x, y ≥ 0, if x > y then
Fi(x) > Fi(y).

Proof: by induction on i.

Basis: i = 0. Obvious since if x > y then x + 1 > y + 1.

Induction: Suppose it is known for smaller values of i. Then

Fi(x) = F x+1

i−1
(x) by definition

> F x
i−1

(x) by (1) above

> F x−1

i−1
(x) by (1) above

...
...

> F
y+1

i−1
(x) by (1) above.

Now, Fi(y) = F
y+1

i−1
(y) by definition, so

Fi−1(x) > Fi−1(y) by induction
F 2

i−1
(x) > F 2

i−1
(y) by induction

...
...

F
y+1

i−1
(x) > F

y+1

i−1
(y) by induction 2

Definition: Let g be a unary function, and let h be a k−ary function.
g eventually dominates h if and only if there exists an n ≥ 0 such that
g(max{x1, . . . , xk}) > h(x1, . . . , xk) whenever max{x1, . . . , xk} > n. Equiv-
alently, g eventually dominates h if and only if g(max{x1, . . . , xk}) >

h(x1, . . . , xk) for all but finitely many x1, . . . , xk.

Lemma: If g is increasing, then g eventually dominates h if and only if
there exists an n ≥ 0 such that g(max{x1, . . . , xk, n}) > h(x1, . . . , xk) for
all x1, . . . , xk.

Theorem: Every primitive recursive function is eventually dominated by
some Fi. (Recall that the Fi’s are all primitive recursive.)

Proof: by induction on the definition of primitive recursive functions.

Basis: S(x), idn
k , and Z(x) are all dominated by F1.

Induction: We need to consider two cases:

2



Composition Let g, h1, . . . , hk satisfy the theorem, and let f be defined by
composition from them. We need to show that f satisfies the theo-
rem. Since g, h1, . . . , hk satisfy the theorem, suppose that Fi eventually
dominates g, h1, . . . , hk; i.e.

Fi(max{~x, n}) > g(~x) for all ~x

Fi(max{~y, n}) > hj(~y) for all ~y, j

Then,

f(~x) = g(h1(~y), . . . , hk(~y)) by defn of composition
< Fi(max{h1(~y), . . . , hk(~y), n}) by induction
≤ Fi(max{Fi(max{~y, n}), n}) by induction
≤ Fi(Fi(max{~y, n}))
= F 2

i (max{~y, n})
< Fi+1(max{~y}) when max{~y} is

large enough (≥ 2)

So f is eventually dominated by Fi+1.

(Intuitively, since g and the hj ’s are eventually dominated by Fi,
g(h1(−), . . . , hk(−)) is eventually dominated by F 2

i which is eventually
dominated by Fi+1.)

Primitive Recursion Let g and h satisfy the theorem, and suppose that
Fi eventually dominates them; i.e.

Fi(max{~x, n}) > g(~x) for all ~x

Fi(max{~x, m, y, n}) > h(~x, m, y) for all ~x, m, y

We need to show that if f is defined by primitive recursion from g and
h, then

f(m,~x) ≤ Fm+1

i (max{m,~x, n}) < Fi+1(max{~x, n}).

(Note that we could have used max{~x, n} instead of max{m,~x, n};
the m isn’t necessary since we’re applying Fi m + 1 times and are
guaranteed to be greater than m.) We will prove the above inequality
by induction on n.
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f(0, ~x) = g(~x)

≤ Fi(max{0, ~x, n})

f(m + 1, ~x) = h(~x, m, f(m,~x))
< Fi(max{~x, m, f(m,~x)}) by ind.

≤ Fi(max{~x, m, Fm+1

i (max{m,~x, m, n}), n}) by ind.

= Fm+2

i (max{m,~x, n})
≤ Fm+2

i (max{m + 1, ~x, n})

So f is eventually dominated by Fi+1. 2

Definition: A(n) = Fn(n). This is similar to Ackermann’s original function.

Theorem: A(n) eventually dominates Fi for all i.

Proof: For n > i, A(n) > Fi(n). 2

Theorem: A(n) is not primitive recursive.

Proof: A(n) is not dominated by any Fi. 2

Theorem: A(n) is recursive.

Proof: via Church’s Thesis. Let g(x, y, z) = F y
x (z). So g is effectively

computable. So A(n) = g(n, 1, n) is also effectively computable and hence
is recursive. 2

Note that g above is not primitive recursive; it’s “doubly recursive”.2

Homework: prove that g is recursive without using Church’s Thesis.

2Double recursion means that we do recursion on (x, y) ordered lexicographically; i.e.,
(x1, y1) < (x2, y2) iff x1 < x2, or x1 = x2 and y1 < y2. Using this, a possible definition
for g is

g(x, y, z) =











z if y = 0
z + 1 if y = 1 and x = 0
g(x, 1, g(x, y − 1, z)) if y > 1
g(x − 1, z + 1, z) if y = 1 and x > 0

4



Theorem: There is a 0/1 valued function which is recursive but not primitive
recursive.

Proof: Homework. Hint: look at techniques in Boolos & Jeffrey. Suggestion:
Let B(n, i) = ith bit in the binary representation of A(n); this may be
primitive recursive.

Question: What about C(n) = B(n, 0) = A(n) mod 2?

Answer: There might be some easy way determining whether or
not A(n) is even or odd, and similarly for other bits. In general,

R(n, x) ⇔ x = A(n)

is primitive recursive. To see this, note that the computation of
R is bounded by x, so you stop computing A(n) when you get
to a number bigger than x.

Theorem: A function is primitive recursive if there exists a Turing machine
that computes it whose run-time is bounded by one of the Fi’s.

Proof: next time.
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Computation Time

Math 260A - Mathematical Logic

October 21, 1988

Definition: Let M be a Turing machine whose alphabet, Σ, includes ♭. Let
x be a word over Σ without ♭’s; i.e. x ∈ (Σ \ {♭})∗. The run-time of M on
input x is n if and only if M , when started on x in standard notation, halts
after exactly n steps.

Theorem: The following are equivalent:

1. f is primitive recursive.

2. There is a Turing machine, M , and an i ≥ 0, such that for all n, M ,
on input n + 1 1’s, has run-time ≤ Fi(n + 1) and outputs f(n) + 1
1’s. (Note: if i is large enough, then Fi(1) is arbitrarily large and can
handle cases with finitely many exceptions.)

Proof:

1 ⇒ 2 (Easy direction) The proof is by induction on the complexity of the
definition of primitive recursive functions. (A proof similar to last
lecture’s proof can actually prove a more general statement for k−ary
functions.)

2 ⇒ 1 Let f be computed by M , the eth Turing machine, with run-time
≤ Fi(n + 1); i.e. for all x,

f(x) = Result(µw[Te(x, w)]).

To make f primitive recursive, we have to bound w. How big is w?
Well,

1



w = 〈〈i0, ℓ0, r0〉 . . . 〈ik, ℓk, rk〉〉

=
k

∏

a=0

p1+2
ia+1

·3
ℓa+1

·5
ra+1

a

where k ≤ Fi(n + 1).

Since M can only move k squares in k steps, ℓa and ra are bounded
by 2k+n+1.

Let M have s states. Then w ≤ g(n), where g is the primitive recursive
function

g(n) =
k

∏

a=0

p1+2
s+1

·3
2
F

i
(n+1)+n+1

+1
·5

2
F

i
(n+1)+n+1

+1

a .

So
f(x) = Result((µw ≤ g(n))[Te(x, w)]). 2

By this result, it seems hard to imagine a useful function that is recursive
but not primitive recursive. We would like to classify a set of “feasible”
functions such that

feasible functions ⊂ primitive recursive functions
⊂ recursive functions
⊂ all functions

What does it mean for a function f to be feasible? Answer: on reasonable
inputs x (i.e. where the answer is interesting), it is not totally out of the
question to find f(x). Polynomial time is the common model for feasibility.

Definition: Assume that M has alphabet Σ with {♭, 0, 1} ⊆ Σ. M is a
polynomial time Turing machine if there exists a polynomial p(n) such that
for all x ∈ (Σ \ {♭})∗, M , on input x, has run-time ≤ p(n), where n is the
number of symbols in x (i.e. n = |x|).

Definition: A function f : N → N is polynomial time computable if and
only if there exists a Turing machine, M , such that:

• M is a polynomial time Turing machine with alphabet Σ and {♭, 0, 1} ⊆
Σ, and

2



• for all x ≥ 0, M , on input x in binary notation, outputs f(x) in binary
notation.

Examples

• f : x 7→ 2x can be computed in 2n + 3 steps. It is important to note
that we want the computation to be polynomially bounded by n and
not x. For example, if x = 109, then M takes 2 log2 109 +3 ≈ 63 steps.
However if M was bounded by x, then M would take 2 · 109 + 3 steps.

• Factoring integers: f(x) = µp[Pr p ∧ (x > 1 → p|x)]. The naive
method is:

for i = 2,
√

x

if i|x then

output i

halt

end

output
√

x

This method could loop up to
√

x times. Finding
√

x is feasible since
we can do a binary search of 1 . . . x; this takes log2 x iterations which
is just n, the number of symbols of x in binary. But looping

√
x times

in terms of n is 2n/2 times which is not polynomial. So this algorithm
for factoring integers is not feasible.
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Effective Enumeration

Math 260A - Mathematical Logic

October 24, 1988

(From Last Time)

Last time we said that polynomial time computation was feasible. Why is
polynomial time good? What if the polynomial is 10100? - That is certainly
not feasible. There are two major reasons why polynomial computation is
considered feasible:

• Most natural problems which have polynomial time algorithms turn
out to be feasible; e.g. the degree of the polynomial is 3 or 4 at most.

• Polynomial time computation is invariant of the model of computation.
For example a f(n) time algorithm for a Random Access Machine
(RAM) translates to an O(f(n)2) time algorithm on a Turing machine.
(Note that this is not true for linear time algorithms.)

Another proposal for feasibility is O(n logO(1) n) time on a RAM as com-
pared with O(nO(1)) time. (O(nO(1)) = O(nk) for some k, and similarly for
O(n logO(1) n)).

Definition: P is the class of predicates A ⊆ N (or A ⊆ Σ∗ for finite Σ)
such that χA is polynomial time computable. I.e., P is the class of feasible
predicates.

Effectively Enumerable

Definition: A set A ⊆ N (or A ⊆ Σ∗ for finite Σ) is effectively enumerable
if and only if there is an effective procedure which lists every member of A.
Finite sets and the empty set are effectively enumerable.

In listing A, we may or may not allow repetitions. (But we get the same
result either way.) Suppose we have an effective algorithm, M , that lists

1



a1, a2, . . . . Then another effective algorithm, N , would list a1, ai1 , ai2 , . . .

where ai
k

is the (k +1)st element to appear in a1, a2, . . . . N runs M , saving
everything M outputs. Whenever M outputs ai, N checks if ai has already
been output; if not, then N outputs it.

Unofficial Equivalent Definition: A is effectively enumerable if and only if
A is empty or A is the range of an effectively computable total function.
i.e. n 7→ an. (“Total” could be left out of the definition, and the definition
would still hold.)

Theorem: The set of indices of Turing machines that halt on the empty tape
is effectively enumerable. (Recall that this is not decidable.)

Proof: The following algorithm enumerates Turing machines that halt on
the empty tape:

for i = 0, 1, . . .

for j = 0, 1, . . . , i

run Turing machine j on the empty tape for i steps
if Turing machine j halts then
output j

end

end

Definition: A set is decidable if there is an effective algorithm which can
decide whether or not elements are in the set.

Theorem: Every decidable set is effectively enumerable.

Proof: The following algorithm enumerates a decidable set:

for i = 0, 1, . . .

if i is in the set then
output i

end

Fact: If A and N \ A are both effectively enumerable, then A is decidable.

Definition: A set A ⊆ N is recursively enumerable if and only if A is the
domain of some partial recursive function; i.e.

2



A = {x : f(x) ↓}

for some partial recursive function f .

Theorem: Recursively enumerable ⇔ effectively enumerable.

Proof: (via Church’s Thesis)

⇐ Suppose A is effectively enumerable. Then we need to find a partial
recursive function whose domain is precisely A. Let f(x) be computed
as follows:

• Enumerate members of A.

• If and when x appears, output 1 and halt.

⇒ Suppose A is the domain of a partial recursive function f . Then there
is a Turing machine, M , which computes f . The following algorithm
enumerates A:

for i = 0, 1, . . .

for j = 1, 2, . . . , i

run M on input j for i steps
if M on j halts within i steps then
output j

end

end
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Propositional Logic
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October 26, 1988

The goal that Aristotle set for logic was to “mathematically model in-
telligent thought”. Not much work was done on this until the late 1800’s
when formalisms were developed.

Propositions are the units of propositional logic. They are things which
are either true or false; e.g. “gold is denser than water at STP”. Propositions
are used to form statements with connectives like ¬,∧,∨,→,↔. If A and
B are propositions, then the meanings of these connectives are:

• ¬A has the opposite truth value that A has.

• A ∧ B is true if and only if A and B are both true.

• A ∨ B is true if and only if A or B is true (or both). This is inclusive
or as opposed to the exlcusive or usually implied in English.

• A → B is true if and only if ¬A ∨ B is true. This is “material impli-
cation” as opposed to “logical implication”. ⊃ is sometimes used in
place of →.

• A ↔ B is true if and only if A and B have the same truth value. ≡ is
sometimes used in place of ↔.

Note that the truth value of a compound proposition depends only on the
truth values of its parts.

Propositional Formulas

Propositional formulas are words in the alphabet containing three kinds
of symbols:

1) P1, P2, . . . propositional variables
2) ¬,∨,∧,→,↔ propositional connectives
3) (,) parentheses

1



Definition: The propositional formulas are inductively defined by

1. Pi is a propositional formula for all i ≥ 1.

2. If A and B are propositional formulas, then (¬A), (A ∧ B), (A ∨ B),
(A → B), and (A ↔ B) are propositional formulas.

3. Every propositional formula can be obtained by a finite application of
(1) and (2).

Note that (Pi) is not a propositional formula.

Equivalent Definition #1: The class of propositional formulas is the smallest
class which:

1. contains Pi for all i ≥ 1.

2. If it contains A and B, then it contains (¬A), (A ∧ B), (A ∨ B),
(A → B), and (A ↔ B).

Equivalent Definition #2: The class of propositional formulas is the in-
tersection of all classes satisfying (1) and (2) in Equivalent Definition #2

above.

Omitting Parentheses

In “colloquial mathematics” we have conventions for omitting parenthe-
ses to make formulas more readable.

• ¬ has the highest precedence; i.e. it applies to the “smallest amount
possible”. For example, ¬A ∨ B means ((¬A) ∨ B), not (¬(A ∨ B)).

• ∧ and ∨ have the second highest precedence, but they are not to be
mixed. A ∨ B ∨ C means (A ∨ (B ∨ C)); i.e. these connectives are
right-associative. A ∨ B ∧ C is not a valid name for a formula.

• → and ↔ have the lowest precedence. They are also right-associative,
and they are not to be mixed. Be careful about →; A → (B → C) is
not the same as (A → B) → C.

2



Truth Tables

The following example is a truth table showing that, unlike →, (A ↔
B) ↔ C is the same as (A ↔ B) ↔ C.

A B C (A ↔ B) (B ↔ C) (A ↔ B) ↔ C A ↔ (B ↔ C)

T T T T T T T
T T F T F F F
T F T F F F F
T F F F T T T
F T T F T F F
F T F F F T T
F F T T F T T
F F F T F F F

Note that the fifth and sixth columns are the same.

Definition: A truth assignment is a mapping, σ : {P1, P2, . . .} → {T, F},
that maps to each propositional variable a value of true or false.

Definition: A truth assignment σ is extended to a mapping σ̄ from propo-
sitional formulas to truth values by the following inductive definition (note
that extended means that σ̄ agrees with σ on the propositional variables):

σ̄(Pi) = σ(Pi) for all i

σ̄(¬A) =

{

T if σ̄(A) = F

F if σ̄(A) = T

σ̄(A ∧ B) =

{

T if σ̄(A) = T and σ̄(B) = T

F otherwise

σ̄(A ∨ B) =

{

T if σ̄(A) = T or σ̄(B) = T

F otherwise

σ̄(A → B) =

{

T if σ̄(A) = F or σ̄(B) = T

F otherwise

σ̄(A ↔ B) =

{

T if σ̄(A) = σ̄(B)
F otherwise

The key thing to note here is that the truth value of a propositional
formula depends only on the truth values of its parts.
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Syntax vs. Semantics of Propositional Logic
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Syntax of Propositional Logic

Recall that propositional formulas were defined inductively. The follow-
ing is an example of a proof by induction on the complexity of formulas.

Proposition: The number of occurrences of propositional variables in a for-
mula is equal to 1 plus the number of binary connectives in the formula.

Proof: by induction on the complexity of formulas.

Basis: True for all formulas Pi.

Induction:

Case 1. A is (¬B). By the inductive hypothesis, the proposition holds
for B. The number of occurrences of variables in A is equal to the
number of occurrences of variables in B, and the number of binary
connectives in A is equal to the number of binary connectives in B.
So the proposition holds for A.

Case 2. A is (B ∗ C) for ∗ ∈ {∧,∨,→,↔}. The number of occurrences
of variables in A is equal to the number of occurrences of variables
in B plus the number of occurrences of variables in C. The number
of binary connectives in A is equal to 1 plus the number of binary
connectives in B plus the number of binary connectives in C. So, by
the inductive hypothesis for B and C, the number of occurrences of
variables in A is equal to 1 plus the number of binary connectives in
A. 2

Theorem: If A = a1a2 . . . ak with ai ∈ {∧,∨,¬,→,↔, (, ), Pℓ}, then for all
1 ≤ j < k, the number of )’s in a1 . . . aj < the number of )’s in a1 . . . aj .

1



Proof: Homework.

Unique Readability Lemma (only one way to parse a formula): If A is a
propositional formula and its ith symbol is a (, then there is a unique j > i

such that the ith through jth symbols of A form a propositional formula.

Equivalently, if two subformulas of A overlap, then one is a subformula of
the other. (Note that in general, a subformula doesn’t have to be proper.)

In order to decide the set of propositional formulas, we need to limit
them to a finite alphabet. We can code them using the alphabet {∨,∧,¬,
→,↔, (, ), P, 0, 1, . . . , 9}. E.g. ¬P2 ∨ P3 is ((¬P2) ∨ P3).

Theorem: The set of propositional formulas is decidable. (In fact, it is
polynomial time decidable since it is a CFG.)

Semantics

Recall truth assignments and their extension to formulas.

Definition: A formula A is a tautology (or is valid) if σ̄(A) = T for all truth
assignments σ. A is satisfiable if and only if there exists a truth assignment
σ such that σ̄(A) = T .

A is satisfiable if and only if (¬A) is not a tautology. A is unsatisfiable
if and only if A is not satisfiable, if and only if (¬A) is a tautology.

Definition: If Γ is a set of formulas, then Γ is satisfiable if and only if there
exists a truth assignment σ such that for all A ∈ Γ, σ̄(A) = T .

To show that a formula is a tautology, we can use the method of truth
tables. For example, if F is the formula (A → (B → C)) ↔ ((A∧B) → C),
then F can be shown to be a tautology as follows:

A B C (B → C) (A ∧ B) (A → (B → C)) ((A ∧ B) → C) F

T T T T T T T T
T T F F T F F T
T F T T F T T T
T F F T F T T T
F T T T F T T T
F T F F F T T T
F F T T F T T T
F F F T F T T T
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Since the column labeled F is always true, F is a tautology. An implicit
assumption that we made is that we only need to check a finite number
of truth assignments; i.e. only the truth assignments that differ in their
assignment of values to the variables A, B, and C in F .

Theorem: The set of tautologies is decidable.

Proof: The algorithm can use the method of truth tables. It only needs to
check the finite number of partial truth assignments to variables occuring in
the propositional formula.

Digression

Open Question: Is the set of tautologies polynomial time recognizable?

(Equivalent to P
?
= NP .)

Facts:

• A is satisfiable if and only if (¬A) is not a tautology.

• A is a tautology if and only if (¬A) is not satisfiable.

• The set of satisfiable formulas is NP -complete.

• The set of unsatisfiable formulas is co-NP -complete.

• The set of tautologies is co-NP -complete.

Definition: A set T ⊆ Σ∗, with Σ a finite alphabet, is in NP if and only
if there is a polynomial p(n) and a polynomial binary relation R(x, y) such
that membership in T is given by

∀x[x ∈ T ⇔ ∃y ∈ Σ∗[|y| ≤ p(|x|) and R(x, y)]].

Theorem: The set of satisfiable formulas is in NP because for all x, x is
the code of a satisfiable formula if and only if there exists a partial truth
assignment σ such that σ̄(formula coded by x) = T , and the |code of σ| ≤
|x|.
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Disjunctive Normal Form
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Digression

(A ∨ ¬A), the law of excluded middle, is a tautology which in-
tuitionists don’t believe in. “Normal” mathematicians, called
Platonists, believe that mathematical objects have a real exis-
tence in some ideal world; so anything you say about them is
either true or false.

Definition: A formula is a literal if it is of the form Pi or of the form (¬Pi).

Definition: A formula A is in disjunctive normal form (DNF) if and only
if it a disjunction (∨) of conjunctions (∧) of literals. I.e. A is of the form
A1 ∨ A2 ∨ . . . ∨ Ak with each Ak of the form Bk,1 ∧ Bk,2 ∧ . . . ∧ Bk,i

k
where

each Bi,j is a literal.

Theorem: For any formula A, there is a DNF formula B such that A ↔ B

is a tautology.

Proof: One way to prove this is by induction on the complexity of A. Another
way requires some more definitions and another theorem:

Definition: A k-ary boolean function is a mapping from {T, F}k

→ {T, F}.

Definition: If f is a k-ary boolean function, then the for-
mula Af represents f if for all truth assignments σ, σ̄(Af ) =
f(σ(P1), . . . , σ(Pk)). (The Pi’s are variables in A.)

Theorem: If f is a k-ary boolean function, there there is a for-
mula Af in DNF which represents f .

Proof:

1



Case 1 f is the constant false function. Take Af to be P1∧¬P1.

Case 2 f is not always false. (The idea is to find every case in
which f is true, and or them all together.) Let ~t ∈ {T, F}k.
Let C~t be the formula D1∧D2∧ . . .∧Dk where Di is Pi if ti
is true and Di is ¬Pi if ti is false. C~t asserts that P1, . . . , Pk

have truth values t1, . . . , tk. Let Af =
∨

f(~t)=T C~t. 2

(Note that there are at most 2k values for ~t such that f(~t) =
T .)

(Note also that this may not lead to the simplest way to
express a formula in DNF. For example, if f(t1, t2) = t1,
then the above process yields Af = (P1 ∧ P2) ∨ (P1 ∧ ¬P2),
but Af = P1 is simpler.)

(Note that the general problem of finding the simplest for-
mula B equivalent to a given formula A is hard. A solution
to this problem can be used to determine if A is a tautol-
ogy.)

(back to the proof of finding a DNF formula B equivalent to a given formula
A):
Let A involve the variables P1 . . . Pk. Define f to be the k-ary boolean func-
tion f(t1 . . . tk) = σ̄(A) where σ(Pi) = ti. Let B be a DNF formula which
represents f (the existence of which is guaranteed by the above theorem).
Now, σ̄(A) = f(σ(P1), . . . , σ(Pk) = σ̄(B). 2

(And this means that σ̄(A ↔ B) = T for all truth assignments σ.

Theorem: If B ↔ C is a tautology and if A∗ is obtained from A by replacing
a sub-formula B in A by C, then A ↔ A∗ is a tautology.

Proof: By induction on the complexity of A.

Notation: |= A means that A is a tautology.

Definition: Γ |= A if and only if for all truth assignments σ, if σ̄(B) = T

for all B ∈ Γ, then σ̄(A) = T . (Γ |= A intuitively means that the set of
formulas Γ logically implies the formula A.)

Notation: A |= B means that {A} |= B.

Theorem: ∅ |= A if and only if |= A.
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Definition: Γ is finitely satisfiable if and only if every finite subset of Γ is
satisfiable.

Compactness Theorem: Γ is satisfiable if and only if Γ is finitely satisfiable.

Proof:

⇒ Obvious.

⇐ Next time.
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Compactness Theorem
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Theorem: A set Γ of propositional formulas is satisfiable if and only if it is
finitely satisfiable.

Proof:

⇒ Obvious.

⇐ In order to prove this direction, we’ll need the following lemma.

Lemma: If Γ is finitely satisfiable and A is a formula, then
either Γ ∪ {A} or Γ ∪ {¬A} is finitely satisfiable.

Proof: Suppose that both Γ ∪ {A} and Γ ∪ {¬A} are not
finitely satisfiable. Then there exists a finite set Σ1 ⊆ Γ∪{A}
which is not satisfiable, and there exists a finite set Σ2 ⊆
Γ ∪ {¬A} which is not satisfiable. In fact, Σ1 = Γ1 ∪ {A}
and Σ2 = Γ2 ∪ {¬A} where Γ1 and Γ2 are finite subsets of
Γ. Consider Γ1 ∪ Γ2. This is a finite subset of Γ. Since Γ is
finitely satisfiable, there exists a truth assignment σ which
makes every formula in Γ1 ∪ Γ2 true.

Case 1. σ̄(A) = T . Then Γ1 ∪ Γ2 ∪ {A} is satisfiable by σ,
and in particular, Γ1 ∪ {A} is satisfiable.

Case 2. σ̄(A) = F . Then Γ1 ∪ Γ2 ∪ {¬A} is satisfiable by
σ, and in particular, Γ1 ∪ {¬A} is satisfiable.

So either Σ1 or Σ2 is satisfiable which contradicts our as-
sumption. 2

Next we’ll define an infinite sequence of sets of propositional formulas.
Let Π0 = Γ (remember, in this direction, were assuming that Γ is
finitely satisfiable), and let

1



Πi+1 =

{

Πi ∪ {Pi} if Πi ∪ {Pi} is finitely satisfiable
Πi ∪ {¬Pi} if Πi ∪ {¬Pi} is finitely satisfiable

By the lemma and induction on i, each Πi is finitely satisfiable.

Facts:

• Π =
⋃

∞

i=0 Πi is also finitely satisfiable since any finite subset of Π
is a subset of Πi for large enough i.

• Γ ⊆ Π.

• For all i, either Pi or (¬Pi) is in Π.

Let σ be the truth assignment such that

σ(Pi) =

{

T if Pi ∈ Π
F if ¬Pi ∈ Π.

Claim: For all A ∈ Π, σ̄(A) = T .

Proof: Let A ∈ Π, and say that A uses only the variables
P1, . . . , Pk. Take

{A} ∪ {Pi ∈ Π : i ≤ k} ∪ {(¬Pi) ∈ Π : i ≤ k},

which is a finite subset of Π, and hence is satisfiable by some
truth assignment, τ .

Since τ satisfies this set, τ(Pi) = T if and only if Pi ∈ Π for
i ≤ k. So τ(Pi) = σ(Pi) for all i ≤ k. Hence σ̄(A) = τ̄(A) =
T . 2

So σ makes every formula in Π and hence every one in Γ true. So Γ is
satisfiable. 2

Notation: σ |= Γ means that σ satisfies Γ; i.e. for all A ∈ Γ, σ̄(A) = T .
Γ |= A means that A is a logical consequence of Γ. Γ is inconsistent if and
only if Γ is unsatisfiable.

Theorem (rephrased): Γ is inconsistent if and only if some finite subset is
inconsistent.
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Theorem: Γ |= A if and only if Γ ∪ {¬A} is inconsistent.

Proof: For all truth assignments σ such that σ |= Γ → σ̄(A) = T ,

¬∃σ[σ |= Γ ∪ {¬A}] ≡ ∀σ[σ 6|= Γ ∪ {¬A}]

≡ ∀σ[σ 6|= Γ or σ̄(¬A) = F ]

≡ ∀σ[σ |= Γ → σ̄(¬A) = F ]

≡ ∀σ[σ |= Γ → σ̄(A) = T ] 2

Theorem: If Γ |= A then there is a finite subset Γ0 ⊆ Γ such that Γ0 |= A.

Proof: Γ ∪ {¬A} is inconsistent implies that there is a finite Γ0 ⊆ Γ such
that Γ0 ∪ {¬A} is inconsistent.

Theorem: If Γ is effectively enumerable, (and hence r.e.) then the set of
logical consequences of Γ is effectively enumerable.

Proof: Let M be an effective procedure for listing Γ as {γ1, γ2, . . .}. Let
A1, A2, . . . be an effective enumeration of all formulas. Then the following
algorithm enumerates the logical consequences of Γ:

for i = 1, 2, . . .

run M to get γi

for j = 1, 2, . . . , i

if {γ1, γ2, . . . , γi} |= Aj then

output Aj

end

end

Note the following:

• When M is run to get the next γi, we already know γ1 . . . γi−1.

• Checking if {γ1, γ2, . . . , γi} |= Aj can be done by truth tables.

• If a list without repetitions is desired, a check could be made before
outputting each Aj . 2

Corollary: If Γ is finite (or if Γ is decidable), then {A : Γ |= A} is effectively
enumerable.
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Enumerating Formulas, 1st Order Logic
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We can code propositional formulas in the language {(, ),¬,∧,∨,→,
↔, P, 0, . . . , 9}. Then two ways of effectively enumerating propositional for-
mulas as A1, A2, . . . are:

1. for i = 2, 3, . . .

list out all formulas with exactly i symbols
end

2. for i = 2, 3, . . .

list out all formulas with less than i propositional
connectives that involve only variables P1 . . . Pi

end

Theorem: Suppose that Γ is effectively enumerable, and suppose also that
for every formula A, Γ |= A and/or Γ |= ¬A (i.e. Γ is complete). Then the
set of logical consequences of Γ is decidable.

Proof: Recall that the consequences of Γ can be enumerated. The idea is
that given A, we will list out the consequences of Γ until either A or ¬A

appears. If A appears, then A is a logical consequence of Γ, and if ¬A

appears, then A is not a logical consequence of Γ provided that Γ is not
inconsistent (or is consistent). There are two possible cases for Γ:

Case 1. Γ is inconsistent. Then Γ |= A for all A. So the set of logical conse-
quences of Γ is the set of all formulas which is effectively enumerable.

Case 2. Γ is consistent. Then use the algorithm of the above idea. 2

1



Even though there are only two possibilities for Γ, we don’t have any
effective way of deciding whether or not any given Γ is consistent. To see
this, consider the following procedure for creating ΓM based on a Turing
machine, M :

ΓM = ∅
for i = 1, 2, . . .

ΓM = ΓM ∪ Pi

run M for i steps
if M halts then

ΓM = ΓM ∪ ¬P1

halt

end

end

The idea is that for every step of the Turing machine M , we add a new
propositional variable to ΓM . As long as M keeps running, ΓM remains
consistent. As soon as we reach a halting configuration of M , we make ΓM

inconsistent by adding ¬P1 to it. Clearly ΓM is effectively enumerable. But
ΓM is consistent iff M never halts. So if we could determine whether an
arbitrary Γ was consistent or not, we could solve the halting problem.

One way to show that Γ |= φ is to show that Γ∪{¬φ} is inconsistent. A
proof method for showing Γ |= φ is to derive a contradiction from Γ∪{¬φ}.
(One way of doing this is to use the method of truth tables.)

First Order Logic

(See also instructor’s notes entitled First Order Logic.) First order logic
has variables that range over a non-empty set of objects instead of just T

and F . It also has functions and predicates that operate on these objects,
and quantifiers ∀ and ∃ which range over the set of objects.

For example, let the domain of objects (the universe) be the set of all
people, and let the binary relation “Loves(x, y)” be true if x loves y and
false otherwise. Then we can translate the following sentences into first
order logic. “Alma loves someone” - ∃x Loves(Alma,x). “Someone loves
Alma” - ∃x Loves(x,Alma). “None of Alma’s lovers’ lovers, love Alma” -
∀x(∃x(Loves(x, y) ∧ Loves(y, Alma) → ¬Loves(x,Alma)). Note that this
implies ¬Loves(Alma, Alma).

Another example is “Mother(x)”, a unary function. In first order logic,
functions will always be single valued and total. So in order to state that
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someone has no mother, we need a relation “Motherof(x, y)”. “x has no
mother” - ∀y(¬Motherof(y, x) or ¬∃y(Motherof(y, x)). In these formulas, x

is a free variable; i.e. it appears as a parameter in the formula. y is bound.
Free and bound variables are treated differently when we combine formu-

las. The sentence “There are exactly two people with no mother”, translates
to ∃x∃y(y 6= x∧ “x has no mother”∧ “y has no mother”∧¬∃z(z 6= x∧ z 6=
y ∧ “z has no mother”)). When expanding “y has no mother”, we have to
rename the bound variable y so it won’t clash with the y bound by the
second ∃; i.e. ¬∃y

′

(Motherof(y
′

, y)).
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Defining a Logic
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(Guest lecturer: Jeff Remmel)

To define a logic, you:

1. Define formulas (meaningful sequences, well formed formulas). I.e.
(A ∨ B) is a formula, but not A¬ ∧ ∨.

2. Establish unique readability. I.e. A∨B ∧C means either (A∨B)∧C

or A ∨ (B ∧C). If A is true and B and C are false, then A ∨B ∧C is
false in the first case and true in the second.

3. Inductively define when a truth assignment (model) satisfies a formula.

4. Develop a proof theory.

5. Tie together satisfaction and proof theory to show completeness.

The language of first order logic contains . . . (see page 3 of instructor’s
notes). For example, let a language be

∀ - is intended to mean for all things
0, 1 - constant symbols for zero and 1
+,− - binary functions for addition and subtraction
N - unary relation intended to mean “is a number”
I - unary relation intended to mean “is interesting”
P - unary relation intended to mean “is a person”
T - unary relation intended to mean “is a time”
< - binary relation for less than
F - binary relation: Fxy - “you can fool x at y”

1



Then the following sentences are expressible.
“There are at least three interesting numbers” -

∃x1∃x2∃x3(I(x1) ∧ I(x2) ∧ I(x3)

∧N(x1) ∧ N(x2) ∧ N(x3)

∧x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3).

(Note that I(xi) really should be Ixi, and that xi 6= xj really should be
(¬(= xixj)). Sometimes we use colloquialisms for better readability.)

“There are exactly three interesting numbers” -

∃x1∃x2∃x3(I(x1) ∧ I(x2) ∧ I(x3)

∧N(x1) ∧ N(x2) ∧ N(x3)

∧x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3)

∀x4(I(x4) ∧ N(x4) → x1 = x4 ∨ x2 = x4 ∨ x3 = x4)).

“You can fool all the people some of the time” - there are two interpre-
tations of this. There is one particular time at which you can fool everyone:

∃x1(T (x1) ∧ ∀x2(P (x2) → F (x2, x1))),

or any person can be fooled at some time:

∀x2(P (x2) → ∃x1(T (x1) ∧ F (x2, x1))).

The commutative law for addition -

∀x∀y(+(x, y) = +(y, x)).

To define meaningful phrases, we need to define terms, formulas, and
sentences. (See pages 5-6 of instructor’s notes.)

Sentences

Consider the formula “= x5”. What is 5? Assume it’s the natural
number five. What is x? We need to quantify it; i.e. ∀x(= x5). What does
∀ range over?

In order to answer these question, we introduce the concept of a model.
Intuitively, a model gives an interpretation of the non-logical symbols. A
model M consist of

2



• A universe, M . This is what ∀ and ∃ range over.

• M(c) ∈ M - constants in the universe.

• M(R) ⊆ Mk - set of k-tuples for which R holds.

• M(f) : Mk → M - functions on the universe.

A sentence is a formula with no free variables. (See page 9 of instructor’s
notes.)

The problem we have is that we want to define the truth of formulas
inductively, but we don’t want to include formulas like ‘= x5’.
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Unique Readability of Terms, Models
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November 9, 1988

(Guest lecturer: Jeff Remmel)

(Terms are defined on page 5 of instructor’s notes.)

Unique Readability Lemma (alternate statement): No proper initial prefix
of a term is a term. If t is a term and t

′

is a proper initial segment of t, then
t
′

is not a term.

Proof: by induction on the length, n, of t.

Basis: n = 1. Then t = x or t = c, so t
′

= ǫ which is not a term.

Induction: Assume the lemma true for all terms of length ≤ n. Consider a
term of length n + 1. t = fα1 . . . αk were f is a k-ary function symbol, and
α1 . . . αk are terms.

Suppose that t
′

6= ǫ and that t
′

is a term. Then t
′

= fβ1 . . . β2, where
β1 . . . β2 are terms. Compare α1 and β1.

Case 1. α1 = β1.

Case 2. α1 is an initial segment of β1. This is not possible by the induction
hypothesis.

Case 3. β1 is an initial segment of α1. This is not possible by the induction
hypothesis.

By applying the argument k times, we get

α1 = β1, α2 = β2, . . . αk = βk.

This implies that t
′

= t which contradicts our choice of t
′

.

Models

1



Consider the sentence ∀x(x 6= 0 → ∃y(xy = 1)). This is true in the
rationals Q and the reals R since every non-zero number has an inverse.
But it is false in the natural numbers N . So the truth of a sentence in first
order logic depends on something else which we call a model. (See page 10
of instructor’s notes.)

Our goal is to define truth inductively. The problem is that in order
to define the truth of sentences, you have to look at formulas with free
variables. (I.e. an inductive definition of truth for the sentence ∀x(x = x)
depends on the truth of the formula x = x which has a free variable.)
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Truth
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Truth depends on a structure. The reason we want structures to have
non-empty universes is that we want (∀xφ(x) → ∃xφ(x)) to be true. (It is
vacuously false in the empty universe.)

Structures

(Note that structures don’t include an interpretation for =.) Consider
the language with

< - a binary relation
0 - a constant symbol
S - a unary function symbol

The standard interpretation of this language is N = (N, 0N , SN , <N )
where N is the set of natural numbers, 0N is the natural number zero, SN

is the successor function (SN : N → N , SN (x) = x + 1), and <N is the less
than relation (<N⊆ N × N , a <N b iff a is less than b).

Since the following sentences are all true in N , the structure is said to
satisfy them:

1. ∀x(Sx 6= 0)
2. ∀x∀y(¬(x < y ∧ y < Sx))
3. ∀x(x < Sx)
4. ∀x(x = 0 ∨ 0 < x)
5. ∀x(x 6= 0 → ∃y(Sy = x)

Another structure which also satisfies the above sentences is M which
is defined as follows. Let the universe, M , be N ∪Z

′

, where Z
′

is the set of
of integers with primes on them; i.e. pictorially, M is

1



0, 1, 2, 3, . . . . . . ,−2
′

,−1
′

, 0
′

, 1
′

, 2
′

, . . .

Z
′

represents a set of non-standard objects. (The primes are intended to
represent the fact that N ∩ Z

′

= ∅.)
M interprets the non-logical language symbols as follows:

0M = 0
SM(n) = n + 1

SM(n
′

) = (n
′

+ 1)
′

<M (a, b) ⇔ a < b

<M (a
′

, b
′

) ⇔ a < b

<M (a, b
′

) is true

<M (a
′

, b) is false

Another structure which doesn’t satisfy all of the above sentences is
R = (R, 0R, SR, <R), where R is the set of real numbers, and

0R is zero
SR(x) = x − 1
<R (x, y) ⇔ x < y

Sentences 1, 3, and 4 are false in R, while sentences 2 and 5 are true.
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Object assignments assign objects in the universe of a structure to vari-
ables. (See pages 12-14 of instructor’s notes.)
Examples of truth:

1.

M |= ∀x1(x1 = x1)[s]

iff M |= ∀x1(x1 = x1)[s(a/x1)] for all a ∈ M

iff s(a/x1)(x1) = s(a/x1)(x1) for all a ∈ M

iff a = a for all a ∈ M

2.

M |= ∀x1(x1 = x2)[s]

iff a = s(x2) for all a ∈ M

iff M has only one object

Alternate Definition (of a free variable): (See page 9 of instructor’s notes for
original definition.) An occurrence of x is free in A iff there is no subformula
of the form

∀x . . . x . . . or ∃x . . . x . . .

where x is the occurrence of x.

For example, in the formula

x = 0 ∧ ∃x(x 6= 0),

1



the first occurrence of x is free, while the others are bound.
Given an occurrence of x in A, x is bound by an occurrence of quantifier

Qx in A (i.e. is in the scope of Q) iff the subformula QxB in A which starts
with Qx contains the occurrence of x and x is free in B. For example, in
the formula

∃x(x = 0 ∧ ∃x(x 6= 0)),

the second occurrence of x is bound by the first occurrence of ∃x, while the
fourth occurrence of x is bound by the second occurrence of ∃x.

Theorem: If A is a formula, then M |= A[s] does not depend on values
s(y) for y not occurring free in A.

Proof: by induction on the complexity of A.

Theorem: Let A be a formula, z be a variable not occurring in A, and
Qx be an occurrence of a quantifier in A. Let A

′

be obtained by changing
Qx to Qz and every x bound by Qx in A to z. Then A

′

is a formula, and
M |= A[s] iff M |= A

′

[s] for all M and s.

Proof: by induction on the complexity of A.

For example, consider the following three formulas:

A = ∀x∀y(x = y)

A
′

= ∀y∀y(y = y)

A
′′

= ∀z∀y(z = y)

A is equivalent to A
′′

but not A
′

.

Corollary: If A is a sentence, M |= A[s] is independent of s. (See page 15
of instructor’s notes.)

For example, consider the language with 0, S, +, ·, and ↑ (exponentia-
tion), and the standard model N containing the set of natural numbers and
the usual operations. Fermat’s last theorem (FLT) is expressed as:

∀x∀y∀z∀n(n > 2 ∧ x · y · z > 1 → x ↑ n + y ↑ n 6= z ↑ n).

Now, N |= FLT iff FLT is true.
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As another example, consider the axiom of choice. This is a first order
property in the language of set theory. But we don’t have a definition of
what it means for the axiom of choice to be true because we don’t have a
standard interpretation for set theory. (Because we don’t have a set of all
sets.)
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Satifiability, Validity, Substitutions, Prenex Normal

Form
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Theorem: Suppose A is a formula with free variables x1, . . . , xk. Then
∀x1 . . .∀xkA is a sentence, and |= A iff |= ∀x1 . . .∀xkA.

Definition: Given a first order formula A, A is a first order tautology iff
there is a propositional tautology B, with propositional variables P1, . . . , Pk

and A = B(A1/P1, . . . , Ak/Pk) (i.e. each Pi in B is changed to a first order
formula Ai).

For example,

∀x(x = 0) → ∀x(x = 0)

is a tautology because it is of the form P1 → P1. An alternate way of looking
at the definition is to let the maximal subformulas of the form Qx(. . .) or
that are atomic in A be “propositional variables”. Then A should be a
tautology.

Theorem: A first order tautology is valid.

Definition: A tautologically implies B means that A → B is a tautology.
Γ tautologically implies B means that ∀A ∈ Γ, A → B is a tautology.

Definition: A is logically equivalent to B (A ≃ B) iff |= A ↔ B.

Definition: Γ is satisfiable iff there is a structure M and an object assign-
ment s such that M |= Γ[s]. (If Γ consists of just sentences, then the object
assignment is not needed.)

1



For example, consider the even integers; x is even iff there is a y such
that y + y = x. In N , the standard interpretation of 0, S, +, and ·, the even
integers are definable as:

{m : N |= ∃y(y + y = x)[s(m/x)]}.

So the even integers are said to be first order definable in N . (Note that the
part to the right of the ‘:’ is independent of s since we change the assignment
of x.)

Often, we are lazy and write

{m : N |= ∃y(y + y = m)}.

∃y(y + y = m) is not a first order formula because m is an integer, not a
symbol for an element of the universe.

Theorem: Γ |= A iff Γ ∪ {¬A} is unsatisfiable. (This is the law of the
excluded middle.)

Proof: immediate from the definitions.

Substitution

Intuitively, if A says something about x, and we substitute a term t for
x, then A(t/x) says the same thing about t.

Definition: Let A be a formula, x be a variable, and t be a term. The
formula A(t/x) is obtained as follows:

1. For each variable y occurring in t, if y occurs bound in A (i.e. Qy

occurs in A), then pick a new variable z which does not occur in A or
t, and change every bound occurrence of y in A to z and change each
Qy in A to Qz.

2. Change every free occurrence of x in A to t.

For example, if A(x) is ∃y(y + y = x), then A(y + z/x) is not ∃y(y + y =
y + z). Instead, it is ∃v(v + v = y + z), or ∃w(w + w = y + z), or . . .

As another example, if A(x) is ∃y(y+y = x), then A(2·x/x) is ∃y(y+y =
2 · x), not ∃y(y + y = · · · 2 · 2 · x)

For simultaneous substition, A(t1/x1, . . . , tk/xk), do the following

• Rename bound variables in A to avoid variables of t1, . . . , tk.

2



• Replace simultaneously each free occurrence of xi with ti.

Note that A(t1/x1, t2/x2) may not equal A(t1/x1)(t2/x2) (if t1 has an occur-
rence of x2). Also, note that A(t/x) is ambiguously defined since it allows a
choice of new bound variables z; but any two incarnations of A(t/x) are log-
ically equivalent. Finally, note that out of laziness we often write A = A(x)
and A(t) for A(t/x).

Prenex Normal Form

A formula is in prenex normal form if all quantifiers are “pulled out” to
the front of the formula. For example, (∃xPx → Px) is logically equivalent
to ∀y(Py → Px).

Proof:

M |= (∃xPx → Px)[s]

iff if there is an a ∈ M such that

M |= Px[s(a/x)], then M |= Px[s]

iff if there is an a ∈ M such that

a ∈ PM , then s(x) ∈ PM

iff either there is no a ∈ M such that

a ∈ PM or s(x) ∈ PM

iff either for every a ∈ M,

a 6∈ PM or s(x) ∈ PM

iff for every a ∈ M, either

a 6∈ PM or s(x) ∈ PM

iff M |= (∀yPy → Px)[s]. 2

3



Prenex Normal Form Theorem, Isomorphisms
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Logical Equivalences

If A and B are formulas, and x is not free in B, then the following logical
equivalences hold:

QxA ∧ B ≃ Qx(A ∧ B)

QxA ∨ B ≃ Qx(A ∨ B)

QxA → B ≃ Q
′

x(A → B)

B → QxA ≃ Qx(B → A)

where Q
′

is ∀ if Q is ∃, or ∃ if Q is ∀.
As an example, consider ∀xA → B ≃ ∃x(A → B). There are two ways

we can show this: by proof or by derivation.

Proof. Fix M and s. Then there are two cases to consider:

Case 1. ∀xA is true.

(forward) Suppose that ∀xA → B is true. Then B is true. So
∃x(A → B) is true since there is an a ∈ M such that M |= A →
B[s(a/x)].

(backward) Now suppose that ∃x(A → B) is true. Since ∀xA is
true, B is true. So ∀xA → B is true.

Case 2. ∀xA is false. Then M |= ∃x¬A. So there is an a ∈ M such
that M |= ¬A(a/x). Now M |= ∀xA → B, so M |= A(a/x) →
B, and hence M |= ∃x(A → B),

1



Derivation.

∀xA → B ≃ ¬(∀xA) ∨ B

≃ (∃x(¬A)) ∨ B

≃ ∃x(¬A ∨ B)

≃ ∃x(A → B)

More Logical Equivalences

¬∀xA ≃ ∃x(¬A)

¬∃xA ≃ ∀x(¬A)

∀xA ↔ B ≃ (∀xA → B) ∧ (B → ∀xA)

≃ ∃x(A → B) ∧ ∀x(B → A)

≃ ∃y(A(y/x) → B) ∧ ∀x(B → A)

≃ ∃y∀x(A(y/x) → B) ∧ (B → A)

Prenex Normal Form Theorem

Theorem: Every formula is logically equivalent to a prenex normal form
formula.

Proof: (outline) The above logical equivalences combined with renaming of
bound variables allow us to “pull out” quantifiers to the front of a formula
one at a time. (The details involve induction on the complexity of formulas.)

The process of converting a formula to prenex normal form is not unique.
For example, consider ∃xP (x) → ∃xP (x). One conversion produces:

∃xP (x) → ∃xP (x) ≃ ∃x(∃xP (x) → P (x))

≃ ∃x(∃yP (y) → P (x))

≃ ∃x∀y(P (y) → P (x))
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and another produces:

∃xP (x) → ∃xP (x) ≃ ∃yP (y) → ∃xP (x)

≃ ∀y(P (y) → ∃xP (x))

≃ ∀y∃x(P (y) → P (x))

But any two prenex normal form formulas that are logically equivalent to
the same formula are logically equivalent to each other.

As another example of this,

∃x∀y(P (y) → Q(x)) ≃ ∀y∃x(P (y) → Q(x))

since these are both prenex normal form formulas for ∃yP (y) → ∃xQ(x).
Note that in general, you can’t exchange the order of quantifiers in a

formula. You can only do this if the x’s are on one side and the y’s on the
other. For example, in expressing continuity,

∀x∀ǫ∃δ∀y(ǫ > 0 ∧ δ > 0 ∧ |y − x| < δ → |f(x) − f(y)| < ǫ),

you can’t change the order of the quantifiers. Similarly for uniform conti-
nuity,

∀ǫ∃δ∀x∀y(ǫ > 0 ∧ δ > 0 ∧ |y − x| < δ → |f(x) − f(y)| < ǫ).

Isomorphisms

Definition: Let L be a language, and M and N be structures for L. Then
h : M → N is an isomorphism iff:

• h : M → N is 1-1 and onto.

• for every constant symbol c ∈ L h(cM) = cN .

• for every function symbol f ∈ L and every 〈m1, . . . , mk〉 ∈ M ,
h(fM(m1, . . . , mk) = fN (h(m1), . . . , h(mk)).

• for every relation symbol R ∈ L and every 〈m1, . . . , mk〉 ∈ M ,
RM(m1, . . . , mk) ⇔ RN (h(m1), . . . , h(mk)). (Note that this automat-
ically holds for ‘=’ since h is 1-1.)
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Isomorphism Theorem

Theorem: If M and N are structures for a common language L, h : M →
N is an isomorphism, φ is a formula, and s is an object assignment for M,
then

M |= φ[s] iff N |= φ[h ◦ s].

Pictorially, if we have

'

&

$

%

'

&

$

%

M N-h
1-1, onto

a1 h(a1)-
a1 h(a1)-
...

...

and we have a formula φ(x1, . . . , xk) with s(x1) = a1, . . . , s(xk) = ak, then

M |= φ(a1, . . . ak) iff N |= φ(h(a1), . . . h(ak)),

or

M |= φ[s] iff N |= φ[h ◦ s].

Proof: (outline) First, show that for every term t, h(s̄(t)) = h ◦ s(t). Show
this by induction on t; i.e. show it for constant symbols, and then show
that it respects function symbols. Second, prove the theorem by induction
on the complexity of (number of logical connectives in) φ.
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First Order Definability

Definition: Let M be a structure. A subset, R of M is (first order) defin-
able in M iff there is a formula φ(x) (containing only one free variable, x)
such that R = {m ∈ M : M |= φ(m)}. (Note that R may have more than
one such form; i.e. φ ∧ φ ∧ . . .)

S ⊆ Mk is definable iff there is a formula φ(x1, . . . , xk) (containing only
k free variables) such that S = {〈m1, . . . , mk〉 : M |= φ(m1, . . . , mk)}.

A k-ary function f : Mk → M is definable iff its graph is definable. (The
graph of f is {〈m1, . . . , mk, mk+1〉 : f(m1, . . . , mk) = mk+1}.)

Some examples: If G is a group in the language (0, +,−), then the set
of elements of order 2 is definable by x + x = 0. On the other hand, there
is no uniform (i.e. works for every group) formula that defines the objects
of finite order. (x is of finite order iff

x + x . . . + x
︸ ︷︷ ︸

n

= 0

for some integer n.) There are groups for which the set of objects of finite
order is not first order definable; e.g. Z2 ⊕ Z3 ⊕ Z4 . . .. If G is finite, then
x = x defines the sets of objects of finite order since every object is of finite
order.

As an example of something that is not definable, consider the language
L = (0, +, <), and the structure R = (R, 0, +, <).

Claim: In R, multiplication is not definable. I.e. there is no φ(x1, x2, x3)
such that for all a, b, c ∈ R, R |= φ(a, b, c) iff ab = c.

Proof: Idea: find an automorphism h : R → R which does not preserve
multiplication. Let h : x 7→ 2x. Since

h : R → R,

h is 1-1,
h is onto,
x < y ⇔ h(x) < h(y),
x + y = z ⇔ h(x) + h(y) = h(z), and
h(0) = 0,

h is an isomorphism. Suppose, for the sake of contradiction, that φ(x1, x2, x3)
defines (the graph of) multiplication. Then, for all a, b, c ∈ R,

2



R |= φ(a, b, c) ⇔ R |= φ(h(a), h(b), h(c))

⇔ R |= φ(2a, 2b, 2c)

or

ab = c ⇔ (2a)(2b) = (2c)

which is false for nonzero a, b, and c. 2

(Note that in R, {1} is not definable by the same automorphism.)

General Principle: Any definable relation or function (in a given structure)
is preserved under automorphism. (But not conversely. As an example, N =
(N, 0, S) has no nontrivial automorphism.1 So every A ⊆ N is preserved
under automorphism. But there are uncountably many A ⊆ N and only
countably many formulas. So some A are not definable.)

An example of something that is definable in R is additive inverse; i.e.
f(x) = −x. The graph of f is {〈x, y〉 : x + y = 0}, so f is definable as

{〈a, b〉 : R |= x + y = 0[s(a/x)(b/y)]}.

1A trivial automorphism is the identity automorphism. To show that N has no non-
trivial automorphism, use induction on the size of N .
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Definition: Let Γ be a set of sentences in a language L. Mod(Γ) is the
class of models (structures) of Γ.

Definition: A class K of structures for a language L is an elementary

class (EC) iff there is a finite set Γ of sentences such that K = Mod(Γ).
Equivalently, iff there is a sentence A such that K = Mod({A}) (since A

can be the conjunction of sentences in Γ). (Note: elementary means first
order.)

Definition: K is EC∆ iff there is a set Γ (not necessarily finite) of sentences
such that K = Mod(Γ).

Note that in either case,

K =
⋂

A∈Γ

Mod(A).

Some examples:

The class of all groups in the language (0, +,−) is an EC since Γ is the
set of axioms for groups.

Consider the language with no non-logical symbols. The class of all
infinite structures (those with infinite domains) is EC if there is a sentence
(or finite set of sentences) that satisfies

γi = ∃x1∃x2 . . .∃xi(
∧

1≤j<k≤i

xj 6= xk)

for all i; i.e. there are ≥ i distinct objects. If we let Γ = {γ2, γ3, . . .}, then
M |= Γ iff M is infinite. So the class of infinite structures is EC∆. A fact
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which we will show later, is that the class of infinite structures is not an
EC. Furthermore, there is no set Γ∗ of sentences such that M |= Γ∗ iff M is
finite; so the class of finite structures is not even EC∆.

The class of infinite groups is EC∆ since we can let

Γ = {γ2, γ3, . . .} ∪ {group axioms}.

(This class is not an EC.)

The class of fields with language L = (0, 1, +,−) is an EC since there
are a finite set of field axioms.

Kp = the class of fields of characteristic p, where p is a fixed prime, is
an EC since we can let

Γ = {1 + 1 + . . . + 1
︸ ︷︷ ︸

p

= 0} ∪ {field axioms}.

However, K0 = the class of fields of characteristic 0 is not an EC. It is
an EC∆ since we can let

Γ = {1 + 1 + . . . + 1
︸ ︷︷ ︸

p

6= 0 : p = 2, 3, 5, 7, . . .} ∪ {field axioms}.

The class of fields of finite, non-zero characteristic is neither an EC nor
EC∆. We’ll show this later.

Q

Q is a theory about natural numbers due to Raphael Robinson. The
language of Q is (0, S, +, ·). The axioms for Q are

1. ∀x(0 6= Sx)
2. ∀x∀y(x 6= y → Sx 6= Sy)
3. ∀x(x 6= 0 → ∃y(x = Sy)
4. ∀x(x + 0 = x)
5. ∀x∀y(x + Sy = S(x + y))
6. ∀x(x · 0 = 0)
7. ∀x∀y(x · Sy = x · y + x)

(Axioms 4-7 are inductive definitions for ‘+’ and ‘·’.) Q is the set of logical
consequences of the above axioms.

Q has a model; N = (N, 0, S, +, ·) is such that N |= Q. This is the
standard model.

Q has another model, A, with
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A = {0, 1, 2, . . .} ∪ {∞}
0A = 0
SA(n) = n + 1 for n ∈ N

SA(∞) = ∞
∞ +A ∞ = ∞ +A n = n +A ∞ = ∞ for n ∈ N

∞ ·A 0 = 0 ·A ∞ = 0
∞ ·A ∞ = ∞ ·A (n + 1) = (n + 1) ·A ∞ = ∞ for n ∈ N

So A |= Q. A difference between N and A is that A |= ∃x(x = Sx), but
N |= ∀x(x 6= Sx). So Q 6|= ∀x(x 6= Sx).

Fact: Q 6|= ∀x∀y(x + y = y + x).

Proof: Homework. Try using the universe N ∪ {∞1,∞2}.

Peano Arithmetic

Peano arithmetic (PA) is a set of sentences (a theory). The language of
PA is (0, S, ·). PA is the set of logical consequences of the axioms of Q plus
the induction axioms. For every formula A, A = A(x),

A(0/x) ∧ ∀x(A → A(x + 1/x)) → ∀xA

is an axiom. A modified form of the induction axioms is for every formula
A with free variables x, y1, . . . , yk,

∀y1 . . .∀yk(A(0/x) ∧ ∀x(A → A(x + 1/x)) → ∀xA

is an axiom. Or in sloppier, but possibly clearer form,

∀~y(A(0) ∧ ∀x(A(x) → A(x + 1)) → ∀xA(x)).

For example, PA |= ∀x(x 6= Sx).

Proof:

PA |= 0 6= Sx

since ∀x(0 6= Sx) is an axiom.

PA |= ∀x(x 6= Sx → Sx 6= SSx)
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since ∀x∀y(x 6= y → Sx 6= Sy) is an axiom. Using the induction axiom for
x 6= Sx, we have

PA |= 0 6= S0 ∧ ∀x(x 6= Sx → Sx 6= SSX) → ∀x(x 6= Sx).

So PA |= ∀x(x 6= Sx). 2

PA has at least one model; the standard model N = (N, 0, S, +, ·). Fact:
PA |= ∀x∀y(x + y = y + x). Any model (of Q also) has:

0, S0, SS0, . . .
¶

µ

³

´
6

hyperfinite or non-standard numbers

4



Validity of 1st Order Formulas is Undecidable

Math 260A - Mathematical Logic

November 30, 1988

(The treatment here is a little different from the text.) The major result
is that given a formula, A, there is no effective procedure for determining
whether or not |= A. The idea behind the proof is to express the halting
problem as a first order formula in such a way that deciding the validity of
the formula would solve the halting problem.

Let M be a Turing machine with states q0, . . . , qk, and alphabet a0, . . .,
aℓ, that only uses the right half of its input tape. Let q0 be the starting
state, and let q1 be a special halting state; i.e. instead of halting, M goes
to q1 and loops forever. Let a0 be the blank symbol. The halting problem
for such a Turing machine is undecidable.

The first order language for such a Turing machine is L = (0, S, Q0, . . .,
Qk, A0, . . ., Aℓ), where 0 is zero, S is the successor function, Qi(t, x) is a
binary relation representing the fact that at time t, the the tape head is over
the xth tape square and M is in state qi, and Ai(t, x) is a binary relation
representing the fact that at time t, the xth tape square contains the symbol
ai.

We want a formula, CM to say that M halts on the empty tape.

Preliminaries

a) To model the natural numbers, we need

∀x(0 6= Sx)
∀x∀y(x 6= y → Sx 6= Sy)
∀x(x 6= 0 → ∃y(x = Sy))

b) To specify that the tape starts at the left most tape square and that the
tape is initially blank, we need

1



Q0(0, 0)
∀xA0(0, x)

c) Now we need to specify that every tape square has at most one symbol:

∀x∀t(¬(Ai(t, x) ∧ Aj(t, x))), i 6= j

that M is not in two states at once:

∀x∀t(¬(Qi(t, x) ∧ Qj(t, x))), i 6= j

and that the tape head is not in two places at once:

∀t∀x∀y(x 6= y → ¬(
k
∨

i=1

Qi(t, x)) ∧ (
k
∨

i=1

Qi(t, y))).

d) We need to specify the instructions of M . For instructions of the form
qiajamqn which write symbols, we need:

∀t∀x(Qi(t, x) ∧ Aj(t, x) → Qn(St, x) ∧ Am(St, x)).

For instructions of the form qiajRqn which move the tape head to the
right, we need:

∀t∀x(Qi(t, x) ∧ Aj(t, x) → Qn(St, Sx) ∧ Aj(St, x)).

And for instructions of the form qiajLqn which move the tape head to
the left, we need:

∀t∀x(Qi(t, x) ∧ Aj(t, x) → ∃y(Sy = x ∧ Qn(St, y) ∧ Aj(St, x))).

(Remember that M never moves to the left of the initial square.)

e) Finally, we need to specify that the tape squares not under the tape head
don’t change:

∀t∀x[(
k
∧

i=1

¬Qi(t, x)) →
ℓ

∧

j=1

(Aj(t, x) ↔ Aj(St, x))].
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Let the conjunction of the formulas in (a) - (e) be RM . If M |= RM ,
then for standard times and positions (i.e. times and positions obtained by a
finite number of applications of S and 0) the Aj and Qi predicates correctly
describe the operation of M on the empty tape. (Provided that M hasn’t
halted by time t.)

Proof: by induction on time.

To detect halting, we need the formula HM :

∃t∃x(Q1(t, x))

which says that M halts. (A problem that we’ll come back to is “what if
the t at which M halts is nonstandard?”)

Now consider the formula CM :

RM → HM .

When is this valid? There are two cases to look at.

Case 1. M halts.

Claim: If M halts, then |= RM → HM .

Proof: Take any structure, A. If A |= RM , then for standard times
and positions, A |= Qi(t, x) iff M is in state qi at time t at position
x. So A |= Q1(t0, x0) if M halts after t0 steps at tape square x0.
(Q1(t0, x0) abbreviates Q(St00, Sx00).)

Case 2. M doesn’t halt. Consider two structures.

1. The standard model for RM , A:

A = {0, 1, 2, . . .}
SA = S

QA

i (n, m) - as determined by running M

AA

j (n, m) - as determined by running M

Clearly, A |= RM , and A 6|= HM . So A 6|= RM → HM .

2. A nonstandard model, B. Let

B = {0, 1, 2, . . .} ∪ {. . . ,−2
′

,−1
′

, 0
′

, 1
′

, 2
′

, . . .},
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the disjoint union of the integers and the natural numbers. Also,
let the interpretations of the non-logical symbols be (n, m are
standard numbers, n

′

, m
′

are non-standard numbers):

SB(n) = n + 1

SB(n
′

) = (n + 1)
′

QB

i (n, m) - as before
AB

j (n, m) - as before

AB

0 (x, m
′

)

AB

0 (n
′

, x)

QB

1 (n
′

, 0)

The last three sets of predicates state that the tape is blank for all
non-standard times and positions, and that M is in a halting state at
all non-standard times. If we view time and position pictorially, we
have

time 0
1
2
...

...
-1

′

0
′

1
′

...

position

0 1 2 . . . . . . -1
′

0
′

1
′

. . .

running of M

µ

¶ ´

¶ ³

´

blank tape

Now, B |= RM because at any time we only have one state and one
position, so M transitions correctly. (At non-standard times, M is in
a loop that has no beginning and no end.) So B |= RM ∧ HM . So if
M never halts, RM → HM is satisfiable, but not valid.

We have shown that |= CM iff M halts on the empty tape, so

Theorem: The set of valid first order formulas is not decidable.
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Last time, we found, for a Turing machine M with extra restrictions (e.g.
one way infinite tape, special halting state), a formula CM such that |= CM

iff M halts on the empty tape. An important point is that given M , we
effectively get CM .

Theorem: There is no effective procedure which, given a first order formula
A, determines if |= A.

Proof: Suppose, for the sake of contradiction, that there was such an effective
procedure. We could then determine if a given M halts on the empty tape
by

1. forming CM , and

2. using the effective procedure to see if CM is valid. 2

Now let’s restrict our attention to finite structures. Is it decidable if a
given first order formula A is true in every finite structure? No, but we
have to change CM . The reason we have to do this is that RM codes M ’s
computation using Aj , Qi, S, and 0. So any model of RM is infinite. We
need to change RM to allow finite structures. To do this, we’ll change part
(a) of the definition of RM to

a
′

) We allow time to stop, and we force time to stop when M halts:

∀x(0 6= Sx)
∀x∃y(x 6= 0 → x = Sy)
∀x∀y(Sx = Sy → x = y ∨ x = Sx ∨ y = Sy)
∀x(x = Sx ↔ ∃y(Q1(x, y))

1



Now, let R∗

M be RM with (a) changed to (a
′

).

Claim: R∗

M has a finite model iff M halts after starting on a blank tape.

Proof: If M halts in t0 steps, it can’t move right more than t0 squares. So
the model is finite; i.e.

-

?

position

time

t0

t0

Q0

Q1

Qi’s and Aj ’s

determined by
running M

If R∗

M has a finite model, then M has to halt since there must be a time t0
such that t0 = St0. So R∗

M is satisfied by some finite structure iff M halts
on the empty tape. 2

Theorem: It is undecidable if a given first order formula has a finite model.
(Note that R∗

M has a finite model iff it is not the case that ¬R∗

M is true in
every finite model.)

So it is undecidable if a given formula is true in every finite model.

Theorem: The set of formulas which have a finite model is r.e.

Proof: Given a first order formula A, the idea is to enumerate all finite
structures in the language of A and check each one to see if it is a model of
A. The following procedure does this:

for i = 1, 2, . . .

for each structure in the language with i objects
if the structure is a model of A then

halt

end

end

(Note that for each i, there are only a finite number of structures with i

objects in their universes (up to isomorphism) because each constant, func-
tion, and relation only has a finite domain and range. Also, note that we
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can check to see if a structure is a model of A since the quantifiers only
range over a finite universe.)
By Church’s thesis, this procedure gives a partial recursive function whose
domain is the set of formulas with finite models. Therefore this set is r.e. 2

Corollary: The set of first order formulas which are true in every finite
structure (i.e. the set of formulas whose negations do not have a finite
model) is not r.e.

Proof: by contradiction. Given a formula, A, enumerate, in an interleaving
fashion, the following sets:

1. all formulas satisfiable in a finite structure, and

2. all formulas true in every finite model.

Either A appears in list 2 and A is true in all finite models, or ¬A appears
in list 1 and A is not true in all finite models. This would then give us
a decision procedure for deciding if a given formula is true in every finite
model, a contradiction.

Databases

Definition: A database is a finite structure.

Definition: A language L is relational iff it has no function symbols. (We
allow constant symbols.)

Definition: A relational database is a database in a relational language.

For example, “Fatherof(x, y)” is a relation and so could be in a relational
database. But, “Father(y)” is a function and could not be in a relational
database.

Older style databases have pointers between records which are essentially
functions. Relational databases just have tables of relations.

Fact: (Codd) Basic query languages for relational databases can express
exactly the first order formulas.

Some examples of queries. Let L = {E} where E is a binary relation,
and E(x, y) iff there is an edge from x to y. A structure in the language L

“is” a directed graph. To express the property “x is isolated”, we would say

3



∀y¬E(x, y) ∧ ¬E(y, x)).

The relation {〈x, y〉 : there is a directed path from x to y} is not first order
definable. (Because we have no way specifying that a path is constructed
out of an arbitrary number of transitive operations.)
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Proof Theory
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The overall business of mathematics is to determine whether or not cer-
tain first order formulas are valid. Why first order? Most of mathematics
can be formalized in set theory, and set theory is usually formalized as a first
order theory with nonlogical symbol ∈ (i.e., x ∈ y). There are some gray
areas; the axiom of choice and the continuum hypothesis are independent of
set theory. The truth of these does not necessarily mean validity since there
are structures in which they are false.

How do we show that something is valid? Proofs. Proofs are used to
establish mathematical results. Our next task is to formalize the notion of
proof. Proofs, as used by mathematicians, are a social phenomenon in the
sense that they depend on what people are willing to accept. We want a
mathematical definition of proof.

We will use a “refutation proof system”. Instead of proving that φ is
valid, we’ll show that ¬φ is not satisfiable. More generally, given a set
Γ of sentences, a refutation of Γ will show that Γ is not satisfiable. (An
assumption that we’ll make, which is not necessary for the development, is
that first order languages are countable.)

The idea behind a refutation is to build a series of Γi’s and end up with
a Γn that is not satisfiable. Specifically, Γ1 is Γ, and Γi+1 will extend Γi by
one more sentence in such a way that if Γi is satisfiable, then so is Γi+1. A
refutation of Γ can be written out as the list of sentences added to make the
Γi’s. The property of being a refutation will be decidable.

Corollary: (Compactness Theorem) If Γ is unsatisfiable, then some finite
subset is unsatisfiable.

Example: Let’s show that

∃x∀yP (x, y) |= ∀y∃xP (x, y) (∗)

1



is valid. Let Γ be

{∃x∀yP (x, y), ¬∀y∃xP (x, y)}.

Then * is true iff Γ is not satisfiable. The first step is to put Γ into prenex
normal form:

Γ
′

= {∃x∀yP (x, y), ∃y∀x¬P (x, y)}.

The next step is to refute Γ
′

with a derivation of a contradiction:

1. ∃x∀yP (x, y) assumption
2. ∃y∀x¬P (x, y) assumption
3. ∀yP (a, y) existential instantiation from 1
4. ∀x¬P (x, b) existential instantiation from 2
5. P (a, b) universal instantiation from 3
6. ¬P (a, b) universal instantiation from 4

Lines 5 and 6 are contradictory, hence * must be valid. (Existential and uni-
versal instantiation (EI and UI) give names for an instance of some variable.
For example in line 3, we gave the name a to some x such that ∀yP (x, y).)
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Proof Theory (cont.)
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(continued from last lecture)

Example: In order to prove

∃x∀y(P (y) ↔ x = y) |= ∃xP (x),

we need a refutation of

{∃x∀y(P (y) ↔ x = y),¬∃xP (x)}.

1. ∃x∀y(P (y) ↔ x = y) assumption
2. ∀x¬P (x) assumption (in PNF)
3. ∀y(P (y) ↔ a = y) EI from 1
4. ¬P (a) UI from 2
5. P (a) ↔ a = a UI from 3
6. ∀x(x = x) equality axiom
7. a = a UI from 6

Since lines 4, 5, and 7 are tautologically inconsistent, the proof is complete.
“Tautologically inconsistent” means that there is no way to assign truth
values to the atomic subformulas P (a) and a = a that makes the formulas
in lines 4, 5, and 7 all true.

Definition: Let Γ be a set of sentences with language L. Let L+ be L plus
new constant symbols a1, a2, . . .. A derivation D from Γ is a sequence (finite
or countably infinite) of sentences such that each sentence A in D satisfies
one of the following:

1. A is a member of Γ. (A is an assumption.)
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2. There is a sentence of the form ∃xB in D occurring before A such that
A is B(ai/x) for some ai which has not yet occurred in D.

3. There is a sentence of the form ∀xB in D occurring before A such that
A is B(t/x) for some term t in the language L+. (We do allow t to
have names aj which haven’t been used before.)

Question: Why would we want to substitute terms instead
of just names?

Answer: Suppose we wanted to show that |= ∃x(S0 = x).
The following refutation does this.

1. ∀x(¬S0 = x) assumption (in PNF)

2. ¬S0 = S0 UI

3. ∀x(x = x) equality axiom

4. S0 = S0 UI

Note that step 2 substitutes the term S0 for the quantified
variable.

4. A is one of the following equality axioms:

(a) (reflexivity) ∀x(x = x).

(b) (symmetry) ∀x∀y(x = y → y = x).

(c) (transitivity) ∀x∀y∀z(x = y ∧ y = z → x = z).

(d) For each k-ary predicate symbol P in L,

∀x1 . . .∀xk∀y1 . . .∀yk(
k
∧

i=1

xi = yi∧P (x1, . . . , xk) → P (y1, . . . , yk))

is an equality axiom.

(e) For each k-ary function symbol f in L,

∀x1 . . .∀xk∀y1 . . .∀yk(
k
∧

i=1

xi = yi → f(x1, . . . , xk) = f(y1, . . . , yk))

is an equality axiom.
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Question: Why do we need d) and e)?

Answer: Consider the following structure with P a unary
relation, and = a binary relation:

universe = {0, 1},
0 = 0, 0 = 1, 1 = 0, 1 = 1, and
P (0), ¬P (1).

d) and e) constrain structures to use = as true equals. When
we were discussing model theory, we defined = as true equals
and didn’t leave it up for interpretation; d) and e) provide
the same constraints in proof theory.

Definition: A refutation of Γ is a finite length derivation D from Γ such
that the set of quantifier free sentences in D is tautologically inconsistent.

Proposition: If Γ is decidable (i.e. we can determine whether or not a
sentence is in Γ), then the property of being a refutation of Γ is decidable.
(I.e. there is an effective algorithm which determines whether or not a set
of sentences is a refutation of Γ.

Question: What if there are infinitely many function or predicate
symbols?

Answer: One convention is to assume that the number of func-
tion or predicate symbols of arity k is computable. (Since we usu-
ally know what language we’re using, we’ll assume this conven-
tion.) Another convention is to require that terms in UI instances
and equality axioms only contain function/predicate/constant
symbols that have already appeared in an assumption of Γ.
(Note that this alternate convention will require a change in the
definition of derivation.)

Observation: We can Gödel number sentences, so we can Gödel number
derivations, and so we can Gödel number refutations. So a refutation is just
a string of symbols that follow certain rules.

Theorem: (soundness) If Γ has a refutation, then Γ is not satisfiable.
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Theorem: (completeness, Gödel, 1929) If Γ is not satisfiable, then Γ has a
refutation.

These two theorems give us the fact that Γ has a model iff there is no
refutation of Γ. Or, in other words, φ is valid (|= φ) iff there is a refutation
of ¬φ. This provides us with a link between being true in all structures and
being a refutation of ¬φ. Or, in other words, a link between syntax and
semantics.

Notation: ⊢ φ means that φ is provable (or that ¬φ has a refutation).
Γ ⊢ φ means that φ is provable from Γ (or that Γ ∪ {¬φ} has a refutation).

Gödel says that ⊢ φ ⇔ |= φ.
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Soundness and Completeness

Math 260B - Mathematical Logic

January 9, 1989

A few notes about derivations: Sometimes derivations will be labeled
with justifications; i.e. “EI (n)” or “UI (n)”. These comments denote that
a given line was inferred from line number n by EI or UI. Assumptions must
be in prenex normal form, and may have to be labeled with the original
formula in order to make derivations decidable.

Theorem: (Soundness.) If Γ has a refutation, then Γ is unsatisfiable.

Proof: Let the language of Γ be L, and let D be a refutation of Γ in the
language L+.

Lemma: If Ai is a structure which makes Γ and the first i

sentences in D true, then there exists an Ai+1 that makes Γ and
the first i + 1 sentences of D true.

Proof: (Without loss of generality, assume that the language of
Aj contains exactly the symbols from Γ and the first j lines of
D.) Let φ be the (i + 1)st sentence in D.

case 1. φ ∈ Γ. Then set Ai+1 = Ai.

case 2. φ is an equality axiom. Then set Ai+1 = Ai.

case 3. φ is obtained by EI from ∃xψ appearing earlier in D.
Then φ is ψ(an/x) for some new an. Since Ai |= ∃xψ, there
is a b ∈ |Ai| such that Ai |= ψ(b/x). Form Ai+1 by taking

Ai and letting a
Ai+1

n = b.

case 4. φ is ψ(t/x) derived by UI from ∀xψ which appeared
earlier in D. If t involves no new constant symbols, take
Ai+1 = Ai. (Remember, derivations can’t introduce new
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function or predicate symbols.) If t has new constant sym-
bols, say an, an+1, . . ., then let b be an arbitrary element of

|Ai|, and let Ai+1 be Ai plus a
Ai+1

n = b, a
Ai+1

n+1
= b, . . .

Note that in constructing Ai+1, we never change |Ai|; we only
add new constant symbols. 2

The soundness theorem is immediate from the lemma. (The lemma proves
the contrapositive of the theorem.) 2

Theorem: (Completeness.) If Γ is unsatisfiable, then Γ has a refutation;
or (Gödel) if there is no refutation of Γ, then Γ has a model. (Note that the
completeness theorem is true for uncountable Γ, but we’ll only prove it for
countable Γ.

Before proving the completeness theorem, we’ll develop the notion of
canonical derivation.

Definition: Assuming that Γ is countable, a derivation D is canonical iff

1. Every sentence in Γ appears in D.

2. Every equality axiom in the language L of Γ appears in D.

3. For every sentence of the form ∃xψ in D, there is another sentence
ψ(t/x) for some term1 t in L+.

4. For every sentence of the form ∀xψ in D and every term t involving
only symbols from L and constants appearing in D, ψ(t/x) is in D.
(Note that we mean all terms t, not just those appearing earlier in D.)

5. If ∀xψ is in D, then ψ(t/x) is in D for at least one t. (This is just to
make sure that there is at least one constant in the language.)

Question: Why do we need at least one constant in the L?

Answer: If we have a universally quantified formula, we need
to make sure that there is something to quantify over. This
is basically the same reason that we require structures to
have non-empty domains.

1The terms that appear in canonical derivations are “closed” terms; terms with no
variables.
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Example: Let Γ = {∃x(f(x) = f(x) ∧ f(x) 6= f(x))}. The terms of Γ are:

a1, f(a1), f(f(a1)), . . .

The atomic formulas of Γ are

a1 = a1, a1 = f(a1), a1 = f(f(a1)), . . .
f(a1) = a1, f(a1) = f(a1), f(a1) = f(f(a1)), . . .

f(f(a1)) = a1, . . .

. . .

A canonical derivation contains instances of the equality axioms:

a1 = a1, f(a1) = f(a1), . . .
a1 = a1 → a1 = a1, a1 = f(a1) → f(a1) = a1, . . .

a1 = a1 ∧ a1 = a1 → a1 = a1, a1 = f(a1) ∧ f(a1) = f(f(a1)) → a1 = f(f(a1)), . . .
a1 = a1 → f(a1) = f(a1), a1 = f(a1) → f(a1) = f(f(a1)), . . .

Proposition: Let Γ be a countable set of sentences. Then there is a canon-
ical derivation from Γ.

Proof: Let Γ = {γ1, γ2, . . .}. Let D0 be the three equality axioms:

∀x(x = x)
∀x∀y(x = y → y = x)
∀x∀y∀z(x = y ∧ y = z → x = z)

For i > 0, let Di be Di−1 plus:

1. γi if there is one.

2. The equality axioms for any function and/or predicate symbols that
just appeared for the first time in γi.

3. For any sentence of the form ∃xψ in Di−1 that hasn’t already been
EI’ed, add ψ(an/x) for some new an.

4. For every sentence of the form ∀xψ in Di−1 and every term t with less
than or equal to i occurrences of function symbols in the language L

plus the constants used so far, add ψ(t/x). If no such t exists, add
ψ(a1/x).
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5. For the sake of efficiency, don’t add sentences that have already been
added.

Let D be the limit of D0, D1, . . . (i.e. D =
⋃

Di.) 2

We’ll use the following to show completeness:

Main Lemma: Suppose that D is a canonical derivation from Γ and that
no finite initial part of D is a refutation of Γ (i.e., no finite set of quantifier
free sentences in D is tautologically inconsistent). Then Γ is satisfiable.

Proof: Next time.

Question: How do we know that there isn’t a non-canonical
derivation which refutes Γ?

Answer: The lemma shows that if D doesn’t refute Γ, then Γ
is satisfiable. The soundness theorem then says that since Γ is
satisfiable, Γ has no refutation. So the lemma is actually stronger
than the assertion that if there is no refutation of Γ, then Γ is
satisfiable.

Note that given an effectively enumerable set Γ, we can search for a
refutation by following the algorithm in the proof of the above proposition
(and checking for tautological inconsistency after each Di). This will find a
refutation iff one exists. This is an improvement over the brute force search
which codes derivations and first looks at all strings of length 1, then of
length 2, and so on.

Corollary: (to Gödel completeness theorem.) The set of valid formulas is
r.e.

Proof: A formula φ is valid iff ¬φ has a refutation. We can list valid formulas
by generating canonical derivations. Whenever we find a refutation of ¬φ

for any φ, write out φ. 2
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Completeness

Math 260B - Mathematical Logic

January 11, 1989

Main Lemma: If there is a canonical derivation D from Γ (countable)
such that every finite set of quantifier free sentences in D is tautologically
consistent, then Γ is satisfiable.

Proof: Let L2 be the language L plus the an’s used in D. (L2 may be all of
L+ if every an in L+ is used in D.) Consider the set of atomic formulas in
the language of L2 as propositional variables. By the compactness theorem
for propositional logic, there is an assignment σ of truth values to the atomic
L2 formulas such that σ makes every quantifier free sentence in D true. In
order to finish the proof of the main lemma and the completeness theorem,
we’ll need the following four lemmas.

Definition: If r and s are L2 terms, r ∼ s means that σ(r = s)
= true; i.e., σ assigns the value true to the atomic formula r = s.

Lemma 1: ∼ is an equivalence relation.

Proof: We must show that ∼ is reflexive, symmetric, and tran-
sitive.

Reflexivity. Since ∀x(x = x) is an equality axiom, it must ap-
pear in any canonical derivation, D. Hence r = r is in D

for all terms r. So σ(r = r) = true for all terms r.

Symmetry. Since ∀x∀y(x = y → y = x) is an equality axiom,
it must appear in any canonical derivation, D. Hence r =
s → s = r is in D for all terms r and s. So σ makes all of
these pairs of atomic formulas true. Hence ∼ is symmetric.

1



Transitivity. Since ∀x∀y∀z(x = y ∧ y = z → x = z) is an
equality axiom, it must appear in any canonical derivation,
D. Hence r = s ∧ s = t → r = t is in D for all terms r, s

and t. So σ makes all of these triples of atomic formulas
true. Hence ∼ is transitive. 2

Lemma 2: (∼ respects the function and predicate symbols of
L.) If f is a k-ary function symbol in L and if r1 ∼ s1, . . . , rk ∼
sk, then f(r1, . . . , rk) ∼ f(s1, . . . , sk). If P is a k-ary predicate
symbol in L and if r1 ∼ s1, . . . , rk ∼ sk, then σ(P (r1, . . . , rk)) =
σ(P (s1, . . . , sk)).

Proof: By the equality axioms,

σ(r1 = s1 ∧ . . . ∧ rk = sk → f(r1, . . . , rk) = f(s1, . . . , sk)) = true,
σ(r1 = s1 ∧ . . . ∧ rk = sk ∧ P (r1, . . . , rk) → P (s1, . . . , sk)) = true

for all ~r and ~s. 2

Definition: [r] = {s : r ∼ s}.

Definition: Let A be a structure in the language L2 (the lan-
guage of D) defined as follows:

1. |A| = {[r] : r is an L2 term}.1

2. For every function symbol f in L2, fA is defined by

fA([r1], . . . , [rk]) = [f(r1, . . . , rk)].

3. For every predicate symbol P in L2, PA is defined by

PA([r1], . . . , [rk]) iff σ(P (r1, . . . , rk)) = true.

4. For every constant symbol c in L2, cA = [c].

1A slight modification to |A| is made at the beginning of the next lecture.
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Lemma 3: A is well defined as a structure.

Proof: By Lemma 2. 2

Lemma 4: A |= φ for every φ in D.

Proof:

Claim 1: For any term r, let rA be r with each con-
stant symbol c changed to cA and each function symbol
f changed to fA. Then rA = [r].

Proof: By induction on the complexity of r and parts
2 and 4 of the definition of A. 2

Claim 2: Let φ be an atomic formula. Then A |= φ

iff σ(φ) = true.

Proof: Obvious by part 3 of the definition of A and a
slight variant of claim 1. 2

(Proof of Lemma 4 continued.) By induction on the number of
quantifiers in φ.

Case 1. φ is quantifier free. Since σ(φ) = true and by claim 2,
σ and A agree on the truth of atomic subformulas of φ.

Case 2. If φ is of the form ∃xψ, then for some term t, ψ(t/x)
is in D. By the induction hypothesis, A |= ψ(t/x). Hence,
by claim 1, A |= ∃xψ.

Case 3. φ is of the form ∀xψ. For every L2 term r, ψ(r/x)
is in D. By the induction hypothesis, A |= ψ(r/x) for all
terms r. Hence, by claim 1 and induction on the complexity
of r, A |= ψ([r]/x) for all terms r. A |= ψ(rA/x) follows
from A |= ψ(r/x). Hence for all a ∈ |A|, A |= ψ(a/x). So
A |= ∀xψ by the definition of truth.2 2

(Proof of Main Lemma and Gödel’s completeness theorem continued.) Since
D is canonical, D ⊇ Γ. So A |= φ for all φ ∈ Γ. By letting A− be A restricted
to the language of Γ (i.e. eliminate new constant symbols), A− |= Γ. 2

2For more details, see the beginning of the next lecture.
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Question: Why do we need to restrict A to A−?

Answer: We don’t really. But last quarter we gave two defi-
nitions of what it meant for a structure A to satisfy a set of
sentences Γ: one admitted the possibility of extra constant sym-
bols, and the other didn’t.
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Corollaries of Completeness

Math 260B - Mathematical Logic

January 13, 1989

Definition: r is a closed term if it contains no variables.

Definition: If r is closed, then rA denotes the value of the term r in A.

Recall, from the definition of truth, that if s is an object assignment,
then s̄(r) denotes an object. If r is closed, then s̄(r) is independent of s. So

rA
def
= s̄(r) for any object assignment s.
Last time, we defined

|A| = {[r] : r is a closed term in L2}.

r was comprised of constant symbols in D and function symbols in L, the
language of Γ.

Definition: A is a Herbrand model because every object in |A| is equal to
rA for some closed term r in L2, the language of A.

In case 3 of lemma 4, we showed that if φ = ∀xψ is in D, then A |= φ.
The reason was that for all a ∈ |A|, a = rA = [r] for some closed term r.
Since ψ(r/x) is in D, A |= ψ(rA/x). (i.e. A |= ψ[s] for s(x) → rA.) By
induction, A |= ψ(rA/x) for all rA. So A |= ∀xψ by the definition of truth.

We also defined A− with the language L (not L2) to be

|A−| = |A|,

PA

−

= PA,

fA

−

= fA, and

cA
−

= cA

1



for all P, f, c ∈ L. And we showed that A− |= Γ since A |= Γ. Even though
we threw away constant symbols from L2, we didn’t throw away the objects
that those symbols represented. Note that because we threw away some
constant symbols, A− may not be a Herbrand model in the language of L.

Question: Could we throw away those objects and still have a
model of Γ?

Answer: Not in general. For example, suppose that Γ =
{∃xP (x), P (c)}. If A had only one object in PA and we threw
it away, then A 6|= ∃xP (x).

The following 5 corollaries result from Gödel’s completeness theorem.

Corollary 1: If Γ is a countable set of sentences and Γ is satisfiable, then
Γ has a countable (possibly finite) model.

Proof: The A− in the proof of the completeness theorem is countable because
we started with a countable language and added countably many constant
symbols. 2

Corollary 2: (compactness theorem) If Γ is unsatisfiable, then some finite
subset of Γ is unsatisfiable

Proof: Since Γ is unsatisfiable, it has a refutation, D. Since refutations
are finite, D uses a finite number of sentences from Γ. This is then an
unsatisfiable finite subset of Γ. 2

Corollary 3: If Γ ⊢ φ, then for some finite Γ0 ⊆ Γ, Γ0 ⊢ φ.

Proof: Since Γ ⊢ φ, Γ ∪ {¬φ} is unsatisfiable. By corollary 2, there is some
finite subset Γ0 such that Γ0 ∪ {¬φ} is unsatisfiable. Hence Γ0 ⊢ φ. 2

Corollary 4: If Γ has arbitrarily large finite models, then Γ has an infinite
model.

Proof: Let ∆ = Γ ∪ {α1, α2, . . .}, where

αk = ∃x1 . . .∃xk(
∧

1≤i<j≤k

xi 6= xj);

i.e. αk says that there are at least k distinct objects. Now every finite subset
of ∆ has a model, so by the compactness theorem, ∆ has a model which is
necessarily infinite. 2
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As an example, consider the following definition.

Definition: The theory of R, Th(R), where R = (R, 0, +, ·), is the set of
first order sentences true in R.

By corollary 1, Th(R) has a countable model since Th(R) is a countable
set of sentences. Later, we’ll see that ZF, the usual set theory, is a first
order theory and is presumed to be satisfiable. Hence ZF has a countable
model. Such a model will then satisfy the sentence which asserts that “R is
uncountable”; i.e. “¬∃ a 1-1 map from N onto R”. This sentence will be true
in the structure, but false in the real universe. (This is Skolem’s paradox.)

We have shown:

• that the set of formulas valid in all structures is r.e. but not recursive
and hence not co-r.e. and

• that the set of formulas valid in all finite structures is co-r.e. but not
recursive and hence not r.e. (We did this last quarter.)

Corollary 5: There is no Γ in any language L such that the models of Γ
are precisely the finite structures in the language L.

Proof: Similar to the proof of corollary 4. Suppose that A |= Γ iff |A| is
finite. Let αj say that there are at least j objects. Now Γ ∪ {α1, . . . , αi}
has arbitrarily large models, and hence by corollary 4 has an infinite model.
Such a model is also a model of Γ itself. 2

We can now prove the existence of nonstandard models of arithmetic.
Let Th(N, 0, S, +, ·) be the set of sentences true in (N, 0, S, +, ·). Then
Th(N, 0, S, +, ·) has a nonstandard countable model.

Proof: Let Γ be

Th(N, 0, S, +, ·) ∪ {c 6= 0, c 6= 1, . . .}

where c is a new constant symbol. Every finite subset of Γ is satisfiable.
So Γ has a countable model A from which we can discard the constant
symbol c (but not the object it denotes) to get the nonstandard model of
Th(N, 0, S, +, ·). (Note that A |= c > Sk0 for all k ∈ N , so c is an “infinite”
element.) 2
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Set Theory

Math 260B - Mathematical Logic

January 18, 1989

Today’s lecture will introduce Zermelo-Fraenkel set theory (ZF). This
is a language whose only non-logical symbol is ‘∈’. The objects of ZF are
intended to represent sets. The following formulas are axioms of ZF.

Null Set Axiom: There is a set with nothing in it:

∃x∀y(y 6∈ x).

Pair Set Axiom: For any two objects x and y, there is a set z = {x, y}
that contains exactly those two objects:

∀x∀y∃z∀u(u ∈ z ↔ u = x ∨ u = y).

Union Axiom: For any set x, there is another set y, such that y is the
union of all objects in x; i.e. y =

⋃

z∈x z:

∀x∃y∀z(z ∈ y ↔ ∃w(w ∈ x ∧ z ∈ w)).

Extensionality Axiom: If, for any two sets x and y, all sets in x are also
in y and vice versa, then x is the same as y:

∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y).

This prevents the existence of urelements, which are sets with nothing
in them and which are not the empty set.

Regularity Axiom: Every set (except the empty set) has a “least” ele-
ment; least in the sense that we can’t have . . . x3 ∈ x2 ∈ x1:
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∀x(x 6= ∅ → ∃y(y ∈ x ∧ ∀z(z ∈ x → z 6∈ y)).

Note that this disallows having {x} ∈ {x}. Also note the occurrence of
∅. We can define ∅, x∩y, x∪y, and x ⊆ y, in terms of first order set theory.

Subset Axiom: For any set x and formula A, there is another set y

consisting of all members of x that make A true; i.e. y = {z ∈ x : A(z)}:

∀x∃y(∀z(z ∈ y ↔ A(z) ∧ z ∈ x)).

Note that this is an axiom schema since A can be any formula.

Power Set Axiom: For any set x, there is a power set y of x; i.e., y
contains all subsets of x:

∀x∃y∀z(z ∈ y ↔ z ⊆ x).

Note that this axiom doesn’t follow from the subset axiom. Also note
that “z ⊆ x” is an abbreviation for ∀w(w ∈ z → w ∈ x).

Infinity Axiom: There is a set containing an infinite number of elements:

∃x(∅ ∈ x ∧ ∀y(y ∈ x → {y} ∈ x)).

Note that the existence of {y} is implied by the pair set axiom; i.e.
{y, y}.

Replacement Axiom: If (the graph of) a function can be defined by
a first order formula A, and A’s domain is a set, then its range is a set
which can be constructed by replacing each element in the domain by the
corresponding element in the range of A.

∀w[∀x(x ∈ w → ∃!yA(x, y)) → ∃v∀x(x ∈ w → ∃y(y ∈ v ∧ A(x, y)))].

Note the occurrence of “∃!”. This means that there exists a unique
object. ∃!yA(x, y) can be defined as

∃yA(x, y) ∧ ∀y∀y
′

(A(x, y) ∧ A(x, y
′

) → y = y
′

).

2



Axiom of Choice: ZFC is the above set of axioms together with the axiom
of choice. The axiom of choice says that if we have a set of nonempty sets,
we can choose a set of representatives of those sets:

∀x[∅ 6∈ x → ∃v(v is a set of ordered pairs

coding a 1-1 function f with domain x

and such that ∀w ∈ x → f(w) ∈ w)].

Explanation: x is a set of sets. w is a set in x. f is the choice function. f

takes as input an element w from x and produces an element from w.

An “ordered pair” 〈u, v〉 is defined by {{u}, {u, v}} using three applications
of the pair set axiom. Ordered pairs are such that

∀u∀v∀u
′

∀v
′

〈u, v〉 = 〈u
′

, v
′

〉 → u = u
′

∧ v = v
′

.

“x is an ordered pair” is defined by ∃u∃v(x = 〈u, v〉). The domain of a set
of ordered pairs z is defined by

{u : ∃v〈u, v〉 ∈ z ∧ u ∈
⋃

r∈
⋃

s∈z

s

r}.

Explanation: z is a set of ordered pairs {〈u1, v1〉, 〈u2, v2〉, . . . , 〈uk, vk〉}.
⋃

s∈z s is the union of the ordered pairs. The r’s are ordered pairs.
⋃

r∈
⋃

s∈z

s r is the union of the elements of those ordered pairs; i.e.,
⋃

r∈
⋃

s∈z

s r = {u1, v1, u2, v2, . . . , uk, vk}. u is one of those elements. The

double union essentially “strips away the braces” to get at the elements of
the ordered pairs.

The range is similarly defined, and from those, function can be defined.
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Ordinals can be thought of as “canonical well-ordered sets”. The integers
can be represented by sets as follows:

0 is denoted by ∅

1 is denoted by {∅}

2 is denoted by {∅, {∅}}

3 is denoted by {∅, {∅}, {∅, {∅}}}
...

n + 1 is denoted by n ∪ {n}
...

With this convention, i < j iff i ∈ j for any integers i and j. The set

{0, 1, 2, . . .}
def
= ω

def
= N . Using the convention for representing integers,

ω + 1 = ω ∪ {ω}.

Definition: A binary relation ≺ well-orders a set A iff ≺ is a linear total
ordering of A and for every nonempty subset B of A there is a minimal
element of B in the sense that ∃x ∈ B(∀y ∈ B(x 6= y → x ≺ y)).

Definition: A set A is transitive iff ∀x∀y(y ∈ x ∧ x ∈ A → y ∈ A).

Definition: A set is an ordinal iff it is transitive and well-ordered by ∈.

Example: {0, 2} is well-ordered by ∈, but it is not transitive since 1 ∈ 2.
So it is not an ordinal.

1



Theorem: Every well-ordered set A (with order ≺) is isomorphic to some
ordinal α (with order ∈); i.e. (A,≺) is isomorphic to (α,∈).

Proof: (outline) Let the elements of A be ordered as {a0 ≺ a1 ≺ . . . ak ≺
a
′

≺ . . .}. a
′

is nice iff ({a ∈ A : a ≺ a
′

},≺) is isomorphic to some ordinal
α with order ∈; i.e. iff there is an isomorphism of a0, . . . ak to some ordinal
α with order ∈. If there is a non-nice symbol, then there is a minimal one.
From that, we can derive a contradiction. 2

The following are some examples of the properties of ordinals.

Example: ω + ω : 0 ≺ 1 ≺ 2 . . .
︸ ︷︷ ︸

ω

0
′

≺ 1
′

≺ 2
′

. . .
︸ ︷︷ ︸

ω

Example: 1 + ω = ω : 1 ≺ 0
′

≺ 1
′

≺ 2
′

. . .
︸ ︷︷ ︸

ω

This example, combined with the earler definition of ω+1, leads us to think
of + as “followed by” when applied to ordinals .

Example: ({0, 2},∈) is isomorphic to 2 = ({0, 1},∈).

Definition: (of + applied to ordinals) Let α1 and α2 be ordinals. Let
(α

′

2,≺) be an isomorphic copy of (α2,∈) such that α
′

2 ∩ α1 = ∅. Let A =
(α1 ∪α

′

2, <) where < is ∈ on α1, < is ≺ on α
′

2, and a < a
′

for all a ∈ α1 and
a
′

∈ α
′

2. Then α1 + α2 is the ordinal that A is isomorphic to.

Fact: For all ordinals α and β, either α = β, α ∈ β, or β ∈ α.

Theorem: (depends on axiom of choice) Every set can be well-ordered.

The cardinality of a set is the size of the set. A cardinal will be a
canonical set of a given size. Card(x) will denote the cardinality of x.

Definition: Card(x) ≤ Card(y) iff there is a 1-1 function f : x → y.

Theorem: [Schroeder-Bernstein] (depends on axiom of choice) If Card(x) ≤
Card(y) and Card(y) ≤ Card(x), then there is a 1-1 onto function f : x →
y; i.e. x and y are isomorphic sets.

Theorem: (depends on axiom of choice) For any 2 sets x and y, either
Card(x) ≤ Card(y) or Card(y) ≤ Card(x).
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Proof: Since x and y are well-orderable. 2

Definition: x is a cardinal iff x is an ordinal and Card(x) 6= Card(y) for
all y < x.

A cardinal is the least (in the sense of ∈) ordinal of a given cardinality.
Pictorially, we have the following universe of all sets:

Universe of All Sets

∅

6

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡µ

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@I

q 1
q 2

...

q ω-ℵ0

q ω + 1

...

q ω + ω

...

q ω2

...

q ωω

...
-?ℵ1

q c = Card(R)

The sets represented by the vertical line are ordinals. The first cardinal is
∅. The next one is 1, the next is 2, . . .. The first infinite cardinal is ω and
is known as ℵ0. ℵ1 is the next cardinal after ω. It is not known where ℵ1

falls between ωω and c, the cardinality of the reals. Note that ω + 1, ω + ω,
ω2, and ωω are not cardinals.
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Definition: Card(x) < Card(y) iff Card(x) ≤ Card(y) and Card(y) 6=
Card(x).

With the axiom of choice, < is a linear order.

Definition: Card(x) is the least ordinal α such that Card(α) = Card(x).

The following shows a partial list of the first few infinite cardinals.

ℵ0 = the first infinite cardinal

ℵ1 = the first uncountable cardinal

= the first cardinal > ω
...

ℵi+1 = the first cardinal > ℵi

...

ℵω =
⋃

i∈N

ℵi

...

Note that for every ordinal α, ℵα exists.

Definition: c = Card(ω2) = 2ω, where ω2 is the set of maps from ω to 2
(remember, ‘2’ denotes a set with 2 elements).

Continuum Hypotheses (CH): c = ℵ1.

1



Generalized Continuum Hypotheses (GCH): For every infinite cardi-
nal β, 2β is the least cardinal > β.

Fact: CH is independent of ZFC; i.e., ZFC 6⊢ CH (Cohen), and ZFC 6⊢ ¬
CH (Gödel).

Fact: GCH is also independent of ZFC (Cohen, Gödel).

Proposition: Card(R) = c = 2ω.

Claim 1: Card(R) ≤ 2ω.

Proof: Let h(r) → fr such that fr(i) = ith digit of the binary
expansion of r. Then each real r corresponds to a function fr

which defines a subset of the integers: {i : f(i) = 1}. Since there
are 2ω subsets of integers, Card(R) ≤ 2ω. 2

Claim 2: Card(R) ≥ 2ω.

Proof: Code each subset of integers as a binary number as above.
Now interpret each binary number as a ternary number. Not
all of the reals will be represented by such numbers. Hence
Card(R) ≥ 2ω. 2

Skolem’s Paradox

• There is countable model, A, of ZFC; i.e., A = (A, E), where A is
countable, and A |= ZFC.

• A |= “there exists an uncountable set”; i.e., there is an a ∈ A such
that A |= “a is the power set of N and a is uncountable”.

• A |= “the set of reals is an uncountable set”; i.e., there is an a ∈ A such
that A |= “∀x(x ⊆ N ↔ x ∈ a) ∧ ¬∃ 1-1 onto function f : N → a”.

The paradox is that A is countable so there are only countably many b ∈ A.
The resolution of the paradox is that it is not the case that for every subset
of N there is a corresponding object in A. Only the first order definable
subsets are required to have corresponding objects in A, and there are only
countably many of these. From our viewpoint outside of A, the a above
contains only countably many elements (in the sense of E). And even though

2



outside of A we can see a 1-1 onto f : N → a, such an f can’t be coded by
a set in A.

Definition: ||L|| = max{Card(L), ω}; i.e., ||L|| is the size of L.

Theorem: If Γ is a satisfiable set of sentences in the language L, then Γ has
a model of cardinality ≤ ||L||. (Note that we have proved this for countable
L.)

Theorem: [Löwenheim-Skolem] If Γ has an infinite model, then Γ has a
model of cardinality α for all α ≥ ||L||.

Proof: Let {cβ : β ∈ α} be a set of new constant symbols. (The β’s are the
ordinals in α. Note that the set of cβ’s has cardinality α.) Let

Π = Γ ∪ {cβ1
6= cβ2

: β1 6= β2, β1, β2 < α}.

Every finite subset of Π is satisfiable since Γ has an infinite model. So by
compactness, completeness, and our proof of completeness Π has a model
of cardinality ≤ α (α = ||L(Π)||); i.e., by compactness, Π is consistent, by
completeness, Π has a model, and by our proof of completeness, Π has a
model of cardinality ≤ α. Since the constants denote distinct objects, Π’s
model must have cardinality = α. 2
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Definition: Given a first order prenex formula A, the skolemization of A,
AS , is a universal formula (only has universal quantifiers) defined as follows:

1. If A is universal or quantifier free, then AS = A.

2. If A = ∀x1 . . .∀xk∃yB(~x, y) with k ≥ 0, then

AS = [∀x1 . . .∀xkB(~x, fA(~x))]S

where fA is a “new” k-ary function symbol. If k = 0, then AS =
[B(cA)]S for a new constant symbol cA.

The fA’s are called Skolem functions.

Theorem: A is satisfiable iff AS is.

Definition: If Γ is a set of prenex formulas, then ΓS = {AS : A ∈ Γ}.

Theorem: [Skolem] ΓS is satisfiable iff Γ is.

Proof: (⇒) Any model of ΓS is also a model of Γ since AS |= A. (Just ignore
the extra function symbols.)

(⇐) By compactness, it suffices to assume that Γ is finite. Let Γ0, Γ1, . . . ,Γk

be sets of formulas where Γ0 = Γ, Γk = ΓS , and k is the number of existential
quantifiers in Γ. Each Γi is one step in the process of skolemizing Γ; i.e.,
each Γi+1 is obtained from Γi by replacing one Ai = ∀~x∃yB(~x, y) with
∀~xB(~x, fAi

(~x)). Any model Ai of Γi can be expanded to a model Ai+1 of

Γi+1 with f
Ai+1

Ai

(~a) = some b such that Ai |= B(~a, b) for all ~a ∈ |Ai|. So if

A0 |= Γ, then Ak |= ΓS . 2
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Definition: If A is a prenex formula, then the Herbrandization of A, AH ,
is defined by

1. If A is existential or quantifier free, then AH = A.

2. If A = ∃x1 . . .∃xk∀yB(~x, y), then

AH = [∃x1 . . .∃xkB(~x, gA(~x))]H

where gA is a new k-ary function symbol. If k = 0, then AH =
[B(cA)]H for a new constant symbol cA.

Theorem: AH is valid iff A is valid.

Proof: The dual of the previous proof (use negation). 2

Theorem: Let Γ and A be in prenex normal form. Then Γ |= A iff ΓS |=
AH .

Proof: (outline) Γ |= A iff Γ∪ {¬A} is not satisfiable. Let A∗ be the prenex
normal form of ¬A. Then Γ ∪ {A∗} is not satisfiable iff ΓS ∪ {(A∗)S} is
not satisfiable iff ΓS |= ¬(A∗)S . After putting into prenex normal form and
renaming f ’s to g’s, ¬(A∗)S = AH . 2

Herbrand’s Theorem: Suppose that A is an existential sentence of the
form A = ∃x1 . . .∃xkB(x1, . . . , xk) where B is quantifier free. Also suppose
that Γ is a set of universal sentences and that Γ ⊢ A. Finally, suppose that
there is at least one constant symbol in the language. Then there are closed
terms t1,1, t1,2, . . . , t1,k, t2,1, . . . , tℓ,k, such that

Γ ⊢ B(t1,1, . . . , t1,k) ∨ B(t2,1, . . . , t2,k) ∨ . . . ∨ B(tℓ,1, . . . , tℓ,k).

Proof: Later.

Example: Let A = ∃xQ(x), and let Γ = {Q(c) ∨ Q(d)}. Then Γ ⊢ A, and
Γ ⊢ Q(c) ∨ Q(d). This shows that ℓ may need to be greater than 1.

Example: Let A = ∀x∃y∀z(P (x, z) → P (x, y)), and let Γ = ∅. |= A since

A ≃ ∀x∃y(∃xP (x, z) → P (x, y))

≃ ∀x(∃xP (x, z) → ∃yP (x, y))

2



AH = ∃y(P (c, g(y)) → P (c, y)). Now AH is also valid by an earlier theorem.
Since it is existential, we can apply Herbrand’s theorem. The closed terms in
the language of AH are c, g(c), g(g(c)), . . . . So letting the B of Herbrand’s
theorem be B(y) = P (c, g(y)) → P (c, y), we get

|= [P (c, g(c)) → P (c, c)] ∨ [P (c, g(g(c))) → P (c, g(c))].

(This is of the form (D → E) ∨ (F → D) which is a tautology.)

The general result is that given an arbitrary Γ and A, Γ ⊢ A iff ΓS ⊢ AH .
We can then apply Herbrand’s theorem to get a concrete proof in the sense of
having terms for which Γ ⊢ ∃~xB(~x) is true. (Note that Herbrand’s theorem
doesn’t tell us how to get the concrete proof, it only tells us that a concrete
proof exists.)

Theorem: There is no recursive bound on the size of the terms ti,j where
“size” is the number of function symbols in a term.

Proof: Otherwise, we could decide first order validity by testing whether or
not the disjunction of all B(t1, . . . , tk)’s with terms t1, . . . , tk whose size is
less than or equal to the recursive bound is valid. 2

Fact: There is no recursive bound on the ℓ of Herbrand’s theorem.
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Herbrand’s Theorem: (restated) Let Γ be a set of universal formulas,
and let A be an existential formula of the form ∃x1 . . .∃xkB(x1, . . . , xk). The
language of Γ and A is L, and L must have at least one constant symbol. If
Γ |= A, then there are terms ti,j with i = 1 . . . ℓ, and j = 1 . . . k such that

Γ ⊢ B(t1,1, . . . t1,k) ∨ . . . ∨ B(tℓ,1, . . . tℓ,k).

Definition: Let A be a quantifier free sentence. A is a quasi-tautology iff
there is a (finite) set of instances of the equality axioms which imply A

(“finite” is unnecessary by the compactness theorem.)

For example, c = d → d = c is a quasi-tautology but not a tautology.
Why? Because if we treat each atomic formula as a propositional variable,
then we have A → B, which is not a tautology. But the equality axiom
∀x∀y(x = y → y = x) implies A → B.

Definition: {A1, . . . , Ak} is quasi-tautologically inconsistent iff ¬(A1∧ . . .∧
Ak) is a quasi-tautology. Equivalently, {A1, . . . , Ak} are quasi-tautologically
inconsistent iff there is a (finite) set of instances of the equality axioms which
together with A1, . . . Ak are tautologically inconsistent.

Main Lemma: (for proving Herbrand’s theorem) If Γ is an unsatisfiable
set of universal sentences, then there is some finite set of instances of formu-
las in Γ which is quasi-tautologically inconsistent (or which, together with
some finite set of equality axioms, are tautologically inconsistent).

Proof: Since Γ is unsatisfiable, it has a refutation R. The finite set of
instances of formulas of Γ in R is quasi-tautologically inconsistent. 2

1



Note that “instance of ∀x1 . . .∀xkB(x1, . . . , xk)” means any formula of
the form B(t1, . . . , tk) where B is quantifier free and the ti’s are closed terms.
These are also called ground instances.

Proof of Herbrand’s theorem: Since Γ ⊢ A, there is a refutation R of
Γ ∪ {∀x1 . . .∀xk¬B(x1, . . . , xk)}. In this refutation, there is a finite set of
instances of ∀~x¬B(~x):

{¬B(t1,1, . . . , t1,k),¬B(t2,1, . . . , t2,k), . . . ,¬B(tℓ,1, . . . , tℓ,k)}.

Claim:

Γ ⊢ B(t1,1, . . . , t1,k) ∨ . . . ∨ B(tℓ,1, . . . , tℓ,k).

Γ ∪ {¬(B(t1,1, . . . , t1,k) ∨ . . . ∨ B(tℓ,1, . . . , tℓ,k))} has a refutation R
′

. R
′

is
constructed from R by deleting the ¬B(ti,1, . . . , ti,k)’s and adding ¬(B(~t1)∨
. . . ∨ B(~tℓ)). 2

(Note: the ¬B(ti,1, . . . , ti,k)’s are every formula of the form

∀xp∀xp+1 . . .∀xk¬B(s1, . . . , sp−1, xp, . . . , xk)

obtained by applications of UI to ∀~x¬B(~x). Also note that ¬(B(~t1) ∨ . . . ∨
B(~tℓ)) is tautologically equivalent to ¬B(~t1) ∧ ¬B(~t2) ∧ . . . ∧ ¬B(~tℓ); so,
intuitively, if ¬B(~t1), . . . ,¬B(~tk) are quasi-tautologically inconsistent, then
so is ¬(B(~t1) ∨ . . . ∨ B(~tk)).)

Hilbert-Style Proofs

An alternative proof system to the refutation system we have used is
a Hilbert-style proof system for obtaining valid first order formulas. The
axioms of such a proof system are:

1. Every tautology is an axiom; i.e. ∀xφ → ∀xφ.

2. ∀xφ → φ(t/x) for every φ, x, and t.

3. φ(t/x) → ∃xφ.

4. Every equality axiom.

5. If φ is an axiom according to (1) - (4), then ∀x1 . . .∀xkφ is also an
axiom.

2



There is only one rule for deriving new formulas called modus ponens:

φ → ψ φ

ψ

A proof is a sequence of formulas A1, . . . , Ar such that each Ai is either
an axiom or is inferred by modus ponens from two earlier formulas.

Completeness and Soundness: A is valid iff A has a proof.

Hilbert-style proofs may be much shorter than refutations of ¬A, but
can be harder to find. A Hilbert-style system also makes it more difficult to
prove Herbrand’s theorem (and the Craig interpolation theorem).

Fact: For arbitrarily large n, there is a valid formula A with a Hilbert-style
proof of n lines which requires 2 ⇑ cn lines for a refutation of ¬A where c is
some “reasonable” constant.
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As an application of Herbrand’s theorem, consider the following theorem
from algebra.

Theorem: Suppose that · is a binary associative operation, and suppose
that equations a · x = b and y · a = b always have solutions x and y. Then
there is a right identity element.

Proof: (intuitive) Pick an arbitrary element a. Let u be a solution to a·u = a.

Claim: For all b, b · u = b.

Proof: Let c be such that c · a = b. Then

c · (a · u) = c · a = b,

and also

c · (a · u) = (c · a) · u = b · u.

This completes the intuitive proof of the claim and the theorem. 2

Now we’ll recast this theorem and its proof in first order logic. The
suppositions are captured by the following three properties:

Γ = { ∀x∀y∀z((x · y) · z = x · (y · z)),
∀x∀z∃y(x · y = z),
∀y∀z∃x(x · y = z) },

and the conclusion is A = ∃u∀x(x · u = x).

Theorem: Γ ⊢ A (or Γ ∪ {B} is inconsistent, where B = ∀u∃x(x · u 6= x)).

1



Proof:

ΓS = { ∀x∀y∀z((x · y) · z = x · (y · z)), (i)
∀x∀z(x · f(x, z) = z), (ii)
∀y∀z(g(y, z) · y = z) } (iii)

BS = ∀u(h(u) · u 6= h(u)), and

AH = ∃u(h(u) · u = h(u)).

The theorem says that ΓS ∪ {BS} is inconsistent or equivalently that ΓS ⊢
AH . A refutation of ΓS ∪ {BS} contains:

1. a · f(a, a) = a by 2 applications of UI to ii,

2. h(f(a, a)) · f(a, a) 6= h(f(a, a)) by UI to BS ,

3. g(a, h(f(a, a))) · a = h(f(a, a)) by 2 applications of UI to iii, and

4. (g(a, h(f(a, a))) · a) · f(a, a) = g(a, h(f(a, a))) · (a · f(a, a)) by 3 appli-
cations of UI to i.

Now, (1) - (4) are quasi-tautologically inconsistent.

Homework: find instances of the equality axioms which make (1)
- (4) tautologically inconsistent.

In fact, we have shown that

ΓS ⊢ h(f(a, a)) · f(a, a) = h(f(a, a)).

(Recall that ΓS ⊢ ∃u(h(u) · u = h(u)) implies by Herbrand’s theorem that

ΓS ⊢ h(t1) · t1 = h(t1) ∨ . . . ∨ h(tk) · tk = h(tk).

In the above usage, k = 1, and t1 = f(a, a).)

Furthermore, ΓS ⊢ ∀x(x · f(a, a) = x).

Proof: Homework. 2

Resolution

2



First we want a refutation proof system for propositional logic. (We
don’t want a theorem prover to use the method of truth tables because that
is guaranteed to take exponential time. We can’t always do better than
exponential time with our current state of knowledge, but we would like a
theorem prover that does better often in practice.) Assume that formulas
are in conjunctive normal form. (This works well in practice, but note that
some formulas grow exponentially in size when converted to CNF.)

Definition: A literal is either a variable Pi or the negation of a variable
¬Pi.

Definition: The complement of Pi is ¬Pi and vice versa.

Definition: A clause is a finite set of literals. (Think of a clause as the
disjunction of its literals.)

Definition: If τ is a truth assignment and C is a clause, then τ satisfies
C (τ |= C) iff τ(X) = true for some literal X ∈ C. (Note that if C is the
empty clause, then no τ makes C true.)

Definition: If S is a set of clauses, then τ |= S iff τ |= C for every C ∈ S.
Note that if S = ∅, then any τ makes S true.)

A propositional formula is expressed as a set of clauses. For example
(P1 ∨ P2) ∧ (¬P3 ∨ P4) is represented by {{P1, P2}, {¬P3, P4}}.

Definition: Let C1, and C2 be clauses with Pi ∈ C1 and ¬Pi ∈ C2. The
resolvent of C1 and C2 with respect to Pi is the clause

(C1 \ {Pi}) ∪ (C2 \ {¬Pi}).

Proposition: If τ |= C1 and τ |= C2, then τ satisfies any resolvent of C1

and C2.

Proof: Easy. 2

3



Resolution Refutations

Math 260B - Mathematical Logic

February 3, 1989

Definition: Let Γ be a set of clauses. A resolution refutation from Γ is
a sequence of clauses C1, . . . , Ct such that each Ci is either in Γ or is the
resolvent of two earlier clauses Cj and Ck with j, k < i and such that Ct = ∅,
the empty clause.

Theorem: Γ has a resolution refutation iff Γ is unsatisfiable.

Proof: (⇒ (soundness)) If Γ is satisfiable by a truth assignment σ, then by
the previous proposition, σ |= Ci for i = 1, . . . , t. But σ 6|= ∅. So Γ has no
resolution refutation.

(⇐ (completeness)) Let Γ∗ be the set of clauses which can be obtained from
Γ by resolution. By definition, Γ∗ contains the empty clause iff Γ has a
resolution refutation.

Remark: Γ∗ is finite if Γ is finite.

Proof: Finite Γ implies that there are only finitely many literals
in clauses in Γ. Any clause in Γ∗ contains only these literals.
Since every clause in Γ is finite, there are only finitely many
resolvents, and hence only finitely many clauses in Γ∗. 2

Suppose that the empty set is not in Γ∗ so that Γ has no resolution refutation.
We want to find a σ such that σ |= Γ. Define σ by setting σ(P1), σ(P2), . . .
sequentially as follows:

σ(Pi) =











true if this doesn’t force any clause
in Γ∗ to be false

false otherwise

I.e., set σ(Pi) to true if there is no clause containing only literals among

1



P1,¬P1, P2,¬P2, . . . , Pi,¬Pi

for which every literal is given the value false; otherwise, set σ(Pi) to false.

Claim: σ |= Γ∗.

Proof: Assume towards a contradiction that there is a clause
C ∈ Γ∗ such that σ 6|= C. Pick i to be the minimum i such
that the values of σ for P1, . . . , Pi force C to be false. From the
definition of σ, it follows that σ(Pi) = false and that there is a
clause C

′

in Γ such that it would have been forced to be false if
we had set σ(Pi) = true. Let D be the resolvent of C and C

′

with respect to Pi. Note that D ∈ Γ∗. D was already forced to
be false by values of σ on P1, . . . , Pi−1. Pi ∈ C and ¬Pi ∈ C

′

since σ(Pi) = false. So resolving C and C
′

with respect to Pi

makes sense. Since D = (C \ {Pi}) ∪ (C
′

\ {¬P}), and Pi can’t
be in C

′

, Pi 6∈ D. Similarly for ¬Pi. Every other Pj or ¬Pj in D

has j < i and is set false by σ. But this contradicts our choice
of i as being the minimum.

This completes the proof of the claim and the completeness part of the
theorem. 2

Example: of the contrdiction obtained above. Suppose that i = 4, C =
{P1,¬P3, P4} and C

′

= {¬P2,¬P3,¬P4}. Then

σ(P1) = false

σ(P2) = true

σ(P3) = true

σ(P4) = false.

So D = {P1,¬P2,¬P3} which is already set false by σ on P1, P2, and P3.

Example: (of a resolution refutation)

{A → B ∨ C, B → D, C → D} |= A → D

iff
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{¬A ∨ B ∨ C, ¬B ∨ D, ¬C ∨ D, A ∧ ¬D}

is unsatisfiable iff the set of clauses

{{¬A, B, C}, {¬B, D}, {¬C, D}, {A}, {¬D}}

is unsatisfiable (has a resolution refutation). The following picture illustrates
the resolution refutation:

{¬A, B, C} {¬B, D} {¬C, D} {A} {¬D}

A
A
A

!!!!!!!!!
{B, C}

A
A
A

!!!!!!!!!!
{¬B}
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@

¡
¡

¡

{¬C}

A
A
A

¢
¢

¢

{C}

@
@

@

¢
¢

¢
¢

¢
¢

¢
¢

∅

This is an example of what is called unit resolution since in each step, one
of the resolvands is a unit clause; i.e., it has a single literal. There are other
ways to resolve. The following is a picture of linear resolution:
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Linear resolution always resolves with the result of the most recent resolvent.
A third method is called input resolution and always resolves with an “input”
clause; i.e., one of the original clauses.

Fact: Linear resolution is complete.

Fact: Unit and input resolution are not complete.

Definition: A clause C is a Horn clause iff it contains at most one un-
negated variable.

Example: The following are Horn clauses:

{Pi,¬Pj1 ,¬Pj2 , . . . ,¬Pj
k
}, and

{¬Pj1 ,¬Pj2 , . . . ,¬Pj
k
}

The intuitive meaning of the first Horn clause is

Pj1 ∧ Pj2 ∧ . . . ∧ Pj
k
→ Pi.

Fact: Unit and input resolution are complete for Horn clauses.
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Horn clauses work well for expressing facts in the real world. They are
also used for expressing facts in Prolog. But some facts can’t be expressed
with Horn clauses.

Fact: A∨B can not be expressed by the conjunction of a set of Horn clauses.

First order Horn clauses are more expressive. A remarkable property is
the proof of the fact that Horn clauses can express the statement “there are
not exactly p objects” for p a prime number. For example, if p = 7, then in
first order logic, we would say

∃x1 . . .∃x6∀y(
6

∨

i=1

y = xi) ∨ ∃x1 . . .∃x8(
∧

1≤i<j≤8

xi 6= xj).

I.e., there are fewer than 7 objects or there are more than 7 objects. There is
a general theorem that implies that this kind of statement can be expressed
in terms of a conjunction of Horn sentences; the proof of this theorem seems
to depend on the continuum hypothesis! However explicit examples are
known of Horn clauses that express “there are not exactly p objects” for p

prime.
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We would like to lift the technique of resolution refutation from propo-
sitional logic to first order logic. We’ll use Herbrand’s theorem and Skolem
functions to do this. The general problem is to find a refutation of a set of
universal formulas: ∀x∀yφ, ∀x

′

∀y
′

φ
′

. . ..
If there is a refutation, then by Herbrand’s theorem, there is a set of

instantiations of these universal formulas which are tautologically inconsis-
tent. If the quantifier free parts φ, φ

′

, . . . are in conjunctive normal form,
then propositional resolution will give a refutation if one exists. So there
are two parts to this process: picking the terms of Herbrand’s theorem and
finding the refutation. The potential problems are that the process of find-
ing the terms may not terminate and that finding the refutation could take
exponential time in the number of terms needed for instantiations.

Unification will provide us with a method for automatically choosing the
terms with which to instantiate as we generate a resolution refutation. This
allows us to avoid having to know the terms ahead of time.

Example: As an informal example of what we mean by unification consider
the following two sentences:

∀xLikes(x,Mother(x))
∀x∀y(Likes(x, y) → Know(x, y))

These two sentences imply that everyone knows their mother. To prove this,
the process of unification attempts to match the terms Likes(x,Mother(x))
and Likes(x, y) to come up with:

∀xLikes(x,Mother(x))
∀x(Likes(x,Mother(x)) → Know(x,Mother(x)))

With this and modus ponens, we can infer

1



∀x(Know(x,Mother(x))

(Note: in automatic theorem proving, we sometimes omit the outer ∀’s and
implicitly assume that free variables are universally quantified.)

Definition: A substitution σ, is a mapping whose domain is a finite set of
variables and whose range is a set of terms (open or closed). σ is denoted
by (t1/x1, . . . , tk/xk), where σ(xj) = tj .

Definition: If A is a quantifier free formula, then Aσ is the formula ob-
tained by replacing every (free) occurrence of xi in A by ti for i = 1, . . . , k

simultaneously. (Note that we specified that A is quantifier free. This is
because we’ll never need this rule for anything but quantifier free formulas,
and we don’t want to have to deal with the problems of clashing variables.)

Definition: If A1, . . . , Ak are quantifier free formulas, then σ unifies

{A1, . . . , Ak} iff A1σ = A2σ = . . . = Akσ. In this case, we say that
{A1, . . . , Ak} are unifiable.

Definition: If σ = (t1/x1, . . ., tk/xk) and τ = (r1/xi1 , r2/xi2 , . . ., rn/xin ,
s1/y1, . . ., sm/ym), then the composition of σ and τ is στ = (t1τ/x1, . . .,
tkτ/xk, s1/y1, . . ., sm/ym). (τ is a substitution with some number of x’s
and some new y’s in its domain; i.e., 0 ≤ n ≤ k and 0 ≤ m.)

Definition: σ is a most general unifier (mgu) of {A1, . . . , Ak} iff

1. σ unifies {A1, . . . , Ak}, and

2. any other unifier λ of {A1, . . . , Ak} can be expressed as λ = στ for
some substitution τ .

Proposition: A(στ) = (Aσ)τ .

Proof: Clear after inspection. 2

Example: Suppose we want to unify {P (f(a), b), P (c, h(c))} where a, b,
and c are variables. Then we want c 7→ f(a) and b 7→ h(f(a)). So σ =
(f(a)/c, h(f(a))/b). To check that σ is a unifier we compute
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P (f(a), b)σ = P (f(a), h(f(a)))

and

P (c, h(c))σ = P (f(a), h(f(a))).

It turns out that σ is also an mgu. Another mgu is σ
′

= (d/a, h(f(d))/b,
f(d)/c) obtained from σ by changing a to d. As an example of a unifier λ

such that λ = στ for some substitution τ take λ = (h(f(f(a)))/b, f(f(a))/c)
and τ = (f(a)/a).

Proposition: If σ unifies {A1, . . . , Ak} then so does στ for any τ .

Proof: Easy. 2

Proposition: If σ is an mgu for A1, . . . , Ak, then the unifiers of A1, . . . , Ak

are precisely the substitutions στ for any τ .

Note that unifiers don’t always exist for a set of sentences. As examples,
none of the following three sets of sentences are unifiable:

{P (h(x)), P (g(x))}
{P (x), Q(x)}
{P (f(x)), P (x)}

The first is not unifiable because we can’t match g and h, the second because
P and Q are different, and the third because x and f(x) can’t be matched.

The following definition is needed in order to develop a method for find-
ing mgu’s.

Definition: Let {A1, . . . , Ak} be a set of atomic formulas starting with a
common predicate symbol. Let i be the smallest positive integer such that

some Aj and Aj
′ disagree on their ith symbol. Then the disagreement set

of {A1, . . . , Ak} is the set of terms {d1, . . . dk} where dj is the term starting

at the ith symbol in Aj .

Example: The disagreement set of
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{ P (h(x, y)),

P (h(f(y), g(z))),

P (h(f(g(z)), y)) }

is {x, f(y), f(g(z))}. In this case i = 5.

Some things to note about disagreement sets:

1. The cardinality of a disagreement set ≥ 2.

2. If A1, . . . Ak are unifiable with unifier σ, then d1σ = . . . = dkσ. It
follows that there is a function symbol f such that each di either
begins with f or is a variable. Also, at least one di is a variable.

Unification Algorithm

Input: Atomic formulas A1, . . . , Ak with a common predicate symbol.

Output: Either a substitution σA, or the phrase “not unifiable”.

Steps

1. σ0 = identity substitution. If A1, . . . , Ak are all equal, set σA = σ0

and halt.

2. Loop with ℓ = 1, 2, . . .

(a) Compute the disagreement set {d1, . . ., dk} of {A1σℓ−1, . . .,
Akσℓ−1}.

(b) If no di is a variable, then output “not unifiable” and halt.

(c) Let di be a variable, and let dj be some other member of the
disagreement set such that di 6= dj .

(d) If the variable di occurs in dj , then output “not unifiable” and
halt. (This step is commonly referred as the “occurs check”; in
some Prolog implementations, it may be turned off for the sake
of speed.)

(e) Let σℓ be σℓ−1(dj/di).

(f) If σℓ unifies {A1, . . . , Ak}, then set σA = σℓ and halt; otherwise
continue loop.
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Last time, we presented the unification algorithm. To summarize, the
algorithm takes as input a set of quantifier free formulas, {A1, . . . , Ak}, and
computes a sequence of substititions starting from σ0, the identity sub-
stitution. σℓ was constructed by composing σℓ−1 with (dj/di) where di

was a variable, dj was a term, and both di and dj were in the disagree-
ment set {A1σℓ−1, . . . , Akσℓ−1}. The algorithm either halted with an mgu
of {A1, . . . , Ak} or halted and printed “not unifiable”.

Note that the mgu output by the algorithm, if it exists, is not unique.
For example, the following mgu’s all unify the set {P (x, y), P (y, x)}:

σ1 = (y/x)

σ2 = (x/y)

σ3 = (z/x, z/y)

The algorithm doesn’t specify which substitution to make. But note also
that any two mgu’s of a set of quantifier free sentences are identical up to
renaming of variables.

Proposition: The unification algorithm always halts.

Proof: {A1σℓ, . . . , Akσℓ} has one less variable than {A1σℓ−1, . . . , Akσℓ−1}
has. (Because of the occurs check, di will not appear in {A1σℓ, . . . , Akσℓ}.)
2

Unification Theorem: {A1σℓ, . . . , Akσℓ} has a unifier iff the unification
algorithm produces an mgu.

Proof: Suppose that λ unifies A1, . . . , Ak. To prove the theorem, it suffices
to show by induction on ℓ that the unification algorithm doesn’t halt with
failure and that there is a τℓ such that λ = σℓτℓ.

1



Basis: ℓ = 0. Then σ0 is the identity substitution, and τ0 = λ.

Induction: Suppose that λ = σℓ−1τℓ−1. Let {d1, . . . , dk} be the disagreement
set of {A1σℓ−1, . . . , Akσℓ−1}. Now τℓ−1 unifies d1, . . . , dk. One of the d’s is a
variable, hence the unification algorithm doesn’t fail at this point. Let di be
the variable picked by the algorithm, and let dj be the other term picked.
So σℓ = σℓ−1(dj/di). Furthermore, the occurs check is satisfied because
{d1, . . . , dk} is unifiable. Now diτℓ−1 = djτℓ−1. So τℓ−1 includes (djτℓ−1/di).
Let τ∗ be τℓ−1 \ {(djτℓ−1/di)}.

Claim: σℓ−1(dj/di)τ
∗ = σℓ−1τℓ−1.

Proof: Actually, (dj/di)τ
∗ = τℓ−1 since djτ

∗ = djτℓ−1 since di

does not occur in dj . 2

So take τℓ = τ∗. Then σℓ = σℓ−1(dj/di), and σℓτℓ = σℓ−1τℓ−1 = λ by the
claim. 2

Example: The unification of {P (x, h(y, y)), P (h(z, z), z)} goes as follows:

• σ0 = identity.

• The first disagreement set is {x, h(z, z)}.

• σ1 = σ0(h(z, z)/x) = (h(z, z)/x).

• The disagreement set of

{P (x, h(y, y))σ1, P (h(z, z), z)σ1}

is {h(y, y), z}.

• σ2 = σ1(h(y, y)/z) = (h(h(y, y), h(y, y))/x, h(y, y)/z).

• Since the next disagreement set is empty, σ2 is an mgu.

As a check of σ2,

P (x, h(y, y))σ2 = P (h(z, z), z)σ2 = P (h(h(y, y), h(y, y)), h(y, y)).

Robinson Resolution
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The reason for unification is so that we can lift propositional resolution
to resolution of universal sentences.

Definition: Let C = (Q1x1)(Q2x2) . . . (Qkxk)C
M , where the Q’s are quan-

tifiers, and CM is quantifier free. Then CM is called the matrix of C.

Proposition: Every first order universal formula is logically equivalent to a
conjunction of universal formulas whose matrices are disjunctions of atomic
and negated atomic formulas.

Proof: Let A be a first order universal formula. Without loss of generality,
let A be ∀~xAM . Express AM in conjunctive normal form as

AM ≃
n
∧

i=1

mi
∨

j=1

Bi,j ,

where each Bi,j is either an atomic or negated atomic formula. Now

A ≃
n
∧

i=1

(∀~x

mi
∨

j=1

Bi,j). 2

So with A as above, we can associate clauses of the form {Bi,h : j =
1, . . . , m} for i = 1, . . . , n.

The following definitions are analogs of definitions for propositional res-
olution.

Definition: A literal is an atomic or negated atomic formula. A ground

literal is one with no variables.

Definition: A clause is a finite set of literals. A ground clause is a finite
set of ground literals.

Definition: The meaning of a clause C is denoted by FO(C) (FO stands
for first order).

FO(C) = ∀~x(
∨

B∈C

B),

where ~x includes all variables used in members of C.
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Definition: A clause C is true in A iff A |= FO(C). A set of clauses S is
true in A iff A |= FO(C) for all C ∈ S.

Proposition: Let Γ be a set of universal sentences. Then there is a set of
clauses which is logically equivalent to Γ.

Proof: Use the above construction on every formula in Γ. 2

Definition: [Robinson resolution] Let C and C∗ be clauses. Let D be
obtained from C∗ by renaming variables so that C and D have no variables
in common. Let C

′

⊆ C be such that every member of C
′

is of the form
P (~t) for some predicate symbol P . Similarly, let D

′

⊆ D be such that every
member of D

′

is of the form ¬P (~t) for the same predicate symbol P . Let σ be
an mgu of C

′

∪{P (~t) : ¬P (~t) ∈ D
′

}. If σ exists, then (Cσ\C
′

σ)∪(Dσ\D
′

σ)
is a resolvent of C and C∗.

This resolving can be thought of as consisting of two steps:

1. “Factoring:” form Cσ from C and Dσ from D.

2. “Resolving:” resolve Cσ and Dσ with respect to C
′

σ in the proposi-
tional sense.

Example: Suppose we want to resolve

C = {Loves(x,Mother(x))}, and

C∗ = {¬Loves(x, y), Know(x, y)}.

Renaming common variables in C∗, we get

D = {¬Loves(z, y), Know(z, y)}.

Now let C
′

= C, and let D
′

= {¬Loves(z, y)}. An mgu of

{Loves(x,Mother(x)),¬Loves(z, y)}

is σ = (x/z,Mother(x)/y). Applying σ to C and D gives

Cσ = {Loves(x,Mother(x))}, and

Dσ = {¬Loves(x,Mother(x)), Know(x,Mother(x))}.

From these, we can propositionally resolve to get {Know(x,Mother(x))}.
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A modified definition of resolution: σ is an mgu that the unification
algorithm produces. The domain of σ is a subset of the variables in C

′

and D
′

. The range of σ consists of terms involving only variables that
appear in C

′

and D
′

. For instance, suppose that C = {P (x), Q(y)}, and
D = {¬Q(y), R(y)}. Then C

′

= {Q(y)}, and D
′

= {¬Q(y)}, and we want
C and D to resolve to {P (x), R(y)} not {P (x), R(x)}. The first resolvent
is equivalent to ∀x∀y(P (x) ∨ R(y)) which is a more general resolution than
the second resolvent which is equivalent to ∀x(P (x) ∨ R(x)).

Example: This example is a case where resolving with respect to a single
literal doesn’t work. Let C = {P (x), P (a)}, and let C∗ = {¬P (x), ¬P (a)},
where a is a constant and x is a variable. Then D = {¬P (y), ¬P (a)},
and C

′

= C and D
′

= D. An mgu is σ = (a/x, a/y), C
′

σ = {P (a)},
D

′

σ = {¬P (a)}, and the resolvent is ∅.

The modification of Robinson Resolution is that we’ve dropped the “fac-
toring” part; i.e. C

′

and D
′

don’t have to be singletons. As the above
example shows, we can’t always resolve to get ∅ (even with a sequence of
resolutions) even though the input clauses may be inconsistent. Without
this modification, we could only get {P (x), ¬P (a)} and {P (x), ¬P (y)} as
resolvents.

The explicit details of factoring are to take C and C
′

⊆ C and infer Cσ

where σ is an mgu of C
′

. We do this to unify C
′

itself and D
′

itself, and
then we unify these 2 singletons. (In all, we use three mgu’s.)

Resolution Theorem: Let Γ be a set of universal sentences with matrices
which are disjunctions of literals. (Note that Γ can be the equivalent of any
set of first order sentences.) Let S be the equivalent set of clauses. Γ is
unsatisfiable iff S has a Robinson resolution refutation.
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Proof: (⇐ (soundness)) Let C1, . . . , Ct be a refutation from S (Ct = ∅).

Claim: If A |= Γ, then A |= FO(Ci), for i = 1, . . . , t. (Remem-
ber, FO(Ci) = ∀~x

∨

B∈Ci

B.)

Proof: (by induction on i)

Basis: Ci ∈ S. Then since A |= Γ, A |= FO(Ci) for each Ci ∈ S.

Induction: Ci is inferred from Cj and Ck for j, k < i. So
A |= FO(Cj) ∧ FO(Ck). Now let C

′

j ⊆ Cj , and C
′

k ⊆ Ck.
For convenience, assume that Cj and Ck have no variables in
common; if not, then just rename common variables.

Sub-Claim: If A |= FO(D), then A |= FO(Dσ), where
D is a clause and σ is a substitution.

Proof: Easy. For example take D = {P (f(x), y), Q(y)},
and σ is (h(x)/y). Then Dσ = {P (f(x), h(x)), Q(h(x))}.
Now FO(D) = ∀x∀y(P (f(x), y)∨Q(y)), and this logi-
cally implies (almost by UI) FO(Dσ) = (P (f(x), h(x))∨
Q(h(x))). 2

Let σ be the mgu of C
′

j ∪ {B : ¬B ∈ C
′

k}. By the sub-claim,
A |= FO(Cjσ), and A |= FO(Ckσ). Now FO(Cjσ) is equivalent
to ∀x1 . . .∀xr(B1 ∨ B2 ∨ . . . ∨ Bn), and FO(Ckσ) is equivalent
to ∀y1 . . .∀ys(¬B1 ∨ B

′

2 ∨ . . . ∨ B
′

n). We want to show that A |=
∀x1 . . .∀xr(B2∨ . . .∨Bn∨B

′

2∨ . . .∨Bn
′). To prove this, consider

all object assignments to ~x. For each object assignment, do
propositional resolution on FO(Cjσ) ∨ FO(Ckσ). FO(Cjσ) is
true and FO(Ckσ) is true independently of the assignment to
B1.

Completeness part of proof next time.

Prolog

Prolog is based on Horn sentences of the form ∀~x(B1 ∧ . . . ∧ Bk → A)
where B1, . . . , Bk, and A are atomic formulas (no negation). In Prolog, such
a formula is written as A ← B1, . . . , Bk.

Example: Let the non-logical symbols of the language consist of Knows, a
2-place function, and Father and Mother, two 1-place functions. Consider
the following four formulas:
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Knows(x, z) ← Knows(x, y), Knows(y, z)

Knows(x, y) ← Knows(y, x)

Knows(x,Mother(x)) ←

Knows(x,Father(x)) ←

The first two formulas are rules for generating new facts from known facts,
and the second two formulas consist of the database of known facts.
Now consider the following query:

← Knows(Mother(x), Father(x))

which expresses “it is not the case that the mother of x knows the father of
x.” Prolog searches for a contradiction of these five formulas. Finding one
yields a proof that the first first four formulas logically imply

∀x(Knows(Mother(x), Father(x))).
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Example: (from last lecture)

database:



















1. Knows(x, y) ← Knows(x, z), Knows(z, y)
2. Knows(x, y) ← Knows(y, x)
3. Knows(x,Mother(x)) ←
4. Knows(x,Father(x)) ←

and a query into the database is:

query: ← Knows(Father(x), Mother(x))

In terms of first order logic, we have

Γ = { ∀x∀y∀z(Knows(x, z) ∧ Knows(z, y) → Knows(x, y)),
∀x∀y(Knows(y, x) → Knows(x, y)),
∀x(Knows(x,Mother(x)),
∀x(Knows(x,Father(x)) }

which capture the meaning of the database, and

A = ∃x(Knows(Father(x), Mother(x))

B = ∀x(¬Knows(Father(x), Mother(x))

which captures the “meaning of the query” (quoted since the query really
wants to know more than the existence of someone who knows both his or
her father and mother, it wants an actual instance of such a person).

Now we have Γ |= A iff Γ ∪ {B} is inconsistent. Prolog searches for a
refutation as follows:

1



1. ← Knows(Father(x), z), Knows(z, Mother(x))

2. ← Knows(z, Father(x)), Knows(z, Mother(x))

3. ← Knows(x,Mother(x))

4. ←

Each refutation step corresponds to a Horn clause. Line 1 resolves the query
with the first clause in the database; i.e., it resolves the two Horn clauses

{¬Knows(Father(x), Mother(x))}
{Knows(x, y),¬Knows(x, z),¬Knows(z, y)}

to get the Horn clause

{¬Knows(Father(x), z),¬Knows(z, Mother(x))}.

Line 2 resolves line 1 with the second clause in the database. Line 3 resolves
line 2 with the fourth clause in the database. Line 4 resolves line 3 with the
third clause in the database and derives a contradiction.

The “hoped for” Prolog output in this case is:

yes, x = x.

If the fourth clause in the database is changed to

Knows(Ralph, Father(Ralph)) ←,

then the “hoped for” output would be:

yes, x = Ralph.

And if a fifth clause was added to the database:

Knows(Abe, Father(Abe)) ←,

then the “hoped for” output would be:

yes, x = Ralph.

yes, x = Abe.

What’s Going On
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1. Prolog uses an input (and linear) resolution:

• The query is the first line in the refutation.

• The i + 1st clause in the refutation is obtained by resolving the

ith clause with a clause from the database.

• The ith clause is of the form ← B1, . . . , Bt (no un-negated liter-
als).

• The database clause is of the form C ← D1, . . . , Ds.

• Prolog attempts to unify C and B1 with an mgu σ and deduce
by resolution ← D1σ, . . . , Dsσ, B2σ, . . . , B2σ.

2. Completeness: Such a refutation exists if the first order translations
of the database and the query are inconsistent. (We’ll skip the proof
since we’re going to prove it for Robinson resolution.)

3. Prolog uses a depth-first search for refutations. This doesn’t always
find a refutation if it exists, but it works well in practice. A breadth-
first search would always find one if it exists.

4. By Herbrand’s theorem, since Γ ⊢ A (A = ∃xAM (x)) there are terms
t1, . . . , tk such that Γ ⊢ AM (t1) ∨ . . . ∨ AM (tk). Because Prolog only
uses Horn clauses, k = 1 suffices. (Since we only use the query once,
we only introduce one term, t.) So for Γ ⊢ AM (t), the “hoped for”
output would be

yes, x = t.

Resolution Theorem

Γ is a set of universal sentences with matrices that are disjunctions of
literals. There is a Robinson resolution refutation of the set S of clauses
expressing Γ iff Γ is inconsistent. Last lecture we proved soundness (⇒);
today, completeness.

Proof: (⇐ (completeness)) It suffices to assume that Γ is finite by the com-
pactness theorem. So let S = {C1, . . . , Ct} where each Ci is a clause. By
Gödel’s completeness theorem and by Herbrand’s theorem there are ground
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instances D1, . . . , Dt that are inconsistent.1 By the completeness of proposi-
tional resolution there is a sequence D1, . . . , Dt, . . . , Ds which is a resolution
refutation (i.e., Ds = ∅) since D1, . . . , Dt is inconsistent. What we want
to do now is to “lift” this sequence to a Robinson resolution refutation
C1, . . . , Cs = ∅.

Claim: Such a Robinson resolution exists with Ciσi = Di for
some substitution σi for i = 1, . . . , s.

Proof: By induction on i, C1, . . . , Ci can be constructed.

Basis: For i = 1, . . . , t this is clear since we already know such
Ci’s exist.

Induction: Suppose Di is obtained by resolution from Dj and Dk

where j, k < i. So Di = (Dj \{A})∪ (Dk \{¬A}) for some literal
A. By the induction hypothesis, Dj = Cjσj , and Dk = Ckσk for
some substitutions σj and σk. (Without loss of generality, for
notational convenience, assume that Cj and Ck have no variables
in common; otherwise rename to C∗

k and σ∗

k.) Let C
′

j ⊆ Cj and

C
′

k ⊆ Ck be such that

C
′

j = {B ∈ Cj : Bσj = A}, and

C
′

k = {B ∈ Ck : Bσk = ¬A}.

Let σ be an mgu of C
′

j ∪ {B : ¬B ∈ C
′

k}. σ has as domain a

subset of variables in C
′

j and C
′

k and has a range involving only

variables in C
′

j and C
′

k.

(Proof continued next lecture.)

1
Di is a ground instance if Di = Ciσi for some substitution σi and if Di is variable

free.
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Last time we started the completeness part of the proof of the resolution
theorem. So far, we have

• Di is a resolvent of Dj and Dk with respect to A ∈ Dj and ¬A ∈ Dk.

• Cjσj = Dj , Ckσk = Dk, and Cj and Ck have no variables in common.

• C
′

j = {B ∈ Cj : Bσj = A}, and C
′

k = {B ∈ Ck : Bσk = ¬A}.

• σ is an mgu of C
′

j ∪{B : ¬B ∈ C
′

k}. The domain of σ is a subset of the

variables in C
′

j and C
′

k, and terms in the range of σ use only variables

in C
′

j and C
′

k.

To continue with the proof, let σ
′

= σj ∪ σk. This makes sense because σj

and σk have disjoint domains. Clearly, σ
′

unifies C
′

j ∪{B : ¬B ∈ C
′

k}. Since

σ is an mgu, there is a τ such that στ = σ
′

. The proof of the following claim
will complete the proof of the theorem:

Claim: Let Ci be (Cjσ \ C
′

jσ) ∪ (Ckσ \ C
′

kσ). Then Ciτ = Di.

Proof:

(Cjσ \ C
′

jσ)τ = {Bστ : Bσ 6= {A}}

= {Bσj : Bσj 6= {A}}

= Dj \ {A} since Dj = {Bσj : B ∈ Cj}

Similarly,

1



(Ckσ \ C
′

kσ)τ = Dk \ {¬A}.

So,

Ci = (Dj \ {A}) ∪ (Dk \ {¬A})

= Di. 2

To summarize the process of proving a first order theorem, we first
Skolemize to get universal formulas, then we convert the matrices to dis-
junctive normal form, and finally we apply Robinson resolution.

Some things to note:

• A Robinson resolution refutation takes no more steps than a proposi-
tional resolution refutation of the ground instances (the D’s).

• The advantage of Robinson resolution is that the terms for the ground
instances don’t have to be chosen ahead of time.

• The problem of deciding which clauses to resolve exists.

• This isn’t a problem with Horn clauses (just use linear resolution), but
Horn clauses can’t express everything.

• A Horn resolution theorem can be proven using the same technique;
i.e., lifting from the propositional case.

Craig Interpolation

(Due to Bill Craig in the 1940’s.)

Craig Interpolation Theorem: Let A and B be first order sentences,
and suppose that A |= B. Then there is a sentence C such that A |= C and
C |= B, and such that every non-logical symbol in C appears in both A and
B.

Definition: The C in the theorem is called an interpolant for A and B.
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This theorem is interesting because it says that C distills out the essential
non-logical symbols of A which area needed to logically imply B. In a
picture, we have

&%

'$

&%

'$

6

non-logical symbols of B

6

non-logical symbols of C

6

non-logical symbols of A

Example: Let A be ∃x(P (x) ∨ ¬P (x)), and let B be ∃x(Q(x) ∨ ¬Q(x)).
Then certainly A |= B since both A and B are valid. So an interpolant has
to be valid; i.e., C could be ∃x(x = x) or ∀x(x = x) or any valid formula
using no non-logical symbols.

Example: Let A be ∃x(P (x) ∧ ¬P (x)), and let B be ∃x(Q(x) ∧ ¬Q(x)).
Then A |= B since B is unsatisfiable. Since A is also unsatisfiable, any
interpolant has to be unsatisfiable; i.e., C could be ∀x(x 6= x).

Example: A graph G is 2-colorable implies that G doesn’t contain a com-
plete subgraph H with 3 vertexes. Let the non-logical symbols of G be E

a binary edge relation, R indicating whether or not a vertex is colored red,
and B indicating whether or not a vertex is colored blue. Let

A = ∀x(R(x) ↔ ¬B(x)) ∧

∀x∀y(xEy → (R(x) ↔ B(y)) ∧

“E is irreflexive and symmetric”

The first part says that every vertex is either red or blue, and the second
part says that G is 2-colorable. Let

B = ¬∃x1∃x2∃x3[
∧

3

i=1 H(xi) ∧
∀y(H(y) ↔

∨

3

i=1 y = xi) ∧
x1Ex2 ∧ x2Ex3 ∧ x3Ex1 ]

3



where H(x) is a predicate asserting that x is in subgraph H. An interpolant
C will use E as the only non-logical symbol; i.e.

C = ¬∃x1∃x2∃x3[x1Ex2 ∧ x2Ex3 ∧ x3Ex1].
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Craig Interpolation Theorem for Propositional Logic: Suppose that
φ and ψ are propositional formulas and that φ |= ψ. Then one of the
following holds:

1. |= ψ.

2. |= ¬φ.

3. There is a ρ such that φ |= ρ and ρ |= ψ and every propositional
variable in ρ also appears in both φ and ψ.

(Note that we need cases 1 and 2 since φ and ψ may not have any variables
in common. If we used the symbols ⊤ and ⊥ for truth and falsity, then we
wouldn’t need cases 1 and 2.)

Proof: Suppose that neither case 1 nor 2 holds. So there are truth assign-
ments τψ and τφ such that τ̄ψ(ψ) = false and τ̄φ(φ) = true.

Claim: φ and ψ have at least one variable in common.

Proof: Suppose not. Then let

τ(P ) =











τψ(P ) if P appears in ψ

τφ(P ) if P appears in φ

arbitrary otherwise

So τ̄(¬ψ ∧ φ) = true which is impossible since φ |= ψ. 2

Let P be a variable occurring in both φ and ψ, let ⊤ be an abbreviation for
(P ∨ ¬P ), and let ⊥ be an abbreviation for (P ∧ ¬P ).

1



Remark: If every variable in φ also appears in ψ, then take ρ = φ.

Proceed by induction on the number of variables that appear in φ but not
in ψ. Let Q be such a variable, let φ1 be φ(⊤/Q), and let φ2 be φ(⊥/Q).
Note that Q |= φ ↔ φ1 and ¬Q |= φ ↔ φ2. Hence φ ∧ (Q ∨ ¬Q) |= φ1 ∨ φ2,
and so φ |= φ1 ∨ φ2.

Claim: φ1 ∨ φ2 |= ψ.

Proof: Let σ̄(φ1 ∨ φ2) = true, let σ
′

(R) = σ(R) for any R 6= Q,
and let

σ
′

(Q) =

{

true if σ̄(φ1) = true
false otherwise (i.e., σ̄(φ2) = true)

Now, σ̄
′

(φ1 ∨ φ2) = true. Consider two possibilities:

1. σ
′

(Q) = true, σ̄
′

(φ1) = true, and hence σ̄
′

(φ) = true.

2. σ
′

(Q) = true, σ̄
′

(φ2) = true, and hence σ̄
′

(φ) = true.

So σ̄
′

(φ) = true, hence σ̄
′

(ψ) = true. Now σ̄(ψ) = true since σ

and σ
′

agree on all variables occurring in ψ. 2

So φ |= φ1 ∨ φ2, φ1 ∨ φ2 |= ψ, and the number of variables in φ1 ∨ φ2 but
not in ψ is one less than the number of variables in φ but not in ψ. By
induction, there is an interpolant ρ for φ1∨φ2 and ψ, and φ |= ρ and ρ |= ψ.
2

First Order Craig Interpolation Theorem: Suppose that A |= C.
Then there is a B such that A |= B and B |= C and every non-logical
symbol in B appears in both A and C.

Proof: LA is the language of A. LC is the language of C. If D is of the form
Q1x1 . . . QkxkD

M with DM quantifier free, then D̄ = Q̄1x1 . . . Q̄kxk¬DM ,
where ∀̄ = ∃ and ∃̄ = ∀. Without loss of generality, assume that A and C are
in prenex form. There is a refutation R0 of {A, C̄}. Let R0 be E1, . . . , Et.
Call Ei an A-formula iff Ei is

1. A,

2. an LA-equality axiom, or

2



3. derived by a series of EI and/or UI inferences from such a formula.

Similarly, call Ei a C-formula iff it is not an A-formula; i.e., Ei is

1. C̄,

2. an LC-equality axiom which is not an LA-equality axiom, or

3. derived by a series of EI and/or UI inferences from such a formula.

Since R0 is a refutation, QA ∪QC is tautologically inconsistent where QA =
{quantifier-free A-formulas}, and QC = {quantifier-free C-formulas}. So by
Craig interpolation for propositional logic, there is a quantifier-free sentence
Bt such that {QA ∪¬Bt} and {QC ∪Bt} are tautologically inconsistent and
such that Bt is a propositional combination of atomic sentences that appear
in both QA and QC (assuming that QA and QC are both tautologically
consistent separately). If QA is tautologically inconsistent, set Bt = ∀x(x 6=
x). If QC is tautologically inconsistent, set Bt = ∀x(x = x). Otherwise,
∧

QA |=
∨

QC , and Bt is an interpolant of this.

Fact: There is a refutation of ¬Bt ∪ {A-formulas in R0}, and
there is a refutation of Bt ∪ {C-formulas in R0}.

Every relation symbol in Bt occurs in both LA and LC . Every closed term
in Bt occurs in some A-formula in R0 and in some C-formula in R0.

(Proof continued next time.)
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Math 260B - Mathematical Logic

February 22, 1989

Last time we started the proof of the Craig interpolation theorem. We
had A |= C, and R0 = E1, . . . , Et was a refutation of {A, C̄}. We defined
A- and C-formulas, and QA and QC , the quantifier-free A- and C-formulas.
We had

∧

QA |=
∨

¬QC , and we identified an interpolant Bt such that
∧

QA |= Bt and Bt |=
∨

¬QC . To continue the proof, we’ll start out with
some definitions.

Definition: An A-term is a term of the form f(. . .) where f ∈ LA \ LC or
of the form c where c ∈ LA \ LC Similarly for a C-term replacing LA \ LC

by LC \LA. (Note that for a term of the form f(. . .), this definition doesn’t
say anything about the symbols represented by the dots.)

Definition: An occurrence of an A- or C-term is critical iff it is not oc-
curring as a proper sub-term of an A- or C-term. (Note that a single A-
or C-term can appear critically in one place and not critically in another.)
Critical means “maximal” in some sense.

Definition: If Ei is in R0, then

EA
i is

{

Ei if Ei is an A-formula
A otherwise

and

EC
i is

{

Ei if Ei is a C-formula
C̄ otherwise

Now the proof continues. Without loss of generality, let E1 = A and let
E2 = C̄. So EA

1 = A and EC
1 = C̄.

Goal: Construct Bt, Bt−1, . . . , B1 such that the following holds for all i ≤ t:

1



1. {EA
1 , . . . , EA

i , B̄i} has a refutation.

2. {EC
1 , . . . , EC

i , Bi} has a refutation.

3. Every critical C-term occurring in Bi also occurs critically in some
EA

1 , . . . , EA
i .

4. Every critical A-term occurring in Bi also occurs critically in some
EC

1 , . . . , EC
i .

5. Bi is of the form Q1z1 . . . QszsB
∗

t where B∗

t is obtained by changing
terms in Bt.

Claim: The goal will suffice to prove the theorem, since B1 will
be the desired interpolant.

Proof: We need to show that B1 satisfies the properties of being
an interpolant.

Sub-Claim (i): Every constant and function symbol in
B1 appears both in A and C.

Proof: If not, then B1 would have a critical A- or
C-term. This can’t happen since EA

1 = A has no C-
terms, and EC

1 = C̄ has no A-terms. 2

Sub-Claim (ii): A |= B1 and B1 |= C.

Proof: Both {A, B̄1} and {C̄, B1} have refutations. 2

Sub-Claim (iii): Every relation symbol in B1 occurs
in both A and C.

Proof: Every relation symbol in B1 occurs in Bt (by
the way Bt was constructed). Hence every such rela-
tion symbol occurs in both QA and QC , and hence in
both A and C. 2

So achieving the goal will suffice. 2

The following cases show how to build Bi from Bi+1 and show that the
resulting Bi satisfies the properties of the goal above.

2



Case 0. Ei+1 is an equality axiom. Then let Bi
def
= Bi+1. Goal properties 1,

2, and 5 still hold. To show that goal property 3 holds, consider Ei+1.
If it is not an A-formula, then property 3 holds trivially by the induc-
tion hypothesis. Otherwise, Ei+1 contains no C-terms. So any (critical
or not) C-term in {EA

1 , . . . , EA
i+1

} also occurs in {EA
1 , . . . , EA

i }. Goal
property 4 holds by a similar argument.

Case 1. Ei+1 is inferred by EI from the A-formula Ej with j ≤ i. Then
Ej = ∃xφ(x), Ei+1 = φ(a) for some new constant a, and Ei+1 is also

an A-formula. Then let Bi
def
= ∃xBi+1(x/a).

Goal 1: By the induction hypothesis, there is a refutation
R of {EA

1 , . . . , EA
i+1

, B̄i+1}. Now, B̄i = ∀xB̄i+1(x/a). So a
refutation of {EA

1 , . . . , EA
i+1

, B̄i} contains

Ej = ∃xφ(x)
then Ei+1 = φ(a) by EI
then B̄i = ∀xB̄i+1(x) by assumption
then B̄i+1 by UI
and then R minus any duplicate sentences.

Using EI to get a from x is okay since Ei+1 appeared in R0

and was okay. Another satisfactory refutation would be Bi

followed by R.

(Proof continued next time.)
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Last time, we identified the following set of goals for constructing Bt,
Bt−1, . . ., B1 such that for all i ≤ t:

1. {EA
1 , . . . , EA

i , B̄i} has a refutation.

2. {EC
1 , . . . , EC

i , Bi} has a refutation.

3. Every critical C-term occurring in Bi also occurs critically in some
EA

1 , . . . , EA
i .

4. Every critical A-term occurring in Bi also occurs critically in some
EC

1 , . . . , EC
i .

5. Bi is of the form Q1z1 . . . QszsB
∗

t where B∗

t is obtained by changing
terms in Bt.

We also proved the first and started the proof of the second of five cases to
show how to build Bi from Bi+1:

Case 1. Ei+1 is φ(a), Ej is ∃xφ(x), Ei+1 is inferred from Ej by EI, and

both Ei+1 and Ej are A-formulas. Then Bi
def
= ∃xBi+1(x/a).

Goal 1: Satisfied last time.

Goal 2: By the induction hypothesis, {EC
1 , . . . , EC

i+1
, Bi+1}

has a refutation R. A refutation of {EC
1 , . . . , EC

i , Bi} is

Bi

Bi+1 by EI
R (minus Bi+1)

1



Note that there is no problem with EC
i+1

not appearing in
R, since Ei+1 is an A-term, and so EC

i+1
= C̄ = EC

1 .

Goal 3:

Claim: A critical C-term in Bi cannot contain x.
Similarly, a critical C-term in Bi+1 cannot contain
a.

Proof: Suppose that t(x) is a critical C-term in Bi.
Then t(a) is a critical C-term in Bi+1. So t(a) ap-
pears (critically) in EA

1 , . . . , EA
i+1

by the induction
hypothesis. Since a cannot appear in E1, . . . , Ei,
t(a) occurs in Ei+1, and hence t(x) appears in Ej .
Now Ej was ultimately derived from A (in R0) by
EI and UI inferences. Let t(x) be fC(. . . x . . .),
where fC ∈ LC \ LA. So fC(—x—) must appear
in A, where “—x—” is “. . . x . . .” with some closed
sub-terms changed to variables by going backwards
through EI and/or UI inferences. But this is a con-
tradiction since fC 6∈ LA. 2

By the claim, every critical C-term in Bi occurs critically in
Bi+1 and in EA

1 , . . . , EA
i+1

. Since they occur in EA
i+1

, then
they also occur in EA

j and thus in EA
1 , . . . , EA

i .

Goal 4:

Claim: Any critical A-term in Bi also occurs criti-
cally in Bi+1.

Proof: Suppose that t(x) is a critical A-term in Bi.
Then t(a) is a critical A-term in Bi+1. So t(a) must
appear (critically) by the induction hypothesis in
{EC

1 , . . . , EC
i }. But this is impossible since a was

introduced by an EI inference and cannot appear in
E1, . . . , Ei. 2

This suffices to satisfy goal 4 since {EC
1 , . . ., EC

i+1
} = {EC

1 ,
. . ., EC

i }.

Goal 5: is trivial.

Case 2. Ei+1 is φ(a), Ej is ∃xφ(x), Ei+1 is inferred from Ej by EI, and

both Ei+1 and Ej are C-formulas. Then Bi
def
= ∀xBi+1(x/a).

2



In this case, the roles of Bi and B̄i are swapped, A- and C-formulas
are swapped, and the proofs of goals 1, 2, 3, and 4 are the duals of the
proofs of goals 2, 1, 4, and 3 respectively from case 1.

Case 3. Ei+1 is φ(t), Ej is ∀xφ(x), Ei+1 is inferred from Ej by UI, and both
Ei+1 and Ej are A-formulas. Let r1, . . . , rk be the C-terms that occur
critically in Bi+1 and EA

i+1
, but not critically in EA

1 , . . . , EA
i . Then

Bi
def
= ∀y1 . . .∀ykBi+1(y1/r1, . . . , yk/rk). (Note the abuse of notation

yi/ri. This really means substitute yi for critical occurrences of the
terms ri. We will also abbreviate a series of such substitutions by, for
example, Bi+1(~y/~r).)

Goal 1: By the induction hypothesis, there is a refutation
R of {EA

1 , . . . , EA
i+1

, B̄i+1}. Now B̄i is ∃y1 . . .∃ykB̄i+1(~y/~r).
So let R∗ be the refutation:

B̄i

∃y2 . . .∃ykB̄i+1(a1/r1) by EI
...

B̄i+1(a1/r1, . . . , ak/rk) by EI
R(a1/r1, . . . , ak/rk) minus the duplicate B̄i+1(~a/~r)’s.

with the added condition that EA
j appear before EA

i+1
.

Claim: R∗ is a refutation of {EA
1 , . . . , EA

i , B̄i}.

Proof: Note that none of EA
1 , . . . , EA

i get modified
by the above above transformation since, by defini-
tion, they don’t contain any of the ri’s. Also, note
that no ri is a constant introduced by EI since the
ri’s are C-terms. So the uses of EI are okay in R∗.
The only way a use of UI could cause problems in
R∗ is if ∀xD(s(x)) was used to derive D(s(v)) in
R where s(v) = ri. But this is impossible since
we can’t get rid of a C-term by going backwards
in R, and s(x) would have a C-function symbol as
its outermost symbol. Finally, note that changing
critical ri’s to ai’s is a 1-1 transformation of atomic
sentences. So the quantifier-free sentences of R∗ are
still tautologically inconsistent. 2
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Last time we were in the middle of proving case 3.

Case 3. Ei+1 is φ(t), Ej is ∀xφ(x), Ei+1 is inferred from Ej by UI, and
both Ei+1 and Ej are A-formulas. r1, . . . , rk are the C-terms that
occur critically in Bi+1 and EA

i+1
, but not critically in EA

1 , . . . , EA
i .

Bi
def
= ∀y1 . . .∀ykBi+1(~y/~r).

Goal 1: That {EA
1 , . . . , EA

i , B̄i} has a refutation was shown
last time.

Goal 2: By the induction hypothesis, {EC
1 , . . . , EC

i+1
, Bi+1}

has a refutation R. A refutation of {EC
1 , . . . , EC

i , Bi} is:

∀y1 . . .∀ykBi+1(~y/~r) (= Bi)
∀y2 . . .∀ykBi+1(~y/~r) by UI
...
Bi+1 by UI
R

i.e., we first use k UI inferences to change the yi’s back to
the old ri’s and then continue with R. (Note that EC

i+1
=

C̄ = EC
1 .)

Goal 3: Any critical C-term in Bi appears in {EA
1 , . . . , EA

i }.

Claim: No critical C-term in Bi contains any yj .

Proof: rj is critical in Bi+1, so yj is not inside a
C-term in Bi. 2

1



By the claim, any critical C-term in Bi is critical in Bi+1

and is not one of the rj ’s (if it were, it would have been
changed to yj), and thus appears in EA

1 , . . . , EA
i by definition

of r1, . . . , rk. (Note that we pick the ri’s to satisfy goal 3.)

Goal 4: (similar to goal 3) Any critical A-term in Bi appears
in {EC

1 , . . . , EC
i }.

Claim again: No critical A-term in Bi contains any
yj .

Proof: (same)

By the claim, any critical C-term in Bi is critical in Bi+1

This suffices to satisfy the goal since {EC
1 , . . ., EC

i+1
} = {EC

1 ,
. . ., EC

i }.

Goal 5: Obvious.

Case 4. Ei+1 is φ(t), Ej is ∃xφ(x), Ei+1 is inferred from Ej by EI, and
both Ei+1 and Ej are C-formulas. r1, . . . , rk are the A-terms that
occur critically in Bi+1 and EC

i+1
, but not critically in EC

1 , . . . , EC
i .

Bi
def
= ∃y1 . . .∃ykBi+1(~y/~r), so B̄i = ∀y1 . . .∀ykB̄i+1(~y/~r). The rest is

the dual of case 3.

This concludes the proof of the first order version of Craig’s interpolation
theorem. 2 (Whew!)

Note that the proof gives an explicit method for forming an interpolant.
Furthermore, refutations of A |= B1 and B1 |= C will be a lot like a refuta-
tion of A |= C.

Beth Definability

Let L be a language. Let P and P
′

be two additional k-ary relation
symbols not in L. Let Γ(P ) be a set of sentences in the language L ∪ {P}.
And let Γ(P

′

) be a set of sentences Γ(P ) with all P ’s changed to P
′

’s.

Definition: Γ(P ) explicitly defines P iff there is a formula φ(x1, . . . , xk) in
the language L such that Γ(P ) |= ∀~x(P (~x) ↔ φ(~x)) for all ~x. I.e., P can be
explicitly defined in terms of symbols of L.

Definition: Γ(P ) implicitly defines P iff

2



Γ(P ) ∪ Γ(P
′

) |= ∀~x(P (~x) ↔ P
′

(~x)).

Equivalently, if M |= Γ(P ), N |= Γ(P
′

), |M| = |N |, and M and N agree

on the interpretation of symbols of L, then P
M

= P
′N

.

Beth Definability Theorem: Γ(P ) explicitly defines P iff it implicity
defines P .

Proof: (⇒) Trivial.

(⇐) By compactness, there is a finite Γ0 ⊆ Γ such that

Γ0(P ) ∪ Γ0(P
′

) |= ∀~x(P (~x) ↔ P
′

(~x)).

(Now we want to transform this so we can use Craig interpolation.) Let
c1, . . . , ck be new constant symbols. In particular, note that

Γ0(P ) ∪ Γ0(P
′

) |= (P (~c) ↔ P
′

(~c)).

So

(
∧

Γ0(P )) ∧ P (~c) |= (
∧

Γ0(P
′

)) → P
′

(~c).

By the Craig interpolation theorem, there is a B(x1, . . . , xk) in the language
L such that

(
∧

Γ0(P )) ∧ P (~c) |= B(~c), and (1)

B(~c) |= (
∧

Γ0(P
′

)) → P
′

(~c). (2)

From (2), we can rename P
′

to P without affecting its truth to get

B(~c) |= (
∧

Γ0(P )) → P (~c).

By this and (1),

Γ0(P ) |= P (~c) → B(~c), and

Γ0(P ) |= B(~c) → P (~c).
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By a previous homework problem,

Γ0(P ) |= ∀~x(P (~x) → B(~x)), and

Γ0(P ) |= ∀~x(B(~x) → P (~x)),

and so

Γ0(P ) |= ∀~x(B(~x) ↔ P (~x)). 2

To get an intuitive idea of what this theorem is saying, suppose that
we’re working in a theory with language L, and we’re trying to extend the
theory to incorporate a new concept P . If it is possible to add statements (in
the language L plus P ) about original concepts in L plus the new concept
P which implicitly define P (uniquely specify in all models), then P can be
explicitly defined.
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Model theory views logic from the point of view of structures instead of
proofs.

Definition: A theory is a set of sentences. A theory is closed iff it is closed
under |=. (Closure under |= means that if T is a theory and T |= A, then
A ∈ T .)

In many definitions, a theory is a closed theory. We will adopt this
convention. We have briefly been introduced to theories in the past. The
theory of groups is the set of logical consequences of the axioms for groups.
The theory of a structure is the set of sentences true for that structure; i.e.,
Th(N, 0, S, +, ·).

Example: Dense linear order (DLO) without endpoints. Here, the only
non-logical symbol will be ≤. For notational convenience, let s < t be an
abbreviation for s ≤ t ∧ s 6= t. The axioms are:

1. ∀x∀y(x ≤ y ∨ y ≤ x)
2. ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)
3. ∀x∀y(x ≤ y ∧ y ≤ x → x = y)
4. ∀x∀y(x < y → ∃z(x < z ∧ z < y))
5. ∀x∃y(y < x)
6. ∀x∃y(x < y)

The first three axioms express linear order, the fourth axiom expresses den-
sity, and the last two axioms express no left and right endpoints. Some
models of these axioms are:

1



((0, 1),≤) |= DLO (1)

(Q,≤) |= DLO (2)

((Q ∩ (0, 1)) ∪ (4, 5),≤) |= DLO (3)

((0, 1) ∪ (1, 2),≤) |= DLO (4)

Furthermore, no two of these structures are isomorphic. (1) is the set of
reals between 0 and 1. (2) is the set of rationals whose cardinality is less
than that of (1). (3) is the set of rationals between 0 and 1 plus the set of
reals between 4 and 5; this is not isomorphic to (1) because any mapping of
the rationals between 0 and 1 to a sub-interval of the reals between 0 and
1 will not be onto. (4) is the set of reals between 0 and 1 plus the set of
reals between 1 and 2. This is not isomorphic to (1) because any mapping
from (4) to (1) will leave out at least one point; i.e. the point that the real
number 1 would map to.

Lemma: Any two countable models of DLO without endpoints are isomor-
phic.

Proof: First note that any countable dense model has to be infinite. Suppose
that A |= (A,≤A) and B |= (B,≤B) are two countable models of DLO
without endpoints. Since A and B are countable, we can enumerate them
distinctly as

A: {a1, a2, . . .} and
B: {b1, b2, . . .}.

Now we can’t just map ai to bi because we have to respect ≤. So we’ll define
f : A ∼= B as follows in stages.

Stage 1. f(a1) = some arbitrary b, say b1.

Stage 2i − 1. If f(ai) is already defined, go to stage 2i. Otherwise, let
ak1

, . . . , akj
be the a’s at which f is already defined and ordered so

that

ak1
<A ak2

<A · · · <A akj
.

Now
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f(ak1
) <B f(ak2

) <B · · · <B f(akj
)

by the way f is constructed. So define f(ai) = some arbitrary b such
that

f(aks
) <B b <B f(aks+1

) if aks
<A ai <A aks+1

,

b <B f(ak1
) if ai <A ak1

, or

f(akj
) <B b if akj

<A ai.

Stage 2i. If bi is already in the range of f go to stage 2i + 1. Otherwise,
let

f(ak1
) <B f(ak2

) <B · · · <B f(aks
)

be the values already in the range of f . Now pick a arbitrarily such
that a is ordered with respect to ak1

, . . . , aks
in the same way as b is

with respect to f(ak1
), . . . , f(aks

) and such that f(a) has not yet been
defined. Define f(a) = b.

The odd stages insure that the domain of f will be all of the a’s, and the
even stages insure that the range of f will be all of the b’s. After going
through stages i = 1, 2, . . . we get a 1-1 onto function f : A → B such that
f preserves ≤. f(ai) is the value assigned to ai at or before stage 2i. 2

Definition: A theory T is complete iff for every sentence A in the language
of T , either T |= A or T |= ¬A. (An inconsistent theory is complete, but
generally our theories are consistent.)

Theorem: DLO without endpoints is a complete theory.

Proof: Let T be DLO without endpoints. Suppose that T is not complete
and that A is such that T 6|= A and T 6|= ¬A. So T ∪ {¬A} and T ∪ {A} are
consistent. By the Löwenheim-Skolem theorem, T ∪{¬A} and T ∪{A} have
countable models, say A and B respectively. (Note that since A |= T∪{¬A},
A |= T , and similarly, B |= T .) But by the above lemma, A ∼= B, which
is impossible since isomorphisms preserve truth of sentences and A and B
don’t satisfy the same set of first order sentences. 2
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Definition: A theory T is α-categorical iff T has exactly one model of
cardinality α (up to isomorphism).

ÃLos-Vaught Test: If T is a theory in a countable language, has no infinite
models, and is ω-categorical (ℵ0-categorical), then T is complete.

Note that the proof of the above theorem essentially derives this test.
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Math 260B - Mathematical Logic

March 3, 1989

Last time we introduced the ÃLos-Vaught Test for countable languages.
Today we’ll start with the general test.

Definition: T is α-categorical iff all models of T of cardinality α are iso-
morphic.

Definition: If L is a language, let ||L|| = max{ω, cardinality of L}.

ÃLos-Vaught Test: If T is a theory with language L, if α ≥ ||L||, if T is
α-categorical, and if T has no finite models, then T is complete.

Proof: Suppose not, and suppose that T ∪ {A} and T ∪ {¬A} are both
consistent. Then there are structures A and B such that A |= T ∪ {A}
and B |= T ∪ {¬A}. Since A and B are infinite, by the Löwenheim-Skolem
theorem, there are structures A∗ and B∗ of cardinality α such that A∗ |=
T ∪ {A} and B∗ |= T ∪ {¬A}. Now A∗ 6∼= B∗ which is a contradiction. 2

Elementarily Equivalence

Definition: Let A and B be structures for a language L. A and B are
elementarily equivalent (written A ≡ B), iff for every sentence φ in the
language L, A |= φ iff B |= φ.

Clearly, T is complete iff every pair of its models are elementarily equiva-
lent. Also, in the ÃLos-Vaught test, “α-categorical” can be weakened to “any
two models of T of cardinality α are elementarily equivalent.” An example
of why this is weaker is DLO without endpoints. There are both countable

1



and uncountable models of DLO without endpoints. These are all elemen-
tarily equivalent but not isomorphic. Also, DLO without endpoints is not
2ℵ0-categorical by examples from the previous lecture.

Elimination of Quantifiers

Definition: T |= B(~x) iff T |= ∀~xB(~x).

Definition: A theory T admits elimination of quantifiers iff for every for-
mula A(x1, . . . , xn) there is a quantifier-free formula φ(x1, . . . , xm) such that

T |= A(x1, . . . , xn) ↔ φ(x1, . . . , xm).

Example: If Th(N, 0, S, +, ·) admitted elimination of quantifiers (which it
doesn’t), then there would have been a quantifier-free formula φ(x) which is
equivalent to “x is prime”; i.e.,

Th(N, 0, S, +, ·) |= ∀x(“x is prime” ↔ φ(x)).

Proposition: Without loss of generality in the previous definition,

m ≤ n if n ≥ 1, and
m = 1 if n = 0.

Proof: Suppose that n ≥ 0, m > n, and

T |= ∀x1, . . . ,∀xm(A(x1, . . . , xn) ↔ φ(x1, . . . , xn, xn+1, . . . , xm)).

Then

T |= ∀x1, . . . ,∀xn(A(x1, . . . , xn) ↔ φ(x1, . . . , xn, x1, . . . , x1)). 2

The reason that we need the special case for n = 0 is that the language
may not have constant symbols. For example if A is a sentence and T |= A,
then one possibility fitting the above the definition is T |= (A ↔ x = x).

Theorem: To show that T admits elimination of quantifiers, it suffices to
show that for every formula of the form ∃yA with A quantifier-free, there is
a quantifier-free formula φ such that T |= ∃yA ↔ φ.

2



An example of the use of this theorem is to go from

∀x∃yA to
∀xφ to

¬∃x(¬φ) and then to
¬ψ

where A, φ, and ψ are quantifier-free. The idea is to eliminate the innermost
quantifiers first and work outward.
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Some examples of elimination of quantifiers from DLO (from now on, let
DLO mean DLO without endpoints):

Example:

A(z) = ∃x∀y(y ≤ x ↔ y ≤ z).

We want a formula φ(z) such that DLO |= ∀z(A(z) ↔ φ(z)). In this exam-
ple, |= A(z) (since we can always just take x = z), and in particular, DLO
|= A(z). So DLO |= A(z) ↔ z ≤ z.

Example:

A(y, z) = ∃x(y ≤ x ∧ x ≤ z).

DLO |= A(y, z) ↔ y ≤ z.

Example:

A(v1, v2) = ∃z∀y((y ≤ z → y ≤ v1) ∧ (z ≤ y → v2 ≤ y)).

DLO |= A(v1, v2) ↔ v1 ≤ v2.

Definition: Let v0, . . . , vn be distinct variables. An arrangement of
v0, . . . , vn is a formula of the form θ0 ∧ . . . ∧ θn−1 where each θi is either
ui = ui+1 or ui < ui+1 and {u0, . . . , un} = {v0, . . . , vn}. (Informally,
u0, . . . , un are the same variables in a possibly different order.)

Example: v2 < v1 ∧ v1 = v0 ∧ v0 < v3. Here, u0 is v2, u1 is v1, u2 is v0, and
u3 is v3. Pictorially then,

1



r r rv2 v1 = v0 v3

Lemma 1: Let A be an arrangement of v0, . . . , vn, and let B be of the
form vi = vj or vi ≤ vj . Then either DLO |= A → B, or DLO |= A → ¬B.

Proof: Obvious.

Lemma 2: If A is an arrangement of v0, . . . , vn and B is a quantifier-free
formula with free variables among v0, . . . , vn, then either DLO |= A → B,
or DLO |= A → ¬B.

Proof: If B is atomic, then lemma 1 applies. So proceed by induction on
the complexity of B.

Case 1. B is ¬C. Easy.

Case 2. B is C ∧ D. Then there are 4 sub-cases to check.
...

Definition: If A(v0, . . . , vn) is an arrangement, then B and A are compatible

iff there is a model A of DLO with objects a0, . . . , an ∈ |A| such that A |=
B(a0, . . . , an) ∧ A(a0, . . . , an).

Lemma 3: Suppose that B(v0, . . . , vn) is a quantifier-free formula (with
only the indicated free variables), and suppose that DLO 6|= ¬B. Then there
is a formula φ, which is a disjunction of arrangements of v0, . . . , vn, such that
DLO |= B ↔ φ. (Note that this is a special kind of disjunctive normal form;
i.e., one that also specifies order.)

Proof:

Note 1: There are finitely many arrangements of v0, . . . , vn.

Note 2: If A |= DLO and a0, . . . , an ∈ |A|, then there is an
arrangement A of v0, . . . , vn such that A |= A(a0, . . . , an).

Claim: A and B are compatible iff DLO |= A → B.

Proof: (⇒) If DLO 6|= A → B, then by lemma 2, DLO |= A →
¬B which contradicts A and B being compatible.
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(⇐) Every arrangement is satisfiable in a model of DLO. So
there is a model A of DLO with a0, . . . , an ∈ |A| such that A |=
A(a0, . . . , an). Since DLO |= A → B, A |= B(a0, . . . , an). So A

and B are compatible. 2

(Proof of lemma 3 continued.) Take φ to be the disjunction of arrangements
compatible with B. By the claim, DLO |= φ → B. And by the definition of
φ, DLO |= B → φ. (I.e., in any model A of DLO and for any a0, . . . , an ∈ |A|,
if A |= B(a0, . . . , an), then, by Note 2, there is an arrangement A such that
A |= A(a0, . . . , an); this arrangement is one of the disjuncts in φ.) 2

Theorem: DLO without endpoints admits elimination of quantifiers.

Proof: By an earler result, it suffices to consider ∃vnφ(v0, . . . , vn) where φ is
quantifier-free and n ≥ 0. If φ is disprovable, then DLO |= ¬φ(v0, . . . , vn).
So

DLO |= ¬∃vnφ(v0, . . . , vn),

and so

DLO |= ∃vnφ(v0, . . . , vn) ↔ (v0 6≤ v0).

So assume that φ is not disprovable. Then by lemma 3,

φ ↔
∨

i

Ai(v0, . . . , vn)

where each Ai is an arrangement of v0, . . . , vn. And so,

∃vnφ(v0, . . . , vn) ↔
∨

i

∃vnAi(v0, . . . , vn).

So it suffices to show that ∃vnA(v0, . . . , vn), where A is an arrangement of
v0, . . . , vn is equivalent (provably in DLO) to a quantifier-free formula.

(Proof continued next time.)

3



Elimination of Quantifiers, Substructures

Math 260B - Mathematical Logic

March 8, 1989

Theorem: DLO without endpoints admits elimination of quantifiers.

Proof: (Continued from last time.) Last time we got to the point where it
sufficed to show that if A(v0, . . . , vn+1) is an arrangement, then

∃vn+1A(v0, . . . , vn+1)

is equivalent (with respect to DLO) to a quantifier-free formula.

Claim: There is a unique arrangement A∗(v0, . . . , vn) such that

DLO |= A → A∗ (1)

DLO |= A∗(v0, . . . , vn) → ∃vn+1A(v0, . . . , vn+1) (2)

Proof: (Informal.) (1) To get A∗ from A, we essentially remove
vn+1 from the ordering specified by A; i.e., if in A we have

. . . vi < vn+1 ∧ vn+1 < vj . . . ,

then in A∗ we get

. . . vi < vj . . .

Considerations have to be made if vn+1 appears at either end of
the arrangement A. Also, care has to be taken if vn+1 is related
to variables by ‘=’ instead of ‘<’.

(2) is true because of the density property of DLO; i.e., we can
put vn+1 into the order specified by A∗ at the same place where
we removed it from A to get A∗. 2

1



Hence,

DLO |= ∃vn+1A(v0, . . . , vn+1) ↔ A∗(v0, . . . , vn). 2

Corollary: DLO without endpoints is complete.

Proof: Given any sentence A there is a quantifier-free formula B(v0) such
that DLO |= A ↔ B(v0). (Note that B only has one free variable; this is a
result of the construction from the above theorem.) Now DLO |= v0 = v0,
and DLO |= v0 ≤ v0. And so by induction on the complexity of B(v0),
either DLO |= B(v0) or DLO |= ¬B(v0).

Corollary: DLO without endpoints is decidable. (I.e., the set of logical
consequences of the axioms is decidable.)

Proof: Given a sentence A, we want to know if DLO |= A. By the proof
of the above theorem, there is an effective method to get a B(v0) such that
DLO |= A ↔ B(v0) and B is quantifier-free. Determining if DLO |= B(v0)
is easy by the proof of the previous corollary. 2

Fact: There are theories which admit elimination of quantifiers, but which
are not complete.

Substructures

Recall that A ≡ B (A and B are elementarily equivalent) means that
A and B are structures for the same language and satisfy the same set of
sentences.

Definition: A is a substructure of B, written A ⊆ B, iff

1. |A| ⊆ |B|, and

2. the interpretations of non-logical symbols of A agree with those of B;
i.e.,

(a) cA = cB for all constant symbols c,

(b) PA = PB ∩ |A|k for all k-ary predicates P , and

(c) fA = fB restricted to |A| for all functions f .
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Example: Let A = ((0, 1),≤), and B = ((0, 1],≤). Then A ⊆ B. Note that
in B you can define something that is not in A, but you can’t give a closed
term for it; i.e. ∃x∀y(y ≤ x).

Example: Subgroups are substructures in the language of groups.

Definition: A is an elementary substructure of B, written A ≺ B, iff A ⊆ B,
and for all elements a1, . . . , an ∈ |A| and for all formulas φ(x1, . . . , xn),
A |= φ(a1, . . . , an) iff B |= φ(a1, . . . , an).

Example: Let A = ((0, 1),≤), and B = ((0, 1],≤). Then A 6≺ B since we
can take φ = ∃x∀y(y ≤ x). Then A |= ¬φ, but B |= φ.

Note that in this case, the n of the definition is 0. In fact, if A ≺ B then
A ≡ B by definition using the case n = 0.

Example: Let A = ((0, 1),≤), and B = ((0, 2),≤). Then A ≺ B. Given
a1, . . . , an and φ, there is a quantifier-free B(v1, . . . , vn) such that

DLO |= φ(v1, . . . , vn) ↔ B(v1, . . . , vn).

So,

A |= φ(a1, . . . , an) ⇔ A |= B(a1, . . . , an)

⇔ B |= B(a1, . . . , an)

⇔ B |= φ(a1, . . . , an).

Example: Let A = ((0, 1],≤, 1), and B = ((0, 2],≤, 1). (1 is a constant
denoting the object ‘1’.) Then A ⊆ B, but A 6≺ B, because A |= ∀x(x ≤ 1),
but B 6|= ∀x(x ≤ 1).

Example: Let A = ((0, 1],≤), and B = ((0, 2],≤). Then A ⊆ B, but A 6≺ B,
because we can take a1 = 1 (the object ‘1’) and then A |= ∀x(x ≤ a1),
but B 6|= ∀x(x ≤ a1). (Remember, ∀x(x ≤ a1) is shorthand for ∀x(x ≤
y)[s(a1/y)] for any object assignment s).

Definition: Let A be a structure with universe A for the language L. Let

LA = L ∪ {ca : a ∈ A}.
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Then the elementary diagram of A is the set of sentences φ in the expanded
language LA such that

(A, a)a∈A |= φ

where (A, a)a∈A is the expansion of A to the language LA such that ca is
interpreted as a; i.e., (A, a)a∈A gives names to all of the objects in A.

Note: the elementary diagram of A is complete. If ΓA is the elementary
diagram of A, then ΓA = Th((A, a)a∈A).

Proposition: Let ΓA be the elementary diagram of A, and let A ⊆ B.
Then A ≺ B iff (B, a)a∈A |= ΓA.

Proof:

(B, a)a∈A |= φ(a1, . . . , ak) ⇔ B |= φ(a1, . . . , ak).

Similarly,

(A, a)a∈A |= φ(a1, . . . , ak) ⇔ A |= φ(a1, . . . , ak).

Then, just unwind the definitions . . . 2
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Definition: Let f be a 1-1 function on |A|. Then f is an elementary

embedding of A into B (written f : A ≺ B) iff f(A) ≺ B.

Notes: f being a 1-1 function on |A| implies that |f(A)| = f(|A|). Also,

A
∼

≺ B means that there is an f such that f : A ≺ B.

Theorem: Let F be a set of elementarily equivalent structures (in some
common language). Then there is a structure B such that every structure
A ∈ F is elementarily embeddable in B.

Proof: Without loss of generality, assume that the A’s in F have disjoint
universes. For A ∈ F , let A = |A| and let LA be the language of A plus
{ca : a ∈ A}. Let ΓA be the elementary diagram of A. Let the theory T be
such that T =

⋃

A∈F

ΓA with language ∪LA.

Claim 1: T is consistent.

Claim 2: If B |= T , then for each A ∈ F , A
∼

≺ B.

Proof of 2: Given B |= T , and A ∈ F , let f(a) = cBa . So
f : |A| → |B|. Now f is 1-1 since for all a, a

′

∈ |A|, if a 6= a
′

,
then ca 6= c

′

a ∈ ΓA. Also, for all formulas φ in the language of A,

A |= φ(a1, . . . , an) ⇔ B |= φ(ca1
, . . . , can

) (1)

⇔ B |= φ(f(a1), . . . , f(an)). (2)

(1) is because B |= ΓA, and (2) is because f(ai) = cai
. So f is

an isomorphism of A onto the substructure of B with universe
f(|A|), and this substructure is an elementary substructure. I.e.,

1



A |= φ(a1, . . . , an) (3)

⇔ B |= φ(ca1
, . . . , can

) (4)

⇔ f(A) |= φ(ca1
, . . . , can

). (5)

(4) ⇔ (5) means that f(A) ≺ B, and (3) ⇔ (5) means that
A ∼= f(A). 2

Proof of 1: By compactness, it suffices to show that any finite
subset is consistent. Suppose that S = {φ1, . . . , φn}. By taking
conjunctions of φ’s as necessary, without loss of generality each
φi ∈ ΓAi

for distinct Ai’s. (I.e., if two φ’s come from the same
Ai, then conjoin them.)

S = {ψ1(ca1,1
, . . . , ca1,k

), . . . , ψn(can,1
, . . . , ca

n,k
)} (6)

where the ψi’s are in the original language and the ai,j ’s are in
Ai. So S is consistent iff

∃x1,1 . . .∃xn,k(ψ1(x1,1, . . . , x1,k) ∧ . . . ∧ ψn(xn,1, . . . , xn,k)) (7)

is satisfiable. Note that (6) is just a skolemization of (7). By
prenex operations, (7) is equivalent to

∃x1,1 . . .∃x1,kψ1(~x) ∧ . . . ∧ ∃xn,1 . . .∃xn,kψn(~x). (8)

Note that each conjunct in (8) for ψi is true in Ai. Hence each
conjunct is true in all A ∈ F since all such A’s are elementarily
equivalent. So any A ∈ F is a model of (8) and (8) is consistent.
Since n was arbitrary, the claim and the theorem are established.
2

Example: Let F = {A1,A2} where

A1 = ((0, 1) ∪ (Q ∩ (1, 2)),≤), and

A2 = (Q ∩ (0, 1) ∪ (1, 2),≤).
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Then

B = ((0, 1) ∪ (1, 2),≤)

is such that A1 and A2 are elementarily embedded into B.
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Sometimes it is hard to show that one structure is an elementary sub-
structure of another structure by showing that they satisfy the same set
of formulas. The following theorem presents another criterion for being an
elementary substructure.

Theorem: A ≺ B iff

1. A ⊆ B, and

2. for every formula φ(x1, . . . , xn+1) and every n-tuple a1, . . . , an ∈ |A|,
if

B |= ∃xn+1φ(a1, . . . , an, xn+1),

then there is an an+1 ∈ |A| such that

B |= φ(a1, . . . , an+1).

Proof: (⇒) Easy. If

B |= ∃xn+1φ(a1, . . . , an, xn+1),

then so does A since A ≺ B. So there is such an an+1.

(⇐) By induction on the complexity of ψ, we show that for all a1, . . . , am,

A |= ψ(a1, . . . , am) ⇔ B |= ψ(a1, . . . , am),

(and so A ≺ B.)

Basis: ψ is atomic. Since A ⊆ B,

1



(i) if t(x1, . . . , xm) is a term, then t(a1, . . . , am)A = t(a1, . . . , am)B, and

(ii) relations agree on elements in |A|.

(Note: in this case, we only needed the fact that A ⊆ B.)

Induction: Cases where the outer connective of ψ is ∧, ∨, ¬, or → are easy
using the induction hypothesis. And since ∀x can be written as ¬∃x¬, it
suffices to consider ψ of the form ∃xψ

′

(x1, . . . , xm, x). Let a1, . . . , am ∈ |A|.
Then

A |= ψ(a1, . . . , am) (1)

⇔ ∃am+1 ∈ |A| such that A |= ψ
′

(a1, . . . , am, am+1) (2)

⇔ ∃am+1 ∈ |A| such that B |= ψ
′

(a1, . . . , am, am+1) (3)

⇔ ∃am+1 ∈ |B| such that B |= ψ
′

(a1, . . . , am, am+1) (4)

⇔ B |= ψ(a1, . . . , am). (5)

(1) ⇔ (2) by the definition of truth, (2) ⇔ (3) by the induction hypothesis,
(3) ⇒ (4) since |A| ⊆ |B|, (4) ⇒ (3) by the second condition in the theorem,
and (4) ⇔ (5) by the definition of truth. 2

An application of this theorem is the

Downward-Löwenheim-Skolem Theorem: (strong version) Suppose
that A is a structure in the language L. Let ||L|| = α. Let X ⊆ |A| with
||X|| = β ≥ α. (Note that β is infinite by definition of || ||.) Then there is
an elementary substructure B of A such that

1. X ⊆ |B|, and

2. B has cardinality β.

Proof: (To help understand the proof, keep in mind β = ω, but note that
the proof works for larger β.) Given a set Y ⊆ |A|, construct Y

′

as follows:

foreach a1, . . . , am ∈ Y

foreach formula ∃xm+1φ(x1, . . . , xm+1)
if A |= ∃xm+1φ(a1, . . . , am, xm+1)

choose some a ∈ A such that A |= φ(a1, . . . , am, a)
end if

end foreach

end foreach

2



Let Y
′

be Y plus all the a’s chosen. Note that ||Y
′

|| = β if ||Y || = β. Now let
X0 = X, let Xi+1 = X

′

i as in the above construction, and let B =
⋃

i∈N Xi.
Then B is the substructure of A with universe B.

Claim: Every constant symbol c ∈ L has cA ∈ B.

Proof: Since A |= ∃x(x = c), cA ∈ X. 2

Claim: B is closed under function symbols.

Proof: Let f be a k-ary function symbol. If a1, . . . , ak ∈ |B|, then
a1, . . . , ak ∈ Xr for some r. Since A |= ∃x(x = f(a1, . . . , xk)),
fA(a1, . . . , ak) ∈ Xr+1 ⊆ B. 2

The above claims show that B ⊆ A. Now we need

Claim: If a1, . . . , ak ∈ B and A |= ∃xφ(a1, . . . , ak, x), then ∃a ∈
B such that A |= φ(a1, . . . , ak, a).

Proof: If again a1, . . . , ak ∈ Xr for some r, then ∃a ∈ Xr+1 such
that A |= φ(a1, . . . , am, a). 2

Example: DLO in the language ≤, c, d. Let

A = ((0, 1) ∪ ((1, 2) ∩ Q),≤, 1/2, 3/2)

B = (((0, 1) ∩ Q) ∪ (1, 2),≤, 1/2, 3/2)

Then A ≡ B, but A 6
∼

≺ B and B 6
∼

≺ A because in A there are uncountably
many objects less than 1/2 but only countably many such objects in B, and
in A there are countably many objects greater than 3/2 but uncountably
many such objects in B.
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Definition: A theory T is model-complete iff for any two models A and B
of T , if A ⊆ B, then A ≺ B.

Example: DLO without endpoints is model-complete.

Proof: Suppose that A ⊆ B and that A,B |= DLO. Let φ(x1, . . . , xn) be
a formula (with n > 0),1 and let a1, . . . , an ∈ |A|. In order to show that
A ≺ B, we want to show that A |= φ(a1, . . . , an) iff B |= φ(a1, . . . , an).
By elimination of quantifiers for DLO, there is a quantifier-free formula
ψ(x1, . . . , xn) such that DLO |= φ ↔ ψ. So

A |= φ(a1, . . . , an) ⇔ A |= ψ(a1, . . . , an) since A |= DLO
⇔ B |= ψ(a1, . . . , an) since A ⊆ B, and

ψ is quantifier-free
⇔ B |= φ(a1, . . . , an) since B |= DLO. 2

Fact: Q is not model-complete. This is proved by noting (1) that every
model of Q contains a substructure isomorphic to the standard integers and
(2) that Q is not complete.

Example: T = Th(N, S,≤) is not model-complete.

Proof: Let A = (N, S,≤), and let C = ({−1, 0, 1, 2, . . .}, S,≤). A ≡ C, so
C |= T . Clearly, A ⊆ C. But A |= ∀y(0 ≤ y) while C 6|= ∀y(0 ≤ y). So
A 6≺ C. 2

1In using elimination of quantifiers, if n > 0, then a formula equivalent to φ will not
have more free variables than φ has; if n = 0, then the equivalent formula would have 1
free variable. In justifying the case for n = 0, note that we could always add ∧x = x to φ.

1



This example doesn’t work for Th(N, 0, S,≤) since in order for A ⊆
C, the interpretation of 0 must be the same in both A and C.2 In fact,
Th(N, 0, S,≤) admits elimination of quantifiers, so a proof similar to the
one used in the first example would work here as well.

Example: Let RCF be real closed fields. The non-logical symbols are
0, 1, +, and ∗. RCF contains the following axioms.

• The field axioms.

• For every odd degree polynomial, an axiom stating that it has a root.

• For every degree ≥ 3, an axiom stating that a polynomial of that
degree can be factored into a linear and square parts; i.e., for degree
3,

∀a1, . . . , a4∃b1, b2, c1, c2, c3((b1x + b2)(c1x
2 + c2x + c3)

= a1x
3 + a2x

2 + a3x + a4).

• Every object has a square root; i.e.,

∀x∃y(y ∗ y = x ∨ y ∗ y + x = 0).

• Zero is not the sum of squares; i.e.,

∀x1 . . .∀xk(x1 6= 0 → 0 6= x2

1 + x2

2 + . . . x2

k).

RCF = Th(R, 0, 1, +, ∗) is both complete and model-complete.

Example: Let ACF be algebraically closed fields. It contains the same non-
logical symbols as RCF, the field axioms, and, for each degree, an axiom
stating that every polynomial of that degree has a root; i.e.,

∀a1, . . . , an∃b(a1b
n + a2b

n−1 + . . . + an+1 = 0).

ACF is not complete but is model-complete.

2I.e., 0A = 0C . But then C 6|= T , since C 6|= ∀x(0 6= S(x)).
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Example: Let ACFp be ACF plus

1 + 1 + . . . + 1
︸ ︷︷ ︸

p

= 0,

for p a prime. ACFp is both complete and model-complete.

Example: Let ACF0 be ACF plus {1 + 1 + . . . + 1 6= 0}. ACF0 is both
complete and model-complete.

Usually, in order to show that a theory is model-complete, you have to
know a lot about the theory. Showing that a model is model-complete is
therefore a good indication that the theory is well understood.

Definition: A theory T admits weak elimination of quantifiers iff for any
formula φ, there is a universal formula ψ such that T |= φ ↔ ψ.

Theorem: If T admits weak elimination of quantifiers, then for all φ there
is an existential formula ψ such that T |= φ ↔ ψ.

Proof: Given φ, there is a universal formula ψ such that T |= (¬φ) ↔ ψ. So
T |= φ ↔ ¬ψ. ¬ψ can be converted to existential form. 2

Theorem: If T admits weak elimination of quantifiers, then T is model-
complete.

Proof: Next time.

Fact: The converse also holds.
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Theorem: If a theory T admits weak elimination of quantifiers, then T is
model-complete.

Lemma 1: If φ(x1, . . . , xk) is a universal formula, A ⊆ B,
and a1, . . . , ak ∈ |A|, then if B |= φ(a1, . . . , ak) then A |=
φ(a1, . . . , ak). (I.e., universal formulas are preserved under sub-
structures.)

Proof: Suppose φ is ∀y1 . . .∀yℓψ(x1, . . . , xk, y1, . . . , yℓ). Then,

B |= φ(~a) ⇔ ∀b1 . . .∀bℓ ∈ B, B |= ψ(~a,~b) by defn. of truth

⇒ ∀b1 . . .∀bℓ ∈ A, B |= ψ(~a,~b) since |A| ⊆ |B|

⇔ ∀b1 . . .∀bℓ ∈ A, A |= ψ(~a,~b) since A ⊆ B
⇔ A |= φ(~a). by defn. of truth. 2

Lemma 2: If φ(x1, . . . , xk) is an existential formula, A ⊆
B, and a1, . . . , ak ∈ |A|, then if A |= φ(a1, . . . , ak) then B |=
φ(a1, . . . , ak). (I.e., existential formulas are preserved under su-
perstructures.)

Proof: This can be proved in a similar way that lemma 1 was
proved, or it can be noted that lemma 2 is just the contrapositive
of lemma 1. 2

Proof of theorem: Given A,B |= T , and A ⊆ B, we will show that for
φ(x1, . . . , xk) and a1, . . . , ak ∈ |A|,

1



A |= φ(a1, . . . , ak) ⇔ B |= φ(a1, . . . , ak).

By weak elimination of quantifiers, there is a universal formula ψ(x1, . . . , xk)
such that T |= φ ↔ ψ, and an existential formula χ(x1, . . . , xk) such that
T |= φ ↔ χ. Now,

A |= φ(~a) ⇔ A |= χ(~a) since A |= T, and T |= φ ↔ χ

⇒ B |= χ(~a) by lemma 2
⇔ B |= φ(~a) since B |= T, and T |= φ ↔ χ

⇔ B |= ψ(~a) since B |= T, and T |= φ ↔ ψ

⇒ A |= ψ(~a) by lemma 1
⇔ A |= φ(~a) since A |= T, and T |= φ ↔ χ. 2

Theorem: If a theory is model-complete, then it admits weak elimination
of quantifiers.

Proof: In Chang & Keisler, proposition 3.1.7.

Preservation

Definition: A chain of structures is a sequence of structures

A0 ⊆ A1 ⊆ A2 ⊆ . . . .

Fact: In a chain of structures, Ai ⊆ Aj for i < j.

Definition: B =
⋃

i∈N Ai is the structure with

• domain
⋃

i |Ai|,

• constants cB = cAi ,

• functions fB which extend fAi for all i (or, thinking of functions as
ordered tuples, fB =

⋃

i f
Ai), and

• predicates PB =
⋃

i P
Ai .

2



Definition: An elementary chain of structures is a sequence

A0 ≺ A1 ≺ A2 ≺ . . . .

Fact: In an elementary chain of structures, Ai ≺ Aj for i < j.

Elementary Chain Theorem: An ≺
⋃

i Ai for all n.

Proof: Let B =
⋃

i Ai. Then, given φ(x1, . . . , xk) and a1, . . . , ak ∈ |An|, we
need to show that

An |= φ(a1, . . . , ak) ⇔ B |= φ(a1, . . . , ak). (1)

The proof is by induction on the complexity of φ (letting n and a1, . . . , ak

vary).

Basis: φ is atomic. Then (1) holds trivially, since An ⊆ B.

Induction: If the outer connective of φ is one of ¬,∧,∨, or →, then (1) holds
trivially by the induction hypothesis. Since ∀x means ¬∃¬x, it suffices to
consider φ of the form ∃xψ(x1, . . . , xk, x). Now,

B |= ∃xψ(~a, x) ⇔ ∃a ∈ |B|, B |= ψ(~a, a) by defn. of truth
⇔ (∃m ≥ n)∃a ∈ |Am|, B |= ψ(~a, a) by defn. of B
⇔ (∃m ≥ n)∃a ∈ |Am|, Am |= ψ(~a, a) by ind. hyp.
⇔ (∃m ≥ n)Am |= ∃xψ(~a, x) by defn. of truth
⇔ (∃m ≥ n)An |= ∃xψ(~a, x) since An ≺ Am

⇔ An |= ∃xψ(~a, x) since m isn’t bound. 2

Definition: A theory T is preserved under substructures iff if A |= T and
B ⊆ A, then B |= T .

Definition: A theory T is preserved under unions of chains iff if A0 ⊆ A1 ⊆
. . . is a chain, and An |= T for all n, then

⋃

i Ai |= T .

Theorem: Any theory T is preserved under unions of elementary chains.

Proof: If A ≺ B, then A ≡ B. So A |= T iff B |= T . 2

Homework: Find a theory that is not preserved under unions of chains.
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Homework Answer 1: DLO with left and right endpoints and with ≤ as
the only nonlogical symbol is not preserved under unions of chains. Let
Ai = ([−(i + 1), (i + 1)],≤). Then

⋃

i Ai = (R,≤). So Ai ⊆ Ai+1 for all i.
But

⋃

i Ai 6≡ An for any n. This example is a proof of the following

Theorem: There is a chain of elementarily equivalent structures whose
union is not elementarily equivalent to elements of the chain.

Homework Answer 2: Let Ai = ({0, . . . , i},≤), and let the theory state that
there is a maximal element; i.e., ∃x∀y(y ≤ x).

Definition: Let A and B be structures. h : |A|
onto
→ |B| is a homomorphism

iff

1. h(cA) = cB for all constant symbols c,

2. if PA(a1, . . . , an) then PB(h(a1), . . . , h(an)) for all predicate symbols
P and all a1, . . . , an ∈ |A|,

3. h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)) for all function symbols f

and all a1, . . . , an ∈ |A|.

Example: Note that h is not necessarily 1-1. As a trivial example, h :
({0, 1, 2, 3, 4},≤) → ({0},≤). Note also that homomorphisms don’t neces-
sarily preserve sentences; e.g. ∃x∃y(x 6= y) is not preserved.

Definition: A theory T is preserved under homomorphisms iff whenever
A |= T , and B is the homomorphic image of A, then B |= T .

1



Definition: A Π1 sentence is a universal sentence. A Π2 sentence is of the
form ∀x1 . . .∀xk∃y1 . . .∃yℓφ with φ quantifier-free. A positive sentence is one
with no occurrences of ¬ or →.

Theorems: A theory T is preserved under

1. substructures iff T has a set of Π1 axioms,

2. unions of chains iff T has a set of Π2 axioms, and

3. homomorphisms iff T has a set of positive axioms.

Example: Horn clauses are not preserved under homomorphisms. Take
← P (0); i.e., ¬P (0). Then A = ({0}, ∅) |= ¬P (0), and B = ({0}, {0}) 6|=
¬P (0). But there is a homomorphism h : A → B.

Example: DLO without endpoints is preserved under unions of chains but
not under substructures and homomorphisms. Preservation under unions of
chains is because the axioms are Π2. As a counter-example for substructures,
take ((0, 1),≤) ⊇ ({1/2},≤). As a counter-example for homomorphisms,
take h : ((0, 1),≤) → ({1/2},≤).

Example: DLO with right and left endpoints is not preserved under sub-
structures, unions of chains, and homomorphisms. As a counter-example for
substructures, take ([0, 1],≤) ⊇ ((0, 1),≤). A counter-example for unions of
chains is homework answer 1. As a counter-example for homomorphisms,
take A = ([0, 1],≤), B = ({0, 1},≤), and h : A → B to be

h(x) =

{

0 x ≤ 1/2
1 x > 1/2.

Example: Groups are preserved under unions of chains and homomor-
phisms, but not under substructures. As a counter-example for substruc-
tures, take (Z, 0, +) ⊇ (N, 0, +). Note that if we had an inverse function
symbol, then groups would be preserved under substructures.

Theorem: If a theory T has a set of universal axioms, then T is preserved
under substructures.
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Proof: Let Γ be a set of universal axioms for T . Suppose that A |= T and
that B ⊆ A. Then A |= φ for φ ∈ Γ. Also, since the φ’s are universal and by
an earlier theorem, B |= φ for φ ∈ Γ. So B |= T since Γ is a set of axioms. 2

Theorem: If T has a set of Π2 axioms, then T is preserved under unions
of chains.

Proof: It suffices to show that if φ is a Π2 sentence, and

A1 ⊆ A2 ⊆ A3 ⊆ . . .

is a chain with Ai |= φ for all i, then

B =
⋃

i

Ai |= φ.

Let φ be

∀x1 . . .∀xk∃y1 . . .∃yℓψ(~x, ~y).

Then we want to show that for any a1, . . . ak ∈ |B|,

B |= ∃y1 . . .∃yℓψ(~a, ~y),

and hence, by the definition of truth, B |= φ. Pick n large enough so that
a1, . . . , ak ∈ |An|. Now,

An |= ∃y1 . . .∃yℓψ(~a, ~y).

So there are b1, . . . , bℓ ∈ |An| such that An |= ψ(~a,~b). Since An ⊆ B,
B |= ψ(~a,~b). Hence, by the definition of truth,

B |= ∃y1 . . .∃yℓψ(~a, ~y).

Since the a’s were arbitrary,

B |= ∀x1 . . .∀xk∃y1 . . .∃yℓψ(~x, ~y). 2
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Lemma: Let T be a consistent theory. Let ∆ be a set of sentences closed
under finite disjunction. Then the following are equivalent.

1. T has a set of axioms which is a subset of ∆.

2. If A |= T and if for every φ ∈ ∆, A |= φ ⇒ B |= φ, then B |= T .

Proof: 1 ⇒ 2: Easy.1

2 ⇒ 1: ∆ could be inconsistent, so let

Γ = {φ ∈ ∆ : T |= φ}

be the consistent subset of ∆ implied by T .2 Suppose that B |= Γ. We
want to show that B |= T . It will then follow from the definition of logical
implication that Γ is a set of axioms for T . Let

Σ = {¬δ : B |= ¬δ, δ ∈ ∆};

i.e., the sentences in ∆ that B doesn’t satisfy.

Claim: T ∪ Σ is consistent.

Proof: Suppose not. Then, by the compactness theorem, there is
a finite subset {¬δ1, . . . ,¬δn} of Σ such that T ∪ {¬δ1, . . . ,¬δn}
is inconsistent. So T |= δ1 ∨ . . . ∨ δn. Thus δ1 ∨ . . . ∨ δn ∈ ∆
since ∆ is closed under disjunction, and so δ1 ∨ . . . ∨ δn ∈ Γ by
definition. So B |= δ1 ∨ . . . ∨ δn. But B |= ¬δi for i = 1, . . . , n,
which is a contradiction. 2

1Let Γ be a set of axioms for T with Γ ⊆ ∆. Since A |= T , A |= Γ. So by 2, B |= Γ.
Since Γ is a set of axioms for T , B |= T .

2If T has a set of axioms from ∆, then Γ is such a set.

1



Since T ∪ Σ is consistent, it has a model. So let A |= T ∪ Σ. Now A |= T ,
and for all φ ∈ ∆, if A |= φ then B |= φ by definition of Σ.3 So by 2, B |= T .
2

Theorem: If T is finitely axiomatizable and if Π is a set of axioms for T ,
then there is a finite subset Π

′

of Π which is a set of axioms for T .

Proof: Since T is finitely axiomatizable, let Γ be a finite set of axioms for
T . Since Π is a set of axioms for T , Π |= Γ. By the compactness theorem,
there is a finite Π

′

⊆ Π such that Π
′

|= Γ. 2

The above lemma will be very useful for proving the preservation the-
orems. In the proofs of those theorems, we will let ∆ be a certain set of
formulas and then prove 2.

Definition: Let B be a structure. The set of atomic and negated atomic
sentences true in (B, b)b∈|B| is called the atomic diagram of B. I.e., if

∆B = {atomic or negated atomic ψ(cb1 , . . . , cbn
) : B |= ψ(b1, . . . , bn)}

where the cb’s are new constant symbols for elements in |B|, then ∆B is
the atomic diagram of B. In particular, if ψ is quantifier free (not nec-
essarily atomic or negated atomic) and B |= ψ(b1, . . . , bn), then ∆B |=
ψ(cb1 , . . . , cbn

).

Theorem: A theory T is preserved under substructures iff T has a set of
universal axioms.

Proof: ⇐: we did last time.
⇒: Let ∆ be the set of sentences logically equivalent to the set of universal
sentences.4 Suppose that A |= T and that for all φ ∈ ∆, A |= φ ⇒ B |= φ.
We want to show that B |= T so that we can invoke the above lemma to
prove the theorem. Every universal sentence true in A is also true in B, so
every existential sentence true in B is also true in A. Let L be the language
of T , and let LB be L plus new constant symbols cb for b ∈ |B|. Let ∆B be
the atomic diagram of B.

3I.e., if B 6|= φ, then B |= ¬φ, and so ¬φ ∈ Σ. But A |= Σ, hence A |= ¬φ, a
contradiction.

4We can’t just let ∆ be the set of universal sentence because we want to use the lemma,
and the lemma requires ∆ to be closed under finite disjunction.
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Claim: T
′

= T ∪ ∆B is consistent.

Proof: Suppose not. Then by the compactness theorem, there is
a finite set

{ψ1(cb1 , . . . , cbn
), . . . , ψk(cb1 , . . . , cbn

)} ⊆ ∆B

which is inconsistent with T . So (inverse skolemizing),5

T
′′

= T ∪ ∃x1 . . .∃xn(ψ1(x1, . . . , xn) ∧ . . . ∧ ψk(x1, . . . , xn))

is inconsistent since the cb’s don’t occur in T (they’re new con-
stant symbols). But,

B |= ∃~x(ψ1(~x) ∧ . . . ∧ ψk(~x))

by definition of ∆B and letting x1, . . . , xn = b1, . . . , bn. So

A |= ∃~x(ψ1(~x) ∧ . . . ∧ ψk(~x))

since the formula is existential. Then, since A |= T , A |= T
′′

,
which is a contradiction since T

′′

is inconsistent. 2

Since T ∪ ∆B is consistent, it has a model. So let C+ |= T ∪ ∆B. Let C be
the model obtained by restricting C+ to the language L of T . By taking an
isomorphic copy of C+ if necessary, we can assume without loss of generality
that cC

+

b = b. So B ⊆ C because C+ |= ∆B. And C |= T because C+ |= T

and T doesn’t involve any of the new constant symbols. So B |= T because
T is assumed to be preserved under substructures. 2

Homework: Prove that T is preserved under extensions (opposite of sub-
structures) iff T has a set of existential axioms.

5Recall from the “skolemization” theorem that, for example,

{Γ, ∃xφ(x)} is inconsistent ⇔ Γ, ∃xφ(x) |= ∃y(y 6= y)

⇔ Γ, φ(c) |= ∃y(y 6= y)

⇔ {Γ, φ(c)} is inconsistent,

where c does not occur in Γ.
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Theorem: A theory T is preserved under unions of chains iff T has a set
of Π2 axioms.

Proof: ⇐: already done
⇒: let ∆ be the set of sentences logically equivalent to the set of Π2-
sentences. In particular, ∆ is closed under finite disjunction.1 Suppose
that A |= T and that for all φ ∈ ∆, if A |= φ then B |= φ. Then we want to
show that B |= T . Now, every Σ2-sentence true in B is also true in A.2

Claim: There are structures A
′

and B
′

such that

1. A ≡ A
′

,

2. B ≺ B
′

, and

3. B ⊆ A
′

⊆ B
′

.

Proof: Let L be the language of T , and let LB be L ∪ {cb :
b ∈ |B|} where the cb’s are new constant symbols not in L. Let
T1 = Th(A) (a complete theory), and let T2 be the set of Π1-
sentences true in BB where BB is the structure B extended to
LB.

Sub-claim 1: T1 ∪ T2 is a consistent theory.

Proof: Any finite subset of T2 is of the form

1I.e., any finite disjunction of Π2-sentences can be converted to a Π2-sentence by prenex
operations.

2Since every Π2-sentence true in A is true in B. (A Σ2-sentence is of the form
∃x1 . . . ∃xn∀y1 . . . ∀ymφ where φ is quantifier free.)

1



{ψ1(cb1 , . . . , cbn
), . . . ψk(cb1 , . . . , cbn

)}.

(Note that these ψ’s are universal.) This subset is
consistent with T1 iff (backwards skolemizing)

∃x1 . . .∃xn(ψ1(~x) ∧ . . . ∧ ψk(~x))

is. (Note that by prenex operations, this is equivalent
to a Σ2-sentence in the language L.) Since

BB |= ψ1(b1, . . . , bn) ∧ . . . ∧ ψk(b1, . . . , bn),

we have

B |= ∃x1 . . .∃xn(ψ1(~x) ∧ . . . ∧ ψk(~x)).

Hence,

A |= ∃x1 . . .∃xn(ψ1(~x) ∧ . . . ∧ ψk(~x))

since every Σ2-sentence true in B is true in A. This
formula is already in T1 (since it is in Th(A)) and is
certainly consistent with T1. 2

So let A
′

B |= T1 ∪ T2. Without loss of generality, (making an

isomorphic copy if necessary) c
A

′

B

b = b for all b ∈ |B|. So, if A
′

is
the restriction of A

′

B to the language L, B ⊆ A
′

. Also, A
′

≡ A
because T1 = Th(A).

Any Π1-sentence true in BB is also true in A
′

B (since A
′

B |= T2).
So any existential sentence true in A

′

B is also true in BB.

Now, further expand the language LB to a new language LA by
adding new constant symbols ca for each a ∈ |A

′

| \ |B| (keeping
the old cb’s).

3 Let A
′

A be B
′

A expanded to the language LA. Let
D(A

′

A) be the set of quantifier free sentences true in A
′

A.4 Let
T

′

be D(A
′

A) ∪ Th(BB).5

3At this point, we’ve dropped one level of quantifiers, and we’ll proceed the same as
before except with atomic formulas instead of Π1-formulas.

4Essentially the same as the atomic diagram.
5To sharpen the analogy between this case and the previous case, we could say that

T3 = Th(BB) and T4 = D(A
′

A
).
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Sub-claim 2: T
′

is a consistent theory.

Proof: Any finite subset of D(A
′

A) is of the form

{ψ1(ca1
, . . . , can

), . . . ψk(ca1
, . . . , can

)}.

where the ψ’s are quantifier free and a1, . . . , an ∈ |A
′

|\
|B|. This subset is consistent with Th(BB) iff

∃x1 . . .∃xn(ψ1(~x) ∧ . . . ∧ ψk(~x))

is. Since any existential sentence true in A
′

B is true in
BB, the above sentence is in Th(BB). So it is certainly
consistent with Th(BB). 2

So let B
′

A |= T
′

. Without loss of generality, (making an iso-

morphic copy if necessary) c
B

′

A

a = a for a ∈ |A
′

|. Let B
′

be
the restriction of B

′

A to the language L. Then A
′

⊆ B
′

since
A

′

A |= D(A
′

A), and B ≺ B
′

since B
′

A |= Th(BB). 2

Now, iterate the above process to get the structures A1,A2, . . . and
B0,B1, . . . such that

B = B0 ⊆ A1 ⊆ B1 ⊆ A2 ⊆ B2 ⊆ . . .

with Bi ≺ Bi+1 and A ≡ Ai for all i.

Then, by the definition of union of chains,
⋃

i Ai =
⋃

i Bi. Also, Ai |= T for
all i. Since T is preserved under unions of chains,

⋃

i Ai |= T . And by the
elementary chain theorem, B ≺

⋃

i Bi. So B ≡
⋃

i Bi |= T . 2
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Preservation Theorems (cont.)
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April 14, 1989

Definition: Let A and B be two structures with the same language, L. A
pos B means that if φ is a positive sentence in the language L and A |= φ,
then B |= φ.

Definition: An embedding of A into B is a homomorphism of A onto (not
necessarily 1-1) a substructure of B.

Theorem: A theory T is preserved under homomorphisms iff T has a set
of positive axioms.1

Proof: ⇐: It suffices to show that if φ is a positive sentence, A |= φ,
and B is a homomorphic image of A, then B |= φ. Let f : A → B be a
homomorphism.

Claim: If φ(x1, . . . , xn) is a positive formula, and a1, . . . , an ∈
|A|, then if A |= φ(a1, . . . , an), then B |= φ(f(a1), . . . , f(an)).

Proof: By induction of the complexity of φ.

1The intuitive reason behind restricting the axioms to being positive is that, by defini-
tion, a homomorphism preserves the truthness of atomic formulas; it doesn’t necessarily
preserve the truthness of negated atomic formulas or other non-positive formulas. For
instance, a set of axioms for groups (with language e, ·) is

∀x(e · x = x),
∀x(x · e = x),
∀x∃y(x · y = e),
∀x∃y(y · x = e), and
∀x∀y∀z(x · (y · z) = (x · y) · z).

So groups are closed under homomorphisms.

1



Basis: φ is atomic and of the form P (t1(~a), . . . , tk(~a)) (where P

is possibly ‘=’). Now,

f(tAi (a1, . . . , an)) = tBi (f(a1), . . . , f(an))

by induction on the complexity of ti and using the fact that
homomorphisms respect functions and constants. So if

A |= P (t1(~a), . . . , tk(~a)),

then

B |= P (f(t1(~a)), . . . , f(tk(~a)))

by the definition of homomorphism. And so

B |= P ((t1(f(a1), . . . , f(an))), . . . , tk(f(a1), . . . , f(an))).

Induction: The cases in which φ is ψ ∧ χ or is ψ ∨ χ are easy by
the induction hypothesis.

If φ is ∃xψ(x1, . . . , xn, x), then

A |= φ(a1, . . . , an)
⇔ ∃a ∈ |A|, A |= ψ(a1, . . . , ak, a) by defn. of truth
⇒ ∃a ∈ |A|, B |= ψ(f(a1), . . . , f(ak), f(a)) by ind. hyp.
⇒ ∃b ∈ |B|, B |= ψ(f(a1), . . . , f(ak), b) take b = f(a)
⇔ B |= φ(f(a1), . . . , f(an)) by defn. of truth

If φ is ∀xψ(x1, . . . , xn, x), then

A |= φ(a1, . . . , an)
⇔ ∀a ∈ |A|, A |= ψ(a1, . . . , ak, a) by defn. of truth
⇒ ∀a ∈ |A|, B |= ψ(f(a1), . . . , f(ak), f(a)) by ind. hyp.
⇔ ∀b ∈ |B|, B |= ψ(f(a1), . . . , f(ak), b) since f is onto
⇔ B |= φ(f(a1), . . . , f(an)) by defn. of truth 2

2



As an aside, we have

Theorem: Let φ be a positive sentence, and let A be
the structure with |A| = {a}, and PA = {a}k for all
k-ary P . Then A |= φ.

Proof: By induction on the complexity of φ, show
that if φ(x1, . . . , xn) is a positive formula, then A |=
φ(a, . . . , a). 2

Corollary: If Γ is a set of positive sentences, then Γ
is consistent.

⇒: (Let A be |A|, and let B be |B|). Let LA be the language L∪{ca : a ∈ A}.

Claim: If A pos B, then there is an elementary extension B
′

≻ B
and an embedding f of A into B

′

such that

(A, a)a∈A pos (B
′

, f(a))a∈A

where (A, a)a∈A is the expansion of A to the language LA,
and (B

′

, f(a))a∈A is B
′

expanded to the language LA, with

c
(B

′

,f(a))a∈A

a = f(a); i.e.,

A

B B
′

@
@

@R

f

≺

with (A, a)a∈A pos (B
′

, f(a))a∈A.

Proof: Let LB = L ∪ {db : b ∈ B}. Let T1 be the set of positive
sentences true in (A, a)a∈A in the language LA, and let T2 be
the set of sentences true in (B, b)b∈B in the language LB. (Note
that we have picked the theories T1 and T2 according to what we
want to satisfy.)

(Proof continued next time.)
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Preservation Theorems (cont.)
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Last time, we were in the middle of proving that T is preserved under
homomorphisms iff it has a set of positive axioms. We proved the easy
direction (⇐), and started the other direction.

⇒ (cont.):

Claim 1: If A pos B, then there is an elementary extension
B

′

≻ B and an embedding f of A into B
′

such that

(A, a)a∈A pos (B
′

, f(a))a∈A.

Proof: Let LA = L∪{ca : a ∈ A}, and let LB = L∪{db : b ∈ B}.
Let T1 = {positive sentences in LA true in (A, a)a∈A}, and let
T2 = {sentences in LB true in (B, b)b∈B}.

Sub-claim: T1 ∪ T2 is consistent.

Proof: Any finite subset of T1 is of the form

{ψ1(a1, . . . , an), . . . , ψk(a1, . . . , an)}.

This is consistent with T2 iff

∃x1 . . .∃xn(ψ1(~x) ∧ . . . ∧ ψk(~x)) (1)

is. Now, the ψ’s are positive by the definition of T1,
so (1) is a positive sentence true in A. Hence, since A
pos B, (1) is true in B and thus in T2. 2

1



Since T1 ∪ T2 is consistent, it has a model. So let

B∗ = (B, a
′

, b)a∈A,b∈B |= T1 ∪ T2,

where, without loss of generality, dB
∗

b = b. Then B
′

is the re-
striction of B∗ to the language L.1 Now, define f(a) = a

′

, the
embedding of (A, a)a∈A into (B, a

′

, b)a∈A,b∈B. (Note that f is
not necessarily onto.)

Sub-claim: (A, a)a∈A pos (B
′

, f(a))a∈A (in the lan-
guage LA).

Proof: a1 = a2 ⇒ f(a1) = f(a2) since f is a function.
For any function symbol g ∈ L, and a ∈ A, gA(a) = a2

for some a2 ∈ A. So a2 = g(a) is in T1, and so B∗ |=
a2 = g(a). Similarly, P (a) ∈ T ⇒ B∗ |= P (a) for P a
positive formula involving a.

This proves the sub-claim and claim 1. 2

Claim 2: (Almost dual of claim 1.) If A pos B, then there is an
elementary extension A

′

≻ A and a mapping g : B → A
′

such
that

(A, g(b))b∈B pos (B, b)b∈B.

Proof: Let T3 = {sentences in LA true in (A, a)a∈A}, and let
T4 = {¬φ : φ is positive in LB and (B, b)b∈B |= ¬φ}.

Sub-claim: T3 ∪ T4 is consistent.

Proof: Any finite subset of T4 is of the form

{¬ψ1(db1 , . . . , dbn
), . . . ,¬ψk(db1 , . . . , dbn

)}

where the ψ’s are positive. But,

1Note that c
B

∗

a
= a

′

may not equal a. The reason is that T1 contains only positive
sentences, while T2 doesn’t have this restriction. I.e., it is possible for a

′

1 = a
′

2 even though
A |= a1 6= a2. But this is not possible for the b’s.

2



B |= ∃x1 . . .∃xn(¬ψ1(~x) ∧ . . . ∧ ¬ψk(~x))

|= ¬∀x1 . . .∀xn(ψ1(~x) ∨ . . . ∨ ψk(~x)).

Now any positive sentence false in B is false in A. So

A |= ∃x1 . . .∃xn(¬ψ1(~x) ∧ . . . ∧ ¬ψk(~x)) (2)

because so does B and because the formula in (2) is
logically equivalent to the negation of a positive sen-
tence. So

∃x1 . . .∃xn(¬ψ1(~x) ∧ . . . ∧ ¬ψk(~x))

is in T3 and hence consistent with T3. And so, the
finite subset of T4 is consistent with T3. 2

Since T3 ∪ T4 is consistent, it has a model. So let

A∗ = (A
′

, a, b
′

)a∈A,b∈B |= T3 ∪ T4,

with cA
∗

a = a, and dA
∗

b = b
′

.2 Let g(b) = b
′

, and let A
′

be the
restriction of A∗ to the language L. Then

(A
′

, g(b))b∈B pos (B, b)b∈B

since if any positive sentence φ in LB is false in (B, b)b∈B, then
¬φ is in T4, and hence φ is false in (A

′

, g(b))b∈B. 2

(Proof of ⇒ part of theorem continued.) Let A |= T , and A pos B. By the
lemma (of a few lectures ago), it suffices to show that B |= T . By iterating
the two claims above, build two elementary chains of structures:

2Note that B |= b1 6= b2 means that db1
6= db2

is in T4. So A
∗
|= b

′

1 6= b
′

2. Note also,

that we could have B |= b1 = h(b2) for h ∈ L, but B
∗
|= b

′

1 6= h(b
′

2). I.e., things that
weren’t equal in B, aren’t equal in A

∗. But things that were equal in B, could become
unequal in A

∗.

3



A = A0 ≺ A1 ≺ A2 · · ·

B = B0 ≺ B1 ≺ B2 · · ·

@
@

@R

f0 6g1

@
@

@R

f0 6g1

with

(A0, a)a∈A pos (B1, f0(a))a∈A

(A1, a, g(b
′

))a∈A0,b
′
∈B1

pos (B1, f0(a), b
′

)a∈A,b
′
∈B1

(A1, a, g(b
′

), a
′

)a∈A0,b
′
∈B1,a

′
∈A1

pos (B2, f0(a), b
′

, f1(a
′

))a∈A,b
′
∈B1,a

′
∈A1

...

Let Aω =
⋃

i Ai. By the elementary chain theorem, Aω ≡ A; hence Aω |= T .
Similarly, let Bω =

⋃

i Bi. Again, by the elementary chain theorem, Bω ≡ B.
In order to show that Bω |= T , we need to show that fω =

⋃

i fi is a
homomorphism of Aω onto Bω.

Claim 1: fn extends fn−1; i.e., they agree on their common
domain.

Proof: Suppose that a
′

∈ A1, a ∈ A0, and a
′

= a. Then we need
to show that f0(a) = f1(a

′

) = f1(a). Now, ca = ca
′ is a positive

sentence in (LA0
)A1

. So A1 |= ca = ca
′ , and so B2 |= ca = f1(a

′

).

Since cB2

a = f0(a), f0(a) = f1(a
′

). And since f is a function,
f1(a

′

) = f1(a). 2

(Proof continued next time. We still have to show that the f ’s are
homomorphisms and that they’re onto.)
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Preservation Theorems (cont.)
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Last time, we were in the process of concluding the ⇒ part of the proof
that T is preserved under homomorphisms iff it has a set of positive axioms.
We built two elementary chains of structures:

A = A0 ≺ A1 ≺ A2 · · ·

B = B0 ≺ B1 ≺ B2 · · ·

@
@

@R

f0 6g1

@
@

@R

f0 6g1

such that the fi’s are embeddings, the gi’s are function, and

A pos B

(A0, a)a∈A pos (B1, f0(a))a∈A

(A1, a, g(b
′

))a∈A0,b
′
∈B1

pos (B1, f0(a), b
′

)a∈A,b
′
∈B1

(A1, a, g(b
′

), a
′

)a∈A0,b
′
∈B1,a

′
∈A1

pos (B2, f0(a), b
′

, f1(a
′

))a∈A,b
′
∈B1,a

′
∈A1

...

We also showed that

Aω =
⋃

i

Ai ≡ A |= T

and that

Bω =
⋃

i

Bi ≡ B.

To continue with the proof, we’ll reprove, in a better way, the following
claim.

1



Claim 1: fn ⊇ fn−1.

Proof: (By example, for the case n = 0.) Let x ∈ A0 ⊆ A1. Let
c0
x be the constant symbol for x as a member of A0, and let c1

x

be the constant symbol for x as a member of A1.
1 Now,

(A1, a, g1(b
′

), a
′

)a∈A0,b
′
∈B1,a

′
∈A1

|= c0

x = x.2

So

(B1, f0(a), b
′

, f1(a
′

))a∈A0,b
′
∈B1,a

′
∈A1

|= c0

x = x

by the fourth pos relationship above, where y = f1(x), and

(c0

x)
(B1,f0(a),b

′

,f1(a
′

))
a∈A0,b

′
∈B1,a

′
∈A1 = f0(x),

by the second pos relationship above. So f0(x) = f1(x). 2

Claim 2: g−1
n ⊆ fn.

Proof: (By example for the case n = 1.) Suppose that g1(y) = x.
Then we want to show that f1(x) = y. Let y ∈ B1, and x ∈ A1.

3

Let d1
y be the constant symbol for y as an element of B1. Then

(A1, a, g1(b
′

))a∈A0,b
′
∈B1

|= d
′

y = x

since

(d
′

y)
(A1,a,g1(b

′

))
a∈A0,b

′
∈B1 = g(y) = x.

So

(B1, f0(a), b
′

)a∈A0,b
′
∈B1

|= d
′

y = z

1We don’t actually need c
1

x
, but it clarifies the point that there really are two different

constant symbols for x in the two models A0 and A1.
2Remember that c

0

x
= x for x an element of the universe is shorthand for c

0

x
=

x1 s[x/x1].
3Note that x may or may not be in A0.

2



by the third pos relationship above, where z = f1(x). Now,

(d
′

y)
(B1,f0(a),b

′

)
a∈A0,b

′
∈B1 = y,

and y = z = f1(x). So g−1

1
⊆ f1. 2

So fω is a function by claim 1. And fω is onto by claim 2 because the range
of fn includes the domain of gn = Bn.

Claim 3: fω is a homomorphism.

Proof: fω is onto. Also, any positive sentence with elements from
|Bω| uses only elements from Bn for large enough n. Now use the
fact that fn is an embedding; i.e., it preserves positive sentences.
2

To conclude, we have that A |= T by hypothesis. Aω |= T since Aω ≡

A. And Bω |= T since fω : Aω
homo.
→ Bω and since T is preserved under

homomorphisms by hypothesis. So B |= T since B ≡ Bω. Hence by the
lemma, T has a set of positive axioms. 2
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Gödel’s Incompleteness Theorems
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April 19, 1989

In discussing incompleteness, we will work in the theory Q. Q has the
language 0, S, +, · and axioms:

∀x∀y(Sx = Sy → x = y)
∀x(0 6= Sx)
∀x(x 6= 0 → ∃y(x = Sy))
∀x(x + 0 = x)
∀x∀y(x + Sy = S(x + y))
∀x(x · 0 = 0)
∀x∀y(x · Sy = x · y + y)

Q is weak in the sense that it can’t prove things such as addition being
commutative.1 Later, we’ll see that in another sense, Q is strong. It provides
a nice inductive axiomatization of + and · along with some induction axioms.

A crucial element of the language is ·. Without it, we have models which
are well understood:

• Th(N, 0, S,≤) is decidable and admits elimination of quantifiers.

• Th(N, 0, S, +,≤) is decidable and model-complete.

• Th(N, 0, S, +,≤,≡p)p prime
2 admits elimination of quantifiers.

But with · in the language, things become undecidable. Part of the reason
for this is that we can code recursive functions.

Definition: Let f : Nk → N . Q (or in general any theory) can represent f

iff there is a formula φ(x1, . . . , xk, y) such that for every n1, . . . , nk ∈ N , if
m = f(n1, . . . , nk), then

1This can be shown by building non-standard models.
2
x ≡p y means x ≡ y mod p.

1



Q ⊢ ∀x(φ(Sn10, . . . , Sn
k0, x) ↔ x = Sm0).

Or, in other words,

Q ⊢ φ(Sn10, . . . , Sn
k0, Sm0), and

Q ⊢ ∀x(Sn10, . . . , Sn
k0, x) → x = Sm0).

The idea behind this definition is that φ codes the graph of f .3

We’ll start our study of Q by looking for functions representable in Q.
These will turn out to be exactly the recursive functions.

3
S

n0 is a term in the language of Q. We can’t use n itself because it is not in the
language.

2
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Definition: f is representable in Q iff there is a formula φ(~x, y) such that

1. φ(~x, y) defines the graph of f(~x) = y (in the standard model), and

2. for all n1, . . . , nk ∈ N if m = f(~n), then

Q ⊢ ∀y(φ(Sn10, . . . , Sn
k0, y) ↔ y = Sm0).

In fact, (2) implies (1) since Q is a true theory.1

Definition: f is strongly representable in Q iff there is a formula φ(~x, y)
such that (1) and (2) as above hold and

3. Q ⊢ ∀~x∃!yφ(x1, . . . , xk, y).

(Recall that ∃!yφ is shorthand for ∃yφ ∧ ∀y∀y
′

(φ ∧ φ(y
′

/y) → y = y
′

).)

Definition: f is definable in Q iff there is a formula φ(~x, y) such that (1)
and (3) as above hold.

Theorem: If f is representable, then f is strongly representable (but per-
haps with a different φ).2

Proof: Let f be represented by φ. Let ψ(~x, y) be

(∃!yφ(~x, y) → φ(~x, y)) ∧ (¬∃!yφ(~x, y) → y = 0).

Then
1
Q being a true theory means that the axioms of Q are true in the standard model.

Also, note that φ doesn’t say anything about non-standard elements. The term S
ni0 for

ni ∈ N denotes the integer ni. All we can say about “standardness” is that φ applied to
standard arguments produces a standard result.

2Note that the converse is obvious.
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1. ψ defines the graph of f because φ does.

2. If n1, . . . , nk ∈ N and m = f(n1, . . . , nk) then

Q ⊢ ∀y(φ(Sn10, . . . , Sn
k0, y) ↔ y = Sm0),

and so

Q ⊢ ∀y(ψ(Sn10, . . . , Sn
k0, y) ↔ y = Sm0).

3. If there is a unique y such that φ(~x, y), then y is defined by φ(~x, y). If
not, then y is 0. Either way, y is unique; i.e.,

Q ⊢ ∃!yψ(~x, y). 2

Theorem: All representable functions are definable, but not vice versa.

Proof: Later.

The key difference between representable and definable functions is that
for particular arguments n1, . . . , nk to representable functions, Q can prove
that m is the unique result.

Theorem: If f is representable, then f is recursive.

Proof: Given n1, . . . , nk, we find f(n1, . . . , nk) by enumerating all theorems3

of Q until we find a theorem of the form

∀y(φ(Sn10, . . . , Sn
k0, y) ↔ y = Sm0).

Then m = f(n1, . . . , nk). 2

Our goal now is to show that every recursive function is representable.
Recall that the recursive functions are precisely the base functions S, +, ·, −̇,
and Πm

k (x1, . . . , xm) = xk closed under minimization and composition. So
we have to show that these notions are representable in Q.

1 Proposition: S(x) = x + 1 is representable in Q.

Proof: Let φ(x, y) be Sx = y. Then
3Recall a result we showed last quarter: If Γ is a recursive set of sentences, then the

set of logical consequences (theorems) of Γ is r.e.
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1. For all n,

Q ⊢ S(Sn0) = Sn+10

since S(Sn0) and Sn+10 are identical terms.

2. For all n,

Q ⊢ S(Sn0) = y → y = Sn+10

by the equality axioms. 2

2 Proposition: + is representable in Q.

Proof: Let φ(x, y, z) be x + y = z.

Claim: If n, m ∈ N , then

Q ⊢ Sn0 + Sm0 = Sn+m0.

Proof: By induction on m.

Basis: m = 0. Then

Q ⊢ Sn0 + 0 = Sn+10

by the axiom ∀x(x + 0 = x).

Induction:

Q ⊢ Sn0 + Sm+1 = S(Sn0 + Sm0) (1)

Q ⊢ Sn0 + Sm+1 = S(Sn+m0) (2)

Q ⊢ Sn0 + Sm+1 = Sn+m+10 (3)

(1) is by the axiom ∀x∀y(x+Sy = S(x+y)). (2) is by induction.
And (3) is since S(Sn+m0) and Sn+m+10 are identical terms. 2

3



The claim establishes the existence of φ. So we still have to show the unique-
ness of φ. Now,

Q ⊢ Sn0 + Sm0 = Sn+m0

for all n, m ∈ N ; hence

Q ⊢ ∀z(Sn0 + Sm0 = z → z = Sn+m0)

since

Q ⊢ ∀u∀v∀x∀x
′

(u + v = x ∧ u + v = x
′

→ x = x
′

)

by the equality axioms. 2

3 Proposition: · is representable in Q.

Proof: Let φ(x, y, z) be x · y = z.

Claim: If n, m ∈ N , then

Q ⊢ Sn0 · Sm0 = Snm0.

Proof: By induction on m.

Basis: m = 0. Then

Q ⊢ Sn0 · 0 = 0

by the axiom ∀x(x · 0 = 0).

Induction:

Q ⊢ Sn0 · Sm+1 = (Sn0 · Sm0) + Sn0 by ∀x∀y(x · Sy = x · y + x)
Q ⊢ Sn0 · Sm+1 = Snm0 + Sn0 by induction
Q ⊢ Sn0 · Sm+1 = Snm+n0 by proposition 2. 2

So

Q ⊢ Sn0 · Sm0 = Snm0

for all n, m ∈ N ; hence

4



Q ⊢ ∀x(Sn0 · Sm0 = x → x = Snm0)

since

Q ⊢ ∀u∀v∀x∀x
′

(u · v = x ∧ u · v = x
′

→ x = x
′

)

by the equality axioms. 2

4 Proposition: Im
k is representable in Q.

Proof: Let φ(x1, . . . , xm, y) be y = xk. Then

Q ⊢ ∀y(y = Sn0 ↔ y = Sn0)

by the equality axioms. 2
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Last time we showed that all of the base functions for the class of recur-
sive functions except −̇ were representable in Q. −̇ is harder and we’ll leave
it for later. Now we confront composition and minimization.

5 Proposition: If i 6= j, then Q ⊢ Si0 6= Sj0.

Proof: Without loss of generality, let i < j. Use induction on i.

Basis: i = 0. We need to show that Q ⊢ 0 6= Sj0. We have an axiom
∀x(Sx 6= 0) which does this. Sj0 is S(Sj−10) since j > 0.

Induction: i > 0.

Q ⊢ Si0 = Sj0 → Si−10 = Sj−10

from an axiom. And by the induction hypothesis (which says Q ⊢ Si−10 6=
Sj−10), Q ⊢ Si0 6= Sj0. 2

Theorem: If g : Nk → N , and h1, . . . , hk : Np → N , and g, h1, . . . , hk are
all representable, then

f(~x) = g(h1(~x), . . . , hk(~x))

is also representable. (I.e., representable functions are closed under compo-
sition.)

Proof: Suppose that Bi(x1, . . . , xp, yi) represents hi and that A(y1, . . . , yk, z)
represents g. Then let C(x1, . . . , xp, z) be1

1We could also use C(x1, . . . , xp, z) =

∀y1 . . . ∀yk(

k
∧

i=1

Bi(x1, . . . , xp, yi) → A(y1, . . . , yk, z)).

1



∃y1 . . .∃yk(A(y1, . . . , yk, z) ∧
k
∧

i=1

Bi(x1, . . . , xp, yi)).

If n1, . . . , np ∈ N , mi = hi(~n) for i = 1, . . . , k, and q = g(~m), then q = f(~n).
Also, Q ⊢ C(Sn10, . . . , Snp , Sq0) since

Q ⊢ A(Sm10, . . . , Sm
k0, Sq0) ∧

k
∧

i=1

Bi(S
n10, . . . , Snp0, Smi0)

by the representability of the hi’s and g.

Convention: Let m denote the same term as Sm0. So, for exam-
ple, the above expression would be

Q ⊢ A(m1, . . . , mk, q) ∧
k
∧

i=1

Bi(n1, . . . , np, mi).

Note that 0 means 0.

Now we need to show uniqueness.

Claim: Q ⊢ ∀z(C(n1, . . . , np, z) → z = q).

Proof:

Q ⊢ Bi(n1, . . . , np, yi) → yi = mi (1)

⊢ A(y1, . . . , yk, z) ∧
∧k

i=1 Bi(n1, . . . , np, yi) →
∧k

i=1 yi = mi (2)

⊢ A(y1, . . . , yk, z) ∧
∧k

i=1 Bi(n1, . . . , np, yi) → A(m1, . . . , mk, z) (3)

⊢ A(y1, . . . , yk, z) ∧
∧k

i=1 Bi(n1, . . . , np, yi) → z = q (4)

⊢ ∃y1, . . .∃yk(A(y1, . . . , yk, z) ∧
∧k

i=1 Bi(n1, . . . , np, yi)) → z = q (5)

(1) is because the hi’s are representable. (2) is just the con-
junction of the formulas of the form of (1) with A(y1, . . . , yk, z)
thrown in. (3) is by equality axioms. (4) is since A is the unique
representation of g. And (5) since the yi’s are free on the right
side of the →.2 This completes the proof of the claim and the
theorem. 2

2The form of reasoning is that Q ⊢ Cm(~y) → z = q means that Q ⊢ (∀~yCm(~y) →

z = q). So by prenex operations and since the y’s don’t occur on the right side of the →,

Q ⊢ ∃~yCm(~y) → z = q. This form of reasoning is called “∃-elimination”.

2



Now we want to show that minimization is representable in Q. More
precisely, we want to show that if f(~x, y) is representable and is regular,3

then g(~x) = µy(f(~x, y) = 0) is representable. In doing this, we’ll take
a representation of f , say A(~x, y, z), and create B(~x, y) which represents g.
Finding the y in the minimization is not hard; but showing that it is minimal
and unique is. Before we do this, we’ll have to build up some propositions
and lemmas.

Definition: A relation R ⊆ Nk is representable iff χR is.

6 Proposition: A k-ary relation R is representable iff there is a formula
φ(x1, . . . , xk) such that

1. φ defines4 R, and

2. for all n1, . . . , nk, either Q ⊢ φ(n1, . . . , nk) or Q ⊢ ¬φ(n1, . . . , nk).
5

Proof: ⇒: Suppose that ψ(~x, y) represents χR. Then let φ(~x) be ψ(~x, 1).

⇐: Given a φ such that (1) and (2) hold, let ψ(~x, y) be

(y = 0 ∧ ¬φ(~x)) ∧ (y = 1 ∧ φ(~x)). 2

7 Proposition: The set of representable relations is closed under comple-
mentation, union, and intersection.

Proof: Trivial from proposition 6.6

Definition: a < b is an abbreviation for ∃x(Sx + a = b).

8 Proposition: If i < j, then Q ⊢ i < j.

Proof: If i < j, then m + 1 + i = j for some m. So Q ⊢ m + 1 + i = j since
+ is representable in Q. Hence Q ⊢ Sm + i = j, and Q ⊢ ∃x(Sx + i = j). 2

3I.e., for all ~x, a y exists such that f(~x, y) = 0.
4
φ defines R means that for all ~n ∈ N , N |= φ(~n) ⇔ R(~n).

5Note that Q ⊢ ∀~x(φ(~x∨¬φ(~x)) does not imply that either Q ⊢ φ(~x) or Q ⊢ ¬φ(~x). If φ

defines a relation R which is not recursive, then χR is definable in Q but not representable
in Q. For example, if R expresses the relation that the n

th Turing machine halts on input
a blank tape.

6If φ represents R, then ¬φ represents N
k

\ R. If φ and ψ represent R and S, then
φ ∨ ψ represents R ∪ S. Similary for ∩.
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Lemma: For i ≥ 0, Q ⊢ ∀x(Sx + i = x + i + 1).

Proof:

Q ⊢ Sx + Si0 = S(Sx + Si−10)

...

= Si(Sx + 0)

= Si+1x

= Si+1(x + 0)

= Si(x + S0)

...

= x + Si+10. 2

9 Proposition: For i > 0, Q ⊢ ∀x(x < i → x = 0 ∨ . . . ∨ x = i − 1), and
for i = 0, Q ⊢ ∀x(¬x < 0).

Proof: By induction on i.

Basis: i = 0. (We’ll reason inside Q.) We have the axiom x = 0 ∨ ∃y(x =
Sy).

Case 1. x = 0. Then x < 0 means that ∃w(Sw+0 = 0). Hence ∃w(Sw = 0)
by the axiom ∀x(x + 0 = 0). But this contradicts the axiom ∀x(Sx 6=
0). So Q ⊢ x = 0 → ¬x < 0.

Case 2. ∃y(x = Sy). Then x < 0 means that ∃w(Sw +x = 0) ⇒ ∃w(Sw +
Sy = 0) ⇒ ∃w(S(Sw + y) = 0) ⇒ ∃v(Sv = 0) ⇒ contradiction. So
Q ⊢ ∃y(x = Sy) → ¬x < 0.

This concludes the base case i = 0. Next lecture, we’ll finish the proof.
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9 Proposition: For i = 0, Q ⊢ ∀x(¬x < 0), and for i > 0, Q ⊢ ∀x(x <

i → x = 0 ∨ . . . ∨ x = i − 1).

Proof: By induction on i.

Basis: i = 0. We did this last time.

Induction: (Reasoning in Q again.) Suppose that x < i + 1. Then, since
Q ⊢ x = 0 ∨ ∃w(x = Sw) (this is actually an axiom), we have two cases.

Case 1. x = 0. Then there is nothing to prove.

Case 2. x = Sw for some w. Now x < i + 1 means that Sy + x = i + 1 for
some y. So Sy +Sw = i + 1. Hence S(Sy +w) = i + 1 by an addition
axiom, and so Sy + w = i by the “S is 1-1” axiom. By the induction
hypothesis, w = 0 ∨ . . . ∨ w = i − 1. So Sw = 1 ∨ . . . ∨ Sw = i; i.e.,
x = 1 ∨ . . . ∨ x = i. 2

This proposition essentially says that there are no nonstandard numbers less
than any standard number.

10 Proposition: < is a representable relation.

Proof: Let φ be x < y. Suppose that i, j ∈ N .

Case 1. i < j. Then Q ⊢ i < j by proposition 8.

Case 2. i ≥ j. Then for any k = 0, . . . , j − 1, i 6= k. Hence Q ⊢ i 6= k by
proposition 5. Now,

Q ⊢ x < j → x = 0 ∨ . . . ∨ x = j − 1.

1



So, Q ⊢ ¬i < j.1 2

Theorem: Let R(x1, . . . , xk, xk+1) be a representable relation, and let

S(x1, . . . , xk) ⇔ (∃xk+1 < x1)R(x1, . . . , xk+1).

Then S is representable.2

Proof: Let φ(x1, . . . , xk+1) represent R, and let ψ(x1, . . . , xk) be (∃xk+1 <

x1)φ(x1, . . . , xk+1). If n1, . . . , nk ∈ N and S(~n), then there is an m < n1

such that R(~n, m). So

Q ⊢ φ(n1, . . . , nk, m) ∧ m < n1

by the representability of <. So Q ⊢ ψ(n1, . . . , nk). But if ¬S(~n), then

Q ⊢ ¬φ(n1, . . . , nk, m)

for each m = 0, . . . , n1 − 1. So

Q ⊢ x < n1 → x = 0 ∨ . . . ∨ x = n1 − 1.

Hence Q ⊢ ¬ψ(n1, . . . , nk). 2

Corollary: Representable relations are closed under bounded quantification.3

Lemma: For i ≥ 0, Q ⊢ ∀x(i < x → i + 1 = x ∨ i + 1 < x).

Proof: Fix i, and reason in Q. Suppose that i < x. Then Sw + i = x for
some w. Now, by an axiom, w = 0 ∨ ∃y(w = Sy).

Case 1. w = 0. Then S0+i = x. But S0+i = i + 1, by the representability
of +. So x = i + 1.

Case 2. Sy = w. Then SSy + i = x. So Sy + Si = x by an earlier
lemma (April 24). This is the same as Sy + i + 1 = x which implies
by definition that i + 1 < x. 2

1Note that we are using < to represent three different things: (1) the relation “less
than”, (2) the name of the relation “less than”, and (3) an abbreviation for ∃x(Sx+a = b).

2We can also define S in terms of R similarly with ∀ instead of ∃ since we can just
represent ∀ as ¬∃¬.

3We can use any representable t to say S(−) ⇔ (∃xk+1 < t)R(−), and, since repre-
sentable terms are closed under +, ·, composition, etc., the proof is basically the same.

2



This lemma essentially says that nothing fits in between i and i + 1.

Theorem: (Trichotomy) For i ≥ 0, Q ⊢ ∀x(x < i ∨ x = i ∨ i < x).

Proof: By induction on i.

Basis: i = 0. (Reason in Q.) By an axiom, x = 0 ∨ ∃y(x = Sy). If x = 0,
then there is nothing to prove. If x = Sy for some y, then Sy + 0 = x. So
0 < x by definition.

Induction: We want to show that

Q ⊢ ∀x(x < i + 1 ∨ x = i + 1 ∨ i + 1 < x).

By the induction hypothesis, we have that

Q ⊢ ∀x(x < i ∨ x = i ∨ i < x).

So there are three cases to consider.

Case 1. x < i. By proposition 9,

x < i → x = 0 ∨ . . . ∨ x = i − 1.

And by the representability of <, we have

0 < i + 1 ∧ 1 < i + 1 ∧ . . . ∧ i − 1 < i + 1.

So x < i → x < i + 1.

Case 2. x = i. Then x < i + 1 by a similar argument.

Case 3. i < x. Then either x = i + 1 or i + 1 < x. In either case, there is
nothing to prove. 2
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Theorem: Let f be a representable, regular function. Then g(~x) =
µyf(~x, y) = 0 is representable.

Proof: Let φ(~x, y, z) represent f , and let ψ(~x, y) be

φ(~x, y, 0) ∧ (∀z < y)¬φ(~x, z, 0).

Claim: ψ represents g.

Proof: If m = g(~n), then f(~n, m) = 0. So Q ⊢ φ(~n, m, 0) since φ

is represented by f . Also, for each m
′

< n, Q ⊢ φ(~n, m
′

, f(~n, m
′

))

since φ is represented by f . Hence Q ⊢ ¬φ(~x, m
′

, 0) since
f(~n, m

′

) 6= 0. So Q ⊢ ψ(~n, m).

Now we have to show uniqueness; i.e., that

Q ⊢ ∀y(ψ(~n, y) → y = m),

or, in other words,

Q ⊢ ψ(~n, y) ∧ ψ(~n, m) → y = m.

We’ll reason in Q. From the trichotomy theorem of last lecture,
we have three cases to consider:

Case 1. y = m. Then there is nothing to prove.

Case 2. y > m. If ψ(~n, y) is true, then (∀z < y)¬φ(~n, z, 0)
holds, and in particular, ¬φ(~n, m, 0) holds. But this con-
tradicts the fact that Q ⊢ ψ(~n, m) implies that φ(~n, m, 0)
holds. So y 6> m.

1



Case 3. y < m. Similar to case 2.

So y = m. This completes the proof of the claim and the theo-
rem. 2

Corollary: Any recursive function is representable.

Homework: Show that −̇ is representable.
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Gödel’s First Incompleteness Theorem
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April 28, 1989

We want to formalize in Q facts and definitions about provability in Q.
In order to do so, we need to assign Gödel numbers to formulas, proofs,
etc. For any string of symbols, α, we’ll use the notation pαq to denote the
Gödel number of α. The following (from Boolos & Jeffrey) is one possible
assignment of Gödel numbers to single symbols in the language:

p(q = 1
p)q = 2 p, q = 29
p∧q = 3 p∨q = 39 p¬q = 399 p→q = 3999
p∃q = 4 p∀q = 49
px0q = 5 px1q = 59 px2q = 599 . . .

pf0
0
q = 6 pf0

1
q = 69 pf0

2
q = 699 . . .

pf1
0
q = 68 pf1

1
q = 689 pf1

2
q = 6899 . . .

pf2
0
q = 688 pf2

1
q = 6889 pf2

2
q = 68899 . . .

...

pA1
0
q = 78 pA1

1
q = 789 pA1

2
q = 7899 . . .

pA2
0
q = 788 pA2

1
q = 7889 pA2

2
q = 78899 . . .

...

The Gödel number of a string of symbols is formed by putting its con-
stituent symbols’ codes end to end (in base 10). For example, p¬A1

0
(x0)q =

39978152.

Theorem: The following sets of integers are recursive, hence representable
in Q:

1. {ptq : t is a term},

1



2. {pαq : α is a well formed formula}, and

3. {pαq : α is an axiom of Q}.

Theorem: The following functions are recursive, hence representable in Q:

1. Num(n) = pSn0q,

2. Sub(pAq, pxq, ptq) = pA(t/x)q, and

3. Diag(pAq) = Sub(pAq, px0q, Num(pAq)).

Num is just the Gödel number of the term for the integer n; i.e., pnq. Sub
is the Gödel number of the formula resulting from the substitution of term t

for x in the formula A (with some convention on how to rename occurrences
of variables in A in order to avoid clashes with variables in t). Diag is just
pA(pAq/x0)q. It takes the Gödel number of a formula A and substitutes
that number into the formula A itself for the variable x0 and returns the
Gödel number of the result. (Note that if A doesn’t contain an occurrence
of x0 then Diag(pAq) = pAq.)

2



Gödel’s First Incompleteness Theorem (cont.)
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May 1, 1989

Recall last time, we introduced the functions Num : N → N , Sub : N →
N , and Diag : N3 → N :

Num(n) = pSn0q

Sub(pGq, pxq, ptq) = pG(t/x)q

Diag(pGq) = Sub(pGq, px0q, Num(pGq))

Diagonalization Theorem: (Gödel) Let T be a theory whose language
contains 0 and S, and suppose that Diag is representable in T . Let B(y)
be a formula whose only free variable is y. Then there is a sentence G such
that T ⊢ G ↔ B(pGq).1

Example: Consider the theory Q. Let B(y) be (∃z < y)(z + z +1 = y). So
B represents the predicate “y is odd”; i.e., for any particular integer n, B(n)
is provable or disprovable.2 The diagonalization theorem says that either

1. there is a G such that Q ⊢ G and pGq is odd, or

2. there is a G such that Q ⊢ ¬G and pGq is even.

This may be hard to understand, but consider the case where this is false.
Then

1. every G such that Q ⊢ G would be such that pGq is even, and

1The theorem can be modified to allow B to have other free variables. In that case G

would be a formula.
2Note that the diagonalization theorem itself doesn’t say anything about B or G being

provable or disprovable. But in the example, this just happens to be the case.

1



2. every G such that Q ⊢ ¬G would be such that pGq is odd.

This would be very surprising since then

{pGq : Q ⊢ G} ⊆ {even integers}, and

{pGq : Q ⊢ ¬G} ⊆ {odd integers}.

I.e., we wouldn’t expect the last symbol of G to determine the provability of
G. In fact we’ll see that the proof of the diagonalization theorem does not use
any fact about Gödel numbering except the fact that Diag is representable
(i.e., a recursive function).

Proof: (of the diagonalization theorem) Let A(x, y) represent Diag,3 let
F (x0) be the formula

∃y(A(x0, y) ∧ B(y)),

and let G be the sentence

F (pF (x0)q/x0).

Claim: G is such that T ⊢ G ↔ B(pGq).

Proof: Let m = pF (x0)q, and let k = pGq. So k = Diag(m), and
so

T ⊢ ∀y(A(m, y) ↔ y = k). (1)

By the definition of F and G, G is

∃y(A(m, y) ∧ B(y)).

By (1),

T ⊢ G ↔ B(k).

I.e., T ⊢ G ↔ B(pGq). The completes the proof of the claim
and the theorem. 2

3I.e., if m = Diag(n), then T ⊢ ∀y(A(n, y) ↔ y = m).
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The idea of the proof is that F (x0) is B(SDiag(x0)0). So F (x0) ≈
B(Diag(x0)) except that Diag is not a term in the language; so we “fake
it” with A which represents F .4 Then,

G = F (pF (x0)q/x0)

= B(pF (pF (x0)q/x0)q).

G says “diagonalize F”, or Diag(pFq), or Diag(pB(Diag(x0))q). And the
result of this diagonalization is B(Diag(pFq)), or B(Diag(pB(Diag(x0))q)).

Theorem: Let T be a consistent theory containing Q. Then the set of
Gödel numbers of theorems of T is not recursive (hence not representable
in Q).

Proof: Suppose, for the sake of contradiction, that C(x) represents the set
of theorems of T . By the diagonalization theorem, there is a sentence G

such that

Q ⊢ G ↔ ¬C(pGq).

Claim: T ⊢ G.

Proof: Assume otherwise. Then, since T 6⊢ G (i.e., G is not a
theorem of T ), Q ⊢ ¬C(pGq) because C represents the set of
theorems of T . So Q ⊢ G since Q ⊢ G ↔ ¬C(pGq). Hence
T ⊢ G since T contains Q. But this contradicts the assumption
that T 6⊢ G. 2

So T ⊢ G, hence Q ⊢ C(pGq) since C represents the set of theorems of
T . Thus Q ⊢ ¬G, so T ⊢ ¬G. So T is inconsistent. This contradicts our
assumption that T is a consistent theory.5 2

4If we had a function symbol in the language for Diag, we would have used it instead
of A.

5That Q is consistent is not questioned since the natural numbers are a model of Q,
and we believe in their consistency.
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Tarski’s Theorem, ω-consistency
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May 5, 1989

Recall from last time,

Theorem: If T is a consistent extension of Q, then the set of Gödel numbers
of theorems (of logical consequences) of T is not recursive.

Corollary: Q is not decidable. (The set of theorems of Q is not a recursive
set.)

Corollary: Th(N, 0, S, +, ·) is not decidable. (“Arithmetic is undecidable”.
“Truth is not decidable”.)

Proof: Let T = Th(N, 0, S, +, ·) and apply the theorem.1

Theorem: For any theory T , if T is complete, then T is decidable.

Proof: Two cases:

Case 1: T is consistent. Then the following algorithm “decides” T :

input: a sentence A

enumerate theorems of T as B1, B2, . . . until either A or ¬A appears
if A appears, output “yes”
else output “no”

Case 2: T is inconsistent. Then the following algorithm “decides” T :

1Th(N, 0, S, +, ·) is a consistent extension of Q in the sense that it contains all of the
logical consequences of Q.

1



input: a sentence A

output “yes”.

Note that in general, we can’t tell whether T is consistent or not, so we
don’t know which case to use. But in either case, there is an algorithm. 2

Gödel’s First Incompleteness Theorem: (1931) There is no consistent,
complete, axiomatizable theory extending Q.2

Proof: Suppose that T is such a theory. Then by the previous theorem, T

is recursive. But this contradicts the first theorem. 2

Note that Q is consistent and axiomatizable, but not complete, while
the standard theory is consistent and complete, but not axiomatizable.3

Theorem: The following is undecidable: given a sentence A, is Q ∪ {A}
consistent?

Proof: For all sentences B, Q ⊢ B iff Q ∪ {¬B} is not consistent. But
{B : Q ⊢ B} is undecidable. 2

Theorem: In the language of Q, the set of valid formulas is undecidable.4

Proof: A decision procedure for the valid sentences in the language of Q

yields a decision procedure for the theory Q (with axioms):

2“Axiomatizable” means “has an r.e. set of axioms”. Note that if a theory has an r.e.
set of axioms γ1, γ2, γ3, . . ., then a logically equivalent recursive set of axioms is γ1, γ1 ∧

γ2, γ1 ∧ γ2 ∧ γ3, . . .. To see if a formula A is an axiom, just enumerate the γi’s until the
formula γ1 ∧ γ2 ∧ . . . ∧ γi has the same as or more symbols in it than A does.

3Before Gödel ’s result, mathematicians wanted to find a set of axioms for a theory in
which all the true statements about N were true. Gödel’s incompleteness theorem results
from work starting with Cantor in the late 1800’s. Cantor used various non-constructive
techniques (e.g. the axiom of choice) for proving things about set theory. This split
mathematicians into two camps: one lead by Hilbert who adopted Cantor’s methods, and
the other, the constructivists, lead by Kronecker. Hilbert’s program (ca. 1900) was to
establish the consistency of Cantor’s methods. In particular, he wanted to

• use constructive reasoning to establish the consistency of non-con-structive reason-
ing,

• establish the completeness of Peano arithmetic and set theory, and

• give algorithms for deciding the truth of sentences in the language of Peano arith-
metic and the language of set theory.

4I.e., there are no axioms.
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input: a formula A

output: “yes” if Q ⊢ A, “no” if not

is
∧

Q → A valid?
if so, output “yes”
else output “no”

But this contradicts the fact that the set {A :
∧

Q → A is valid} is
undecidable.5 2

Theorem: In the language {R} where R is a binary relation symbol, the
set of valid sentences is undecidable.

Proof: (Idea) Do the results of the last few lectures in a finitely axiomatizable
fragment of set theory instead of Q. I.e., define + and ·, etc.

Note that a theory TR which has axioms to state that R is a dense linear
ordering is decidable. The axioms say enough about R to make it decidable.

Tarski’s Theorem: (on the Undefinability of Truth) In the language
0, S, +, ·, there is no formula T (x) such that for all sentences G, N |= T (pGq)
iff N |= G (where N is the standard model of the natural numbers).6

Proof: By Gödel’s diagonalization theorem, (taking B to be ¬T ) there is
a G such that Q ⊢ G ↔ ¬T (pGq). So N |= G ↔ ¬T (pGq). Which is a
contradiction. 2

Any r.e. predicate is definable in N . So truth is not r.e. We have shown
that if T ⊇ Q is consistent and axiomatizable, then T is not complete. Now
we would like to find something that is independent of T .

Definition:

PrfT (x, y) = {(x, y) : y = pAq, and x = prefutation of T ∪ {¬A}q}.

I.e., PrfT (x, y) is a binary predicate denoting “x is a proof of y”.

Now, PrfT (x, y) is recursive, hence it is representable in Q by some for-
mula, say PrfT (−,−). By Gödel’s diagonalization theorem there is a formula
GT such that

5
∧

Q is the conjunction of the axioms of Q.
6Note that this is stronger than saying that N is not decidable. There are things which

are definable but not decidable. This is similar to the fact that there are things which are
definable but not representable.
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Q ⊢ GT ↔ ¬∃xPrfT (x, pGT q).

Claim: T 6⊢ GT .

Proof: Suppose that T ⊢ GT . Then there is a refutation R of T ∪ {¬GT }.
So,

Q ⊢ PrfT (pRq, pGT q)

⊢ ∃xPrfT (x, pRq)

⊢ ¬GT .

Hence T ⊢ ¬GT because T ⊇ Q. But this contradicts the assumption that
T is consistent. 2

Claim: GT is true (i.e., N |= GT ).

Proof: Since every logical consequence of Q is true, GT says that there is no
T -proof of GT . The previous claim just showed this. 2

So we have found GT which is true but not a logical consequence of T .
But we want GT and ¬GT to be not logical consequences of T .

Claim: If T is a true theory (i.e., T ⊆ Th(N)), then T 6⊢ ¬GT .

Proof: Obvious by the previous claim. 2

Definition: T is ω-consistent if for any formula A(x), if T ⊢ A(n) for all
n ∈ N , then T 6⊢ ∃x¬A(x) (i.e., ∀xA(x) is consistent with T ).

Claim: If T is ω-consistent, then T 6⊢ ¬GT .

Proof: Since T 6⊢ GT , Q ⊢ ¬PrfT (n, pGT q) for all n ∈ N . So T ⊢
¬PrfT (n, pGT q), and hence

T 6⊢ ∃x¬¬PrfT (x, pGT q) by ω-consistency
6⊢ ∃xPrfT (x, pGT q)
6⊢ ¬GT

since T ⊢ ¬GT ↔ ∃xPrfT (x, pGT q). 2
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Theorem: If T is an ω-consistent axiomatizable extension of Q, then GT

is independent of T .7

Proof: By the above claims. 2

Since GT is independent of T , we might ask “what about the theory
T ∪ {GT }?” This new theory will turn out to have another independent
formula GT∪GT

. We can keep asking the question again and again and
extend the theory:

T ∪ {GT } ∪ {GT∪GT
} ∪ . . . ∪ {GTω

} ∪ {GTω∪GTω

} ∪ . . .

Eventually, we get to a point where we can’t recursively describe the ordi-
nals.8

7And GT is true. Even if it weren’t true, ¬GT would be and would also be independent
of T .

8
ω + 1 is recursively described by a <ω+1 b iff b = 0 ∧ a ≥ 1 or 0 < a < b; i.e. <ω+1

orders the integers as

1 <ω+1 2 <ω+1<ω+1 . . . <ω+1 0
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Peano Arithmetic

Math 260C - Mathematical Logic

May 8, 1989

The crucial axiom of Peano arithmetic is the following induction axiom
(paraphrased):

if X ⊆ N , 0 ∈ X, and for all n ∈ X, n + 1 ∈ X, then X = N .

We will try to give a first order axiomatizable theory that captures the
induction axiom of Peano arithmetic. We won’t be able to fully capture this
notion because of the incompleteness theorem.

Definition: The language of PA, our theory for Peano arithmetic, is 0, S, +,
and ·. The axioms of PA are the seven axioms of Q plus all axioms of the
form

∀~y[(A(0, ~y) ∧ ∀x(A(x, ~y) → A(Sx, ~y))) → ∀xA(x, ~y)]

for all formulas A(x, ~y) with one or more free variables.

The difference between our set of axioms and Peano’s induction axiom
is that we can only state axioms for things that we can define while Peano’s
induction axiom doesn’t say anything about the definability of the set X.

PA can prove things that Q can’t.

Theorem: PA ⊢ ∀x∀y(x + y = y + x).

Proof:

Claim 1: PA ⊢ ∀x∀y(x + Sy = Sx + y).

Proof: Let A(x, y) be x + Sy = Sx + y, and use induction on y.

1



a) PA ⊢ A(x, 0) since

PA ⊢ x + S0 = S(x + 0) by addition axiom
= Sx by addition axiom
= Sx + 0 by addition axiom.

b) PA ⊢ A(x, y) → A(x, Sy) since1

PA ⊢ x + S(Sy) = S(x + Sy) by addition axiom
= S(Sx + y) by A(x, y)
= Sx + Sy by addition axiom.

So, by the induction axiom for A(x, y) with respect to y,

PA ⊢ ∀x∀y(x + Sy = Sx + y). 2

Claim 2: PA ⊢ ∀x(0 + x = x).

Proof: Let B(x) be 0 + x = x, and use induction on x.

a) PA ⊢ B(0) by an addition axiom.

b) PA ⊢ B(x) → B(Sx) since

PA ⊢ 0 + Sx = S(0 + x) by addition axiom
= Sx by B(x).

So by the induction axiom for B(x) with respect to x,

PA ⊢ ∀x(0 + x = x). 2

Now let C(x, y) be x + y = y + x, and use induction on y.

a) PA ⊢ C(x, 0) by claim 2.

b) PA ⊢ C(x, y) → C(x, Sy) since

PA ⊢ x + Sy = S(x + y) by addition axiom
= S(y + x) by C(x, y)
= y + Sx by addition axiom
= Sy + x by claim 1.

1Recall that since x and y are free, PA ⊢ A(x, y) → A(x, Sy) means PA ⊢

∀x∀y(A(x, y) → A(x, Sy)).
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So, by the induction axiom for C(x, y) with respect to y,

PA ⊢ ∀x∀y(x + y = y + x). 2

Similarly, PA can prove the commutativity of multiplication, associativ-
ity laws, distributivity, etc.

Theorem: PA ⊢ ∀x∀y(x < y ∨ x = y ∨ y < x).2

Proof:

Claim 1: PA ⊢ x < y ↔ Sx < Sy.

Proof:

x < y ⇔ ∃w(Sw + x = y)

⇔ ∃w(S(Sw + x) = Sy)

⇔ ∃w(Sw + Sx = Sy)

⇔ Sx < Sy. 2

(Note that Q can prove this.)

Claim 2: PA ⊢ ∀x(x = 0 ∨ 0 < x).

Proof: Q ⊢ x 6= 0 → ∃y(Sy = x), so either x = 0, or Sy + 0 = x;
i.e., 0 < x. 2

Now let A(x, y) be x < y ∨ x = y ∨ y < x, and use induction on y.

a) PA ⊢ ∀xA(x, 0) by claim 2.

b) PA ⊢ ∀xA(x, y) → ∀xA(x, Sy) since if we pick x arbitrarily, there are
two cases to consider:

1. x = 0. Use claim 2 to show that 0 < Sy.3

2. x = Sw for some w. Then by ∀xA(x, y), w < y ∨ w = y ∨ y < w.
And by claim 1, x < Sy ∨ x = Sy ∨ Sy < x.

2Recall that t < s means ∃w(Sw + t = s). Also, remember that we proved this
trichotomy relationship in Q provided that at least one of x and y was a standard number.

3This is all we need since ∀xA(x, y) → ∀xA(x, Sy) is equivalent to ¬∀xA(x, y) ∨

∀xA(x, Sy).
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So, by the induction axiom for ∀x(Ax, y) with respect to y,

PA ⊢ ∀x∀yA(x, y). 2

PA can prove other similar things; e.g.,

PA ⊢ ∀x∀y(¬(x < y ∧ y < Sx)),

PA ⊢ ∀x∀y(x < y → x 6= y ∧ y 6< x), and

PA ⊢ ∀x∀y(x = y → x 6< y).

4



Peano Arithmetic (cont.)

Math 260C - Mathematical Logic

May 12, 1989

Least Number Principle: For any formula A(x)1

PA ⊢ ∃xA(x) → ∃x(A(x) ∧ (∀z < x)¬A(z)).

Proof: We will show that this is a consequence of the induction axioms. Let
B(x) be the formula (∀z < x)¬A(z). Then PA ⊢ B(0) since nothing is less
than 0. Now,2

PA ⊢ [¬∃x(A(x) ∧ (∀z < x)¬A(z)) ∧ B(x)] → B(x + 1)

since

B(x) ∧ ¬B(x + 1) → A(x) ∧ (∀z < x)¬A(z)

and since

PA ⊢ z < x + 1 → z < x ∨ z = x.

1There may be other free variables ~y in A, but they are irrelevant to the theorem and
its proof. Asserting things like PA ⊢ φ where φ involves A and where A may have other
free variables ~y, is the same as saying that PA ⊢ ∀~yφ.

2Intuitively, what this formula says is that if there is no least element that makes A true
( ¬∃x(A(x) ∧ (∀z < x)¬A(z)) ) and no matter what x is all elements less than x make A

false (B(x)), then all elements less than x+1 make A false (B(x+1)). It would seem that
if there is no least element that makes A true, then no matter what x is all elements less
than x would make A false. However we could have the following non-standard structure:

0, 1, . . .
︸ ︷︷ ︸

N

)(. . . − 1
′

, 0
′

, 1
′

, . . .
︸ ︷︷ ︸

Z

)

with n < m
′

for n ∈ N and m
′

∈ Z, A(n) false for n ∈ N , and A(m
′

) true for m
′

∈ Z.
Then there is no least element that makes A true, but there are elements x such that some
elements less than x make A true.

1



By the induction axiom for B with respect to x,

PA ⊢ ¬∃x(A(x) ∧ (∀z < x)¬A(z)) → ∀xB(x),

and

PA ⊢ ∀xB(x) → ¬∃xA(x).

This is the contrapositive of the theorem, so we’re finished. 2

Collection (Replacement) Axiom: Let A(x, y, ~z) be a formula. (Ignor-
ing ~z, we’ll write A as A(x, y).) Then

PA ⊢ (∀x < u)∃yA(x, y) → ∃t(∀x < u)(∃y < t)A(x, y).

The idea is that t = max{y(x) : x < u} + 1.

Proof: Use induction on u. Let B(w) be ∃t(∀x < w)(∃y < t)A(x, y). Then
PA ⊢ B(0) since nothing is less than 0. Now,

PA ⊢ (∀x < u)∃yA(x, y) ∧ B(w) ∧ w < u → B(Sw),

since

A(Sw, y
′

) ∧ (∀x < w)(∃y < t)A(x, y) → (∀x < Sw)(∃y ≤ t + y
′

+ 1)A(x, y).

(Note: the last bound t + y
′

+ 1 could be improved to max(t, y
′

+ 1).) By
induction on w ≤ u → B(w) (or on B(w) ∨ u < w),

(∀x < u)∃yA(x, y) → B(u). 2

(We’ll see later that the collection axiom allows us to interchange adjacent
bounded quantifiers in formulas.)

With the help of the least number principle and the collection axiom,
we’ll begin to show that sequence coding, the β function, and ultimately the
primitive recursive functions can be defined in PA. We already know that
these functions, being recursive, are representable in Q. What we want to
show is that they are strongly representable. We’ll just sketch out the ideas
until we get enough power to define primitive recursion; then we’ll actually
prove that primitive recursion is definable.

2



Recall from the fall quarter that a key idea in coding sequences was
representing the sequence 〈a0, . . . , an〉 by the number

pa0+1

0
· pa1+1

1
· . . . · pan+1

n

where pi is the (i + 1)st prime. The problems with representing sequences
in PA are the pi’s and exponentiation. PA can talk about the (i + 1)st

prime, but in a round-about way. Essentially, the idea is to prove that
there are infinitely many primes and then use the least number principle
to successively pick out the primes p0, p1, . . ..

3 To get pai+1

i without using
exponentiation, recall that we were able to define pℓ for ℓ < p− 1. The idea
we used was that

pℓ−1

p − 1
≡ ℓ mod p − 1

could be used for pℓ. This can be defined in PA4 and can then be used to
define greatest common divisors, least common multiples, etc. Eventually,

3Recall Euclid’s proof that there are infinitely many primes: assume that there are a
finite number of primes; take the product of these and add 1; the result is either a prime
greater than any in the original set or factorizable by a prime greater than any in the
original set. The problem with proving this in PA is that in order to define the product
of an arbitrary finite number of numbers we would need primitive recursion.

In PA, that there are infinitely many primes is stated as ∀x∃y(y > x ∧ “y is prime”).
(The relation “y is prime” is definable in PA similarly to the way we defined it in the fall
quarter.) An approach to proving this in PA is to first find a z such that for all i between
1 and x, i|z. Then take the least divisor greater than 1 of z+1, and continue as in Euclid’s
proof. The problem now is how to find z. (In Euclid’s proof we took the product.) The
solution is to let C(x, z) be

(∀y < x)(∃a(y · a = z ∨ y = 0) ∧ z 6= 0).

Then use induction on ∃zC(x, z) with respect to z,

PA ⊢ ∃C(0, x) ∧ ∀x(∃zC(x, z) → ∃zC(x + 1, z)),

to get the desired z.
4Division, remainders, and mod can be handled in PA, but we can’t talk about p

ℓ

directly since we haven’t defined exponentiation. However PA can define “x is a power

of p”, and then p
ℓ−1

p−1
can be expressed indirectly in terms of “x is a power of p” and

x − 1 = α(p − 1) for α ≡ ℓ mod p − 1. Then,

PA ⊢ (x − 1 = α(p − 1) → (xp − 1 = β(p − 1)

for β ≡ ℓ + 1 mod p − 1. I.e., xp − 1 = (αp + 1)(p − 1) since x − 1 = α(p − 1). So
β = αp + 1 ≡ ℓ + 1 mod p − 1.
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we can get a definition for the β function which is the same definition that
we derived in the fall quarter.
PA can prove simple properties about Seq, β, ∗, Len, etc. E.g.,

PA ⊢ β(i, w ∗ α) =











β(i, w) i ≤ Len(w)
a i = Len(w)
0 otherwise.

With sequence coding, PA can define factorial, exponentiation, and the
primitive recursive functions.

Definition: A set of formulas is closed under bounded quantification iff
whenever φ is in the set, then so are the formulas ∀x(x < t → φ) and
∃x(x < t ∧ φ) where t is any term not involving x.

Definition: Σ0
0 = Π0

0 = ∆0
0 is the smallest set of formulas containing all

atomic formulas and closed under ∧,∨,¬,→, and bounded quantification.5

For all i,

Π0

i = {∀xφ : φ ∈ Σ0

i−1}, and

Σ0

i = {∃xφ : φ ∈ Π0

i−1}.

In particular, Σ0
1 is the set of formulas of the form ∃x1 . . .∃xkφ for some

φ ∈ ∆0
0.

Theorem: The set of formulas which are equivalent in PA to Σ0
i (respec-

tively Π0
i ) is closed under ∧,∨, and bounded quantification.

Proof: Use induction on i. ∧ and ∨ are obvious by prenex operations. Let
A ∈ Σ0

i . Then A is of the form ∃y1 . . . ykφ where φ ∈ Π0
i−1

. Existentially
bounding A produces

(∃x < t)∃y1 . . .∃ykφ

which, by prenex operations, is equivalent to the Σ0
i -formula

∃x∃y1 . . .∃yk(x < t ∧ φ).

5We could also define this set as the set of formulas logically equivalent to the smallest
set of formulas containing . . ..
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If A is universally bound then

PA ⊢ (∀x ≤ t)∃y1 . . .∃ykφ ↔ ∃u1(∀x ≤ t)(∃y1 ≤ u1)∃y2 . . .∃ykφ

by the collection axiom. By exchanging existential quantifiers,

PA ⊢ (∀x ≤ t)∃y1 . . .∃ykφ ↔ ∃u1(∀x ≤ t)∃y2 . . .∃yk(∃y1 ≤ u1)φ.

Using induction on k, we get

PA ⊢ (∀x ≤ t)∃y1 . . .∃ykφ ↔ ∃u1 . . .∃uk(∀x ≤ t)(∃y1 ≤ u1) . . . (∃yk ≤ uk)φ.

Then,

PA ⊢ (∀x ≤ t)∃y1 . . .∃ykφ ↔ ∃u(∀x ≤ t)(∃y1 ≤ u) . . . (∃yk ≤ u)φ.

since such a u would be the maximum of the ui’s. By the induction hypoth-
esis,

(∀x ≤ t)(∃y1 ≤ u1) . . . (∃yk ≤ uk)φ

is equivalent to a Π0
i−1

-formula. So we have reduced a Σ0
i -formula to a Π0

i−1
-

formula preceded by an existential quantifier. This is in Σ0
i by definition.6

(The proof of the closure of Π0
i -formulas is dual.) 2

Theorem: Let f(~x) = y be a primitive recursive function. Then there is a
formula A(~x, y) such that

1. A(~x, y) defines the graph of f ,

2. PA ⊢ ∀~x∃!yA(~x, y), and

3. A is a Σ0
1-formula.

(Although this is not part of the theorem, we’ll see later that A also rep-
resents f . Also, we will assume without proof that the theorem holds for
functions like β, Seq, Len, etc. To see that this is true, recall the represen-
tations of these functions from the fall quarter.)

Proof: This theorem is obvious for 0, S, and Id. For composition, let

6The crucial idea in this proof is that the collection axiom allows us to interchange
bounded quantifiers.
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f(~z) = g(h1(~z, . . . , hk(~z)).

By induction, assume that Ag, Ah1
, . . ., Ah

k
are as in the theorem for g, h1,

. . ., hk. Then Af (~z, x) is

∃y1 . . .∃yk(
k
∧

i=1

Ahi
(~z, yi) ∧ Ag(~y, x)).

Ag, Ah1
, . . . , Ah

k
∈ Σ0

1, and so is Af since Σ0
1-formulas are closed under

conjunction. That

PA ⊢ ∀~z∃!xA(~z, x)

follows easily from the induction hypotheses.

If f is defined by primitive recursion, then

f(~x, 0) = g(~x), and

f(~x, m + 1) = h(~x, m, f(~x, m)).

By induction, assume that Ag and Ah are as in the theorem for g and h.
Then Af (~x, m, y) is

∃w[Len(w) = m + 1 ∧ Seq(w) (1)

∧ Ag(~x, β(1, w)) (2)

∧ (∀i < m)Ah(~x, i, β(i + 1, w), β(i + 2, w)) (3)

∧ y = β(m + 1, w)]. (4)

w is a sequence representing the set of values computed in each “step” of the
primitive recursion. (1) is not really needed because the remaining conjuncts
ensure that w is a sequence with the appropriate number of elements, but
it is included for reasons of clarity. (2) represents the base case where i = 0;
the value for this case is the first element of the sequence w. (3) represents
all the other cases for 0 < i ≤ m; these values are stored in successive
positions in the sequence w. This line of the definition of Af represents the
fact that each element in the sequence except the first is obtained from the

6



preceding element; i.e., h(~x, i, β(i + 1, w)) = β(i + 2, w). (4) represents the
result of the primitive recursion; i.e., the final value in the sequence.

Af ∈ Σ0
1 because Ah is boundedly quantified, β is PA-equivalent to a Σ0

1-
formula, and Len and Seq are assumed to be Σ0

1-formulas. So the whole
formula is a conjunction of Σ0

1 formulas preceded by an existential quantifier.

In order to show uniqueness; i.e., that

PA ⊢ ∀~x∃!y(Af (~x, m, y)),

we would first prove by induction up to m that the w of the definition of Af

exists. Then we would prove by induction that each element of w is unique.
I.e., for two sequences, we would use existence to show that the jth elements
exist, and then use uniqueness of the jth elements to show the uniqueness
of the (j + 1)st elements. 2
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Proof Predicates in PA

Math 260C - Mathematical Logic

May 15, 1989

We’re headed towards Gödel’s second incompleteness theorem which says
that for any “sufficiently strong” axiomatizable theory T , T 6⊢ Con(T ); i.e.,
T can not prove its own consistency. We’ll do this in PA by developing the
relation ‘Con’ and then proving that PA 6⊢ Con(PA).1 In PA, we’ll develop
formulas which say things about the Gödel numbers of proofs, and we’ll show
that PA can not prove its own consistency; i.e., PA 6⊢ “0 = 1 is not a theorem
of PA”. Our first goal will be “the arithmetization of meta-mathematics”
(i.e., the Gödel numbering of the syntax of first order logic).

Example: Recall the Num function, Num : n 7→ pnq (= pSn0q). This is
primitive recursive and can be defined in PA with a Σ0

1
-definition; i.e.,

pnq = pS(S(. . . (S(0)) . . .))q

= 6161 . . . 61522 . . . 22.

With this definition, PA can prove that

Num(x + 1) = 61 · 10⌈log10 Num(x)⌉ + 10 · Num(x) + 2.

PA can also prove that ∀x∃y(Num(x) = y).2

We won’t go into detail how the following functions and predicates are
defined in PA; rather, we’ll just note that each of them can be viewed as

1We could also do this in Q; i.e., show that Q 6⊢ Con(Q). The reason for not doing so
is that it is more difficult. For Q, it can be done by constructing a non-standard model
Q of Q such that Q |= ¬Con(Q). Similarly, we could show that ZF 6⊢ Con(ZF), although
again this is harder than in PA. Note that for Gödel’s first incompleteness theorem, we
showed, by virtue of Q’s ω-inconsistency, that Q 6⊢ “I am not provable”.

2Note that since PA can prove this, it is true even for non-standard models of PA. The
y that equals Num(x) for non-standard x will itself be non-standard; i.e., it will consist of
a non-standard number of 61’s followed by a 5 followed by a non-standard number of 2’s.
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syntactic functions or predicates which could be defined if we felt like doing
the work.

Term(x) ⇔ “x is the Gödel number of a term”.

Digit(i, x) = the ith digit in base 10 of x.

Symbol(i, x) = the ith logical symbol in x viewed as a Gödel number.

Concat(x, y) = the base 10 concatenation of x and y.

A-formula(x) ⇔ “x is the Gödel number of an atomic formula”.

Formula(x) ⇔ “x is the Gödel number of a formula”.

Free(x, y) ⇔ Formula(x) ∧ “y is the Gödel number of a variable occurring
free in x”.

PA-axiom(x) ⇔ “x is the Gödel number of an axiom of PA”.

Sub(x, y, z) = pA(z/y)q if x = pAq, and y is the Gödel number of a vari-
able.

ProofPA(x) ⇔ “x is the Gödel number of a valid PA proof”.3

PrfPA(x, y) ⇔ “x is the Gödel number of a PA proof of the formula whose
Gödel number is y”.

The above functions and predicates are all primitive recursive (and also
representable in Q). This is what is meant by the arithmetization of meta-
mathematics. The following predicate is not primitive recursive (and in fact
not even decidable):

ThmPA(y) ⇔ ∃xPrfPA(x, y).

With the arithmetization functions and predicates defined above, our
next goal will be to show that if PA can prove the sentence A, then PA can
prove that A is a theorem; i.e.,

3More generally,

ProofT(x) ⇔ “x is the Gödel number of a valid proof in the theory T which has a
definable set of axioms”.
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if PA ⊢ A, then PA ⊢ ThmPA(pAq).

Also, we’ll show that PA can prove that if A is a theorem, then the fact that
it is a theorem is also a theorem; i.e.,

PA ⊢ ThmPA(pAq) → ThmPA(pThmPA(pAq)q).

Theorem 1: If A is a Σ0
1
-sentence and N |= A, then PA ⊢ A.4

Theorem 2: If A(~x) is a Σ0
1
-formula, then5

PA ⊢ A(~x) → ∃wPrfPA(w, pA(x1, . . . , xk)q).

Proof: of theorems 1 and 2.6 Use induction on the complexity of A.

Lemma: If t(~x) is a term, then

PA ⊢ t(~x) = t(n1, . . . , nk) (1)

for all ~n ∈ Nk, and

PA ⊢ ∀x∃wPrfPA(w, pt(~x) = t(x1, . . . , xk)q). (2)

Proof: (Sketch.) We have already proved (1) for Q since S, +,
and · were representable. In that proof, we used induction out-
side of Q to reason about Q. For the second half of the lemma,
we would formalize in PA the argument we used to prove the
first half. We would use induction inside PA to talk about Q.

(Proof of theorems 1 and 2 continued.) Without loss of generality, assume
that all negation signs in A are in front of atomic formulas.

Basis: A is atomic or negated atomic. Then A(~x) is either s(~x) = t(~x) or
s(~x) < t(~x).

4The theorem is also true if we replace PA ⊢ A by Q ⊢ A.
5The theorem is also true if we replace PrfPA by PrfQ. But not if we replace PA ⊢ . . .

by Q ⊢ . . ..
6Intuitively, for the proof of theorem 1, since A is a Σ0

1-sentence, A asserts the existence
of something. Any non-standard model of PA has N inside it. So if N |= A, then PA ⊢ A.
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For theorem 1, we have already proved that if s(~n) = t(~n), then Q ⊢ s(~n) =
t(~n) since = is representable and since Q ⊢ s(n1, . . . , nk) = s(~n). Similarly
for <.

For theorem 2, we formalize this reasoning to show that

PA ⊢ s(~x) < t(~x) → ThmPA(pS(x1, . . . , sk) < t(x1, . . . , xk)q).

(Proof continued next time.)
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Proof Predicates, Gödel’s Second Incompleteness

Theorem

Math 260C - Mathematical Logic

May 19, 1989

Last time, we started proving the following two theorems.

Theorem 1: If A is a Σ0
1
-sentence and N |= A, then PA ⊢ A.

Theorem 2: If A(~x) is a Σ0
1
-formula, then

PA ⊢ A(~x) → ThmPA(pA(x1, . . . , xk)q).

The proofs are by induction on the logical complexity of A. They depend
on induction up to n and on the formalizability of proofs.

Proof of 1: Without loss of generality, assume that A contains no → symbols
and that negation symbols apply only to atomic formulas. The proof will
actually show that if A is true, then Q ⊢ A.

Basis: A is atomic or negated atomic. Then if A is true, Q ⊢ A since
<,=, S, 0, ∗, and · are all representable in Q.

Induction: There are three cases to consider.

1. A is B∧C or is B∨C. If A is B∧C, then by induction, Q ⊢ B and Q
⊢ C. So we can concatenate the proofs of B and C to get Q ⊢ B ∧C.
If A is B ∨C, then by induction, Q ⊢ B or Q ⊢ C. So we can pick one
of the proofs of B and C to get Q ⊢ B ∨ C.

2. A is (∀x < t)B(x). Then t has no free variables, and by a lemma from
last lecture, there is an n ∈ N such that Q ⊢ n = t since 0, S, +, and ·
are representable in Q. Now

Q ⊢ x < n → x = 0 ∨ x = 1 ∨ . . . ∨ x = n − 1

1



by induction on n. So by the induction hypothesis and since A is true,
Q ⊢ B(m) for m = 0, . . . , n−1. Combining these m+1 proofs, we get
Q ⊢ A.1

3. A is ∃xB(x). ((∃x < t)B(x) is handled similarly.) Since A is true,
there is an n ∈ N such that B(n) is true. By induction, Q ⊢ B(n), so
Q ⊢ ∃xB(x).2 2

Proof of 2: Formalizing the proof of theorem 1 inside PA shows that

PA ⊢ A → ThmQ(pAq).

Hence

PA ⊢ A → ThmPA(pAq). 2

Corollary 1: Let A be any sentence. If PA ⊢ A, then PA ⊢ ThmPA(pAq).

Proof: Take B to be the sentence ThmPA(pAq) and apply theorem 1 to B.
2

Corollary 2: Let A be any sentence. Then

PA ⊢ ThmPA(pAq) → ThmPA(pThmPA(pAq)q).

Proof: Take B to be the sentence ThmPA(pAq) and apply theorem 2 to B.
2

In order to apply theorems 1 and 2 to B in the above two corollaries, we
need B ∈ Σ0

1
. So,

1An implicit assumption that we make is that we have a nice way of combining proofs
to get a single proof. We don’t need to be able to do this here, but we will in the proof
of theorem 2. In fact, since the only class of functions that we can represent in PA are
the primitive recursive functions, we need to be able to formalize the fact that there is a
primitive recursive way of combining proofs in PA.

2More explicitly, using the Kleene proof system, the Q-proof of ∃xB(x) is constructed
as follows:

...
B(n) proof assumed by induction
B(n → ∃xB(x) axiom
∃xB(x) by modus ponens

2



Theorem: 3 If R is a k-ary primitive recursive predicate, then there is a
Σ0

1
-formula A(~x) and a Π0

1
-formula B(~x) such that

1. PA ⊢ A(~x) ↔ B(~x), and

2. for all ~n ∈ Nk, R(~n) iff N |= A(~n) (iff N |= B(~n)).

Proof: The characteristic function for R, χR(~x), is primitive recursive and
so is Σ0

1
-definable in PA by a formula C(~x, y) such that PA ⊢ ∀~x∃!yC(~x, y).

Let A(~x) be C(~x, 1), and let B(~x) be ∀y(y 6= 1 → ¬C(~x, y). (Equivalently,
let B(~x) be ∀y(y = 1 ∨ ¬C(~x, y).) Then χR = 1 iff R is true, and A ∈ Σ0

1
,

and B is equivalent to a Π0
1
-formula. 2

In particular, ProofPA is equivalent to a Σ0
1
-sentence or a Π0

1
-sentence.

Corollary: ThmPA(x) is a Σ0
1
-formula.

Proof: ThmPA(x) is ProofPA(w, x) and ProofPA(−,−) is (equivalent to) a
Σ0

1
-formula. 2

Definition: Let T be a theory in the language of Q, and let B(x) be a
formula. B is a provability predicate for T iff for all sentences A and C,

PP-0) T is an extension of Q (so that T can represent Diag),

PP-1) if T ⊢ A, then T ⊢ B(pAq),

PP-2) T ⊢ B(pAq) ∧ B(pA → Cq) → B(pCq), and

PP-3) T ⊢ B(pAq) → B(pB(pAq)q).

Claim: ThmPA is a provability predicate for PA.

Proof: PP-0 is obviously satisfied. PP-1 and PP-3 are satisfied by corollaries
1 and 2 above. And PP-2 is satisfied since we can concatenate the proofs of
A and A → C and get C by modus ponens.4 2

3This is a restatement for predicates of an earlier theorem which showed that primitive
recursive functions were Σ0

1-definable.
4I.e.,

...
A proof of A

...
A → C proof of A → C

C by modus ponens
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Gödel’s Second Incompleteness Theorem: If B is a provability predi-
cate for T,5 then

T 6⊢ ¬B(p0 = 1q),

and

T 6⊢ ¬∃x(“x is the Gödel number of a sentence” ∧ ¬B(x)).

Proof: Later.

Definition: Let T be any theory. Con(T) is ¬ThmT(p0 = 1q). I.e., Con(T)
is the assertion that T is consistent. In particular, Con(PA) is ¬ThmPA(p0 = 1q).

Corollary: PA 6⊢ Con(PA).

The second incompleteness theorem puts a limit on what can be proved;
e.g., PA can not prove its own consistency. If we create a new theory,
say PA+, by adding Con(PA) to PA, then PA+ ⊢ Con(PA), but PA+ 6⊢
Con(PA+). So

Corollary: If T is any consistent axiomatizable extension of PA, then T 6⊢
Con(T).

T is inconsistent iff T ⊢ 0 = 1, since if T is consistent then T ⊢ 0 6= 1.
Now suppose that T ⊢ ThmT(pAq). Does this imply that T ⊢ A? No.
Take T to be PA ∪{¬Con(PA)}. T is consistent since T ⊃PA, and PA 6⊢
Con(PA). Now T ⊢ ThmPA(p0 = 1q), and so T ⊢ ThmT(p0 = 1q) because
any PA-proof is a T-proof. But T 6⊢ 0 = 1 since T is consistent. In any
model for T, the w that exists by virtue of ∃wProofT(w, p0 = 1q) will be
non-standard.

Proof of Gödel’s Second Incompleteness Theorem: (Think of T as
PA and B as ThmPA.) By the diagonalization lemma, there is a sentence G

such that

T ⊢ G ↔ ¬B(pGq).

The following two claims suffice to prove the theorem.
Claim 1: T ⊢ G ↔ Con(T).

Proof:
5This will work for any axiomatizable theory extending Q.
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1. T ⊢ ¬G → B(pGq) by definition of G.

2. T ⊢ ¬G → B(pB(pGq)q) since T ⊢ B(pGq) ↔ B(pB(pGq)q) by PP-3
and by (1).

3. T ⊢ B(pB(pGq) → ¬Gq) by PP-1 and since T ⊢ B(pGq) → ¬G.

4. T ⊢ ¬G → B(p¬Gq) by (2), (3), and PP-2.

5. T ⊢ ¬G → B(p0 = 1q) by using PP-1 to get T ⊢ B(pG → (¬G → 0 = 1)q)
since G → (¬G → 0 = 1) is valid, and by (1), (4), and two uses of
PP-2.

6. T ⊢ ¬G → ¬Con(T) by (1), (4), and PP-2.

7. T ⊢ B(p0 = 1q) → B(pGq) by PP-2 and since T ⊢ B(p0 = 1 → Gq)
by PP-1.

8. T ⊢ G → Con(T) by using G, the definition of G, and the definition
of Con(T).6 2

Claim 2: T 6⊢ G.

Proof: Suppose that T ⊢ G. Then T ⊢ ¬B(pGq) by the definition of G.
By PP-1, T ⊢ B(pGq) since G is a theorem. But then T is inconsistent, a
contradiction. 2

This theorem killed Hilbert’s program by saying that in order to use
a theory, the consistency of the theory must be established outside of the
theory. Even if we could prove that the theory was consistent inside the
theory, we would still be implicitly depending on the consistency of the
theory. (I.e., if the theory was inconsistent, it could prove anything.) Hilbert
wanted to prove the consistency of set theory inside a weaker system (PA).

Gentzen proved that if ǫ0
7 is well founded, then PA is consistent. Typ-

ically, by well founded, we mean well ordered. So what Gentzen showed is
6So G, which says “I’m not provable”, is equivalent to saying that T is consistent. In

PA, we would have

PA ⊢ ¬G → ThmPA(p¬Gq)

since ¬G is equivalent to a Σ0

1-formula.
7
ǫ0 is an ordinal. It is built up from ω as follows:

ω

ω · 2 = ω + ω
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that if any primitive recursive subset of ǫ0 has a least element, then PA is
consistent. Armed with our knowledge of incompleteness, what this tells us
is that although PA can formalize the notion that any primitive recursive
subset of ǫ0 has a least element, PA can’t prove that this notion is true.
In order to believe that PA is consistent, all we must believe is that ǫ0 is
well-founded. ǫ0 characterizes exactly the consistency of PA.

More precisely, ǫ0 characterizes exactly the 1-consistency of PA where
the 1-consistency of PA is defined as the following set of formulas:8

{ThmPA(pAq) → A : A ∈ Σ0

1}.

The 1-consistency of PA asserts that every existential statement that is
provable in PA is true. What Gentzen showed was that the 1-consistency of
PA is equivalent to the well-foundedness of ǫ0 in PA.

ω · 3 = ω · 2 + ω

...

ω
2 = lim

n→∞

ω · n

ω
3 = lim

n→∞

ω
2
· n

...

ω
ω = lim

n→∞

ω
n (=

⋃

n

ω
n)

ω
ω

ω

= lim
n→∞

ω
ω

n

...

ω ⇑ ω = lim
n→∞

ω ⇑ n = ǫ0.

8The ‘1’ in ‘1-consistency’ corresponds to the ‘1’ in ‘Σ0

1’. Similarly, we could define the
2-consistency of PA, etc.
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Löb’s Theorem, Arithmetic Hierarchy

Math 260C - Mathematical Logic

May 22, 1989

Löb’s theorem relates to the distinction we encountered last time between
a formula being provable and being true. Before we get to Löb’s theorem,
we need the formalized version of the deduction theorem which formalizes
the statement “if PA ∪{A} ⊢ B, then PA ⊢ (A → B)”.

Formalized Version of the Deduction Theorem: Let A and B be
sentences. Then

PA ⊢ ThmPA∪{A}
(pBq) → ThmPA(pA → Bq).

Proof: (Note that the converse is obvious.) Using Kleene style proofs, we
have a sequence of formulas C1, C2, . . . , Ct = B that prove B where the
axioms are PA ∪{A}. To get a proof of A → B using only the axioms of PA,
we build the sequence of formulas . . . , A → C1, . . . , A → C2, . . . , A → Ct.

1

2

Löb’s Theorem: Let A be any sentence. If PA ⊢ ThmPA(pAq) → A, then
PA ⊢ A.2

1The “. . .” before each A → Cj represent some sub-formulas leading up to A → Cj .
For example, to get A → Cj in the new sequence from Cj in the old sequence where Cj is
an axiom, we really have

Cj Cj → (A → Cj)

A → Cj

and if Cj is derived by modus ponens from Ci and Ci → Cj , then we reall have

A → Ci A → (Ci → Cj)

A → Cj

It is also possible to prove the formalized version of the deduction theorem using refutation
style proofs by proving that a refutation of B in PA ∪ {A} can be transformed into a
refutation of A → B in PA.

2Löb’s theorem actually holds for any theory T extending Q and any provability pred-
icate for T.

1



Proof: Suppose that PA 6⊢ A. Then let S be PA ∪{¬A}. S is a consistent
theory since PA 6⊢ A. Now

S ⊢ ¬ThmPA(pAq),

since PA ⊢ ThmPA(pAq) → A. So

S ⊢ ¬ThmPA(p¬A → 0 = 1q)

since PA ⊢ 0 6= 1. Thus, by the formalized version of the deduction theorem,
(with A as in that theorem)

S ⊢ ¬ThmS(p0 = 1q).

I.e., S ⊢ Con(S). But this contradicts the second incompleteness theorem.
So PA ⊢ A. 2

In terms of models, Löb’s theorem says that if there is a (non-standard)
proof of A which implies that A is true, then there is a standard proof of A.

Arithmetic Hierarchy

Theorem: Let R be a k-ary predicate. Then R is r.e. iff R is defined by
some Σ0

1
-formula A(x1, . . . , xk); i.e., for all ~n ∈ Nk, ~n ∈ R iff N |= A(~n).

Proof: ⇒: By the Kleene normal form theorem (from fall quarter) there is
a primitive recursive predicate S(~x, y) such that for all ~n ∈ Nk,

R(~n ⇔ ∃yS(~n, y).

And S is defined by a Σ0
1
-formula.

⇐: Suppose A(x1, . . . , xk) is ∃y1 . . .∃yℓB(~x, ~y) with B ∈ ∆0
0
. Then

N |= A(n1, . . . , nk) ⇔ ∃y∗N |= B(n1, . . . , nk, β(1, y∗), . . . , β(ℓ, y∗)).

But B(~x, ~y) and β are primitive recursive. So {~n : A(~n)} is r.e. 2

Generalizing this result yields the arithmetic hierarchy:
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...

This is a hierarchy of predicates defined by formulas.3 In general,

∆K

i = ΣK

i+1 ∩ ΠK

i+1,

ΣK

i = {R ⊆ N ℓ : R is definable by a Σ0

i -formula}, and

ΠK

i = {R ⊆ N ℓ : R is definable by a Π0
i -formula}.

In particular, ∆K
0

is the set of recursive predicates, ΣK
1

is the set of r.e.
predicates, and ΠK

1
is the set of co-r.e. predicates. The union of all of

the sets in the arithmetic hierarchy is the set of all predicates definable in
(N, 0, S, +, ·).

3The superscript K’s in the above symbols represent the fact that that the predicates
are defined by the Kleene normal form theorem. This notation is not standard.
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Matiyasevich’s Theorem: 4 Every r.e. set can be defined by a Σ1-formula
(purely existential, no bounded quantifiers).

This theorem showed that Hilbert’s tenth problem, that of finding a
method for deciding whether a given diophantine equation has a solution, is
not possible.

Definition: A diophantine equation is an equality between two multi-
variable polynomials over integers.

What Matiyasevich showed was that any r.e. predicate can be expressed
as ∃~y(p(~x, ~y) = 0) where p is a multi-variable polynomial over the integers.

4Matiyasevich’s theorem is built upon earlier work by Davis, Putnam, and Robinson.
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Introduction to Modal Logic

Math 260C - Mathematical Logic

May 22, 1989

Modal logic extends propositional and first order logic with a new sym-
bol, 2, the necessitation operator. 2A means that A is necessary or that A

must be true; as opposed to contingent truths which just happen to be true.
2A can have many different interpretations:

• “A is logically true”; i.e., true based on pure logic.

• “A is a theorem of PA”; e.g., Löb’s axiom:

2(2A → A) → 2A.

• “A is a consequence of the laws of physics”; i.e., water freezes at 0◦

C at standard temperature and pressure, as opposed to water in the
freezer is frozen.

• “A is known to be true.”

• “A is believed to be true.”

• “A ought to be true.”

• “A will be true at all times in the future.”

• “A will be true when the program halts.”

1



Modal Logic - Syntax, Models, Proof Theory,

Soundness and Completeness

Math 260C - Mathematical Logic

May 26, 1989

In propositional modal logic, we have the following symbols:

Propositional Variables: p1, p2, . . ..

Propositional Connectives: ∧,∨,¬,→.

Modal Connective: 2.

Punctuation: ().

The well-formed formulas, wff’s, are inductively defined by

1. pi is a wff.

2. If A and B are wff’s then (A ∧ B), (A ∨ B), (A → B), ¬A, and 2A

are wff’s.

3 is an abbreviation for ¬2¬. 3A means ¬2¬A; i.e., “A is possible”.

Definition: A propositional truth valuation is a mapping

σ : {wff’s} → {T, F}

which respects the propositional connectives, but treats formulas of the form
2A as atomic formulas.

In other words, a propositional truth valuation σ, is determined by its
values on propositional variables and on formulas of the form 2A by the
usual meanings of propositional connectives. (σ views 2A as a propositional
variable.) So it is possible to have

1



σ(2A) 6= σ(2(A ∨ A)).

But “good” propositional truth valuations (to be defined later) will not
behave this way.

Kripke Models

A Kripke model is a triple (K, R, φ) with the following characteristics.

• K is a set of “worlds” (or “points”).

• R is a binary relation on K. (Intuitively, if H, H
′

∈ K, then HRH
′

means that H
′

is “reachable” (or “accessible”) from H).

• φ : {wff’s} × K → {T, F} such that

1. For all worlds H ∈ K, σ(A) = φ(A, H) is a propositional truth
valuation.

2. For all worlds H ∈ K and all wff’s A, φ(2A, H) = T iff for all
worlds H

′

∈ K, HRH
′

→ φ(A, H
′

).

(Note that we could have defined φ in terms of propositional variables
only, and then extended it to wff’s.)

Proposition: φ is determined by its values on propositional variables; i.e.,
knowing φ(pi, H) for all pi and H determines φ for all formulas A. φ(A, H)
can be determined by induction on the complexity of A.

Example: In tense logic, 2A means “A is true now and at all times in the
future”. Pictorially, we might have the following “time line”:

-¾ r r r r r
p ¬p p ¬p p

a b c d e

At points (or worlds) a, c, and e, p is true, while at points b and d, p is
false. So at all points at or before d, 2p is false. If at all points after d, p is
true, then 2p is true at d. In tense logic, the relation R of a Kripke model is
≤. So all points in the future of a given point are reachable from the given
point.

2



Definition: Let M = (K, R, φ). A is true in M at H, denoted by (M, H) |=
A, iff φ(A, H) = T . A is true in M, denoted by M |= A, iff for all H ∈ K,
(M, H) |= A. The pair (K, R) is called a frame. A is valid on the frame

(K, R), denoted by (K, R) |= A, iff for all Kripke models M of the form
(K, R,−), M |= A.

Example: In the above example, (K, R) is (R,≤), and 2A → A is valid
on this frame. To see this, note that for all H ∈ R, φ(2A → A, H) = T iff
φ(2A, H) = F or φ(A, H) = T . Now suppose that φ(2A, H) = T . Then
φ(A, H

′

) = T for all H
′

such that H ≤ H
′

. In particular, φ(A, H) = T

since ≤ is reflexive. (Note that 2A → A is not valid on (R, <) since < is
not reflexive. Also note that 2A → 22A is valid on (R,≤).)

Theorem: If (K, R) is a frame with reflexive R, then 2A → A is valid on
(K, R).

Theorem: If (K, R) is a frame with transitive R, then 2A → 22A is valid
on (K, R).

Theorem: If (K, R) is a frame on which 2A → A is valid, then R is
reflexive.

Proof: Suppose that R is not reflexive. Then there is an H ∈ K such that
¬HRH. Define φ by

φ(p, H) = F

φ(p, H
′

) = T, for all H
′

6= H

φ(q,−) = arbitrary for q 6= p

and extend φ in the unique way to get a truth valuation for all wff’s. Now,
φ(2A, H) = T , since 2A is true in all worlds reachable from H and H is not
reachable from itself. But φ(A, H) = F by definition, so φ(2A → A, H) =
F . So we have constructed a model in which 2A → A is not true. Hence
2A → A is not valid which contradicts the hypothesis of the theorem. So
R must be reflexive. 2

Up to now, we have considered the single modal operator 2. But there
may be more than one. Temporal logic uses two. F is used to represent
“true at all times in the future”, and G represents “true at all times in the
past”. P represents “true at some time in the future” (i.e., ¬F¬), and H
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represents “true at some time in the past” (i.e., ¬G¬). In proofs of computer
programs, each program P represents a modal operator 2P. A → 2PB can
mean that if A is true before running P, then B is always true after running
P.

The first example above portrayed what is called linear time. We could
also have what is called branching time:
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This is intended to represent the possibility of different futures for any par-
ticular point in time. In branching time models, formulas such as 2A → A

and 2A → 22A are valid. As an example of a formula not valid in branch-
ing time models, take 3A → 23A and consider the following model:
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in which the formula A is true only at point b. Then at point a, 3A is true,
but so is ¬23A, since A is not true on the lower time line. So 3A → 23A

is not valid. (Note that it is not valid on (R,≤) either. Also note that if
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every world is reachable from every other world, then 3A → 23A is valid.)

Definition: A is valid iff A is valid on every frame.

Example: 2(A → B) → (2A → 2B) is valid for all formulas A and B.

Example: If A is valid, then 2A is valid since A being valid means that
for all (K, R, φ) and for all H ∈ K, φ(A, H) = T . Since this is true, then
certainly for all (K, R, φ) and for all H, H

′

∈ K such that HRH
′

, φ(A, H
′

) =
T . So 2A is valid.

Example: Letting ⊥ (“false”) be p∧¬p, the formula ¬2⊥ is not valid. To
show this, we have to find a model M = (K, R, φ) and an H ∈ K such that
(M, H) |= 2⊥. Taking R to be empty gives such a model.

Proof Theory for Modal Logic

Let K be the set of modal formulas defined inductively by

Axiom 1. Every propositional tautology is in K.1

Axiom 2. 2(A → B) → (2A → 2B) is in K for all formulas A and B.

Rule 1. (Modus ponens.) If A ∈ K and A → B ∈ K, then B ∈ K for all
formulas A and B; i.e.,

A A → B

B
.

Rule 2. (Necessitation.) If A ∈ K, then 2A ∈ K; i.e.,

A

2A
.

Theorem: (Soundness.) Every wff in K is valid.

Theorem: (Completeness.) Every valid formula is in K.

Proof: (of soundness.) Propositional tautologies are valid since φ respects
the propositional connectives. Axiom 2 formulas are valid by a previous

1A propositional tautology is a valid formula in which all formulas of the form 2A are
treated as propositional variables.
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example. Modus ponens preserves validity for essentially the same reason
that propositional tautologies are valid. I.e., if A and A → B are valid, then
for all M = (K, R, φ) and H ∈ K, (K, H) |= A and (K, H) |= A → B. So
(K, H) |= B since φ(−, H) is a propositional truth valuation. Finally, the
necessitation rule preserves validity by a previous example. So K is sound.
2

2

Definition: A theory (set of sentences) is normal iff it is closed under modus
ponens and necessitation and contains K.

In our discussion of theories, we will only talk about normal theories.

Notation: K ⊢ A means that A ∈ K.

For completeness, we will build a canonical model in which for every
formula A, if K 6⊢ A, then there is a point (a world) in the canonical model
where A is false.

Definition: A propositional truth valuation ρ is good iff for all formulas A

such that K ⊢ A, ρ(A) = T .

In particular, if ρ is good, then ρ(2A) = ρ(2(A ∨ A)) since

K ⊢ A → A ∨ A tautology axiom
K ⊢ 2(A → A ∨ A) by necessitation
K ⊢ 2(A → A ∨ A) → (2A → 2(A ∨ A)) axiom 2.

So if ρ is good and ρ(2A) = T , then ρ(2(A ∨ A)) = T . The converse is
proved similarly.

Definition: R+ is the binary relation on proposition truth valuations such
that ρR+ρ

′

iff for every wff A, ρ(2A) = T implies that ρ
′

(A) = T . This
will force: “if ρ makes 2A true, then everything reachable from ρ makes A

true.”

Definition: The canonical structure is (K, R, φ) where

K = {good propositional truth valuations},

R = R+ restricted to K,

2If (K, R) is a frame and A and A → B are valid on (K, R) then B is valid on (K, R).
Likewise, if A is valid on (K, R) then 2A is valid on (K, R).

6



and φ is the unique truth valuation such that φ(pi, ρ) = ρ(pi) for all propo-
sitional variables pi. What we will show next time is that φ makes (K, R, φ)
a Kripke model; i.e., φ(A, ρ) = ρ(A) for all ρ ∈ K and all wff’s A.
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Completeness (cont.), Compactness, Normal

Theories

Math 260C - Mathematical Logic

June 2, 1989

Recall from last time, the theory K consisting of all propositional tau-
tologies and formulas of the form 2(A → B) → (2A → 2B) and closed un-
der modus ponens and necessitation. We showed the soundness of K (i.e.,
anything provable in K is valid in every frame), and started working on
completeness (i.e., validity implies provability). The goal for completeness
is, for A such that K 6⊢ A, to find an M = (K, R, φ) such that (M, H) |= ¬A

for some H ∈ K.
The M that we build will be a canonical model for K.1 Recall that we

started by defining good propositional truth valuations to be such that they
assigned the value true to all formulas provable in K. Then we defined R+

to be a relation on propositional truth valuations such that ρ1R
+ρ2 iff for

all formulas A, ρ1(2A) = T implies that ρ2(A) = T .
The K of our canonical model is then {ρ : ρ is good}; i.e., the set of

worlds is a set of propositional truth valuations. The R of our canonical
model is the restriction of R+ to K; i.e., the restriction to good propositional
truth valuations. This defines reachability to be such that if 2A is true in
one world, then A is true in every other world reachable from the first
world. Finally, we defined the φ of our canonical model to be such that
φ(pi, ρ) = ρ(pi).

Now we have to show that φ satisifies the right conditions to make
(K, R, φ) a Kripke model. It does so iff it respects the propositional connec-
tives and it makes A true in any world reachable from a world in which it
makes 2A true; i.e., φ(2A, ρ) = T iff for all good ρ

′

, ρRρ
′

⇒ φ(A, ρ
′

) = T .
So our goal is to show that φ(A, ρ) = ρ(A). We’ll do so with the following
five claims.

1The construction of M works for any theory which contains K and is closed under
modus ponens and necessitation.
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Claim 1: If K 6⊢ A, then there is a good propositional truth valuation ρ

such that ρ(A) = F .

Proof: Since K 6⊢ A, K ∪ {¬A} is tautologically inconsistent.2 So there is
a propositional truth valuation ρ such that ρ |= K ∪ {¬A}3 and ρ is clearly
good. 2

Claim 2: If φ(A, ρ) = ρ(A) for all wff’s A and all good propositional truth
valuations ρ, then K is complete.

Proof: Suppose that K 6⊢ A. Then we want to show that A is not valid. So
let ρA be the propositional truth valuation of claim 1. Then ρA(A) = F ,
and φ(A, ρA) = ρA(A) = F . So A is not valid. 2

Claim 3: If ρR+ρ
′

and if ρ is good, then ρ
′

is good.

Proof: Suppose that K ⊢ A. Then we want to show that ρ
′

(A) = T . Now,

K ⊢ A ⇒ K ⊢ 2A by necessitation
⇒ ρ(2A) = T since ρ is good

⇒ ρ
′

(A) = T by defn. of R+. 2

Definition: The box-theory of a propositional truth valuation ρ, denoted
by Th2(ρ), is {B : ρ(2B) = T}.

Claim 4: If ρ is a good propositional truth valuation, then Th2(ρ) is closed
under tautological implication. (I.e., if A ∈ Th2(ρ), and A tautologically
implies C, then C ∈ Th2(ρ).)

Proof: Suppose that B1, . . . , Bk ∈ Th2(ρ) and that |= B1∧. . .∧Bk → C (i.e.,
B1, . . . , Bk tautologically imply C). Then we want to show that C ∈ Th2(ρ).
By definition of Th2(ρ), ρ(2Bi) = T for 1 ≤ i ≤ k. So,

K ⊢ B1 → (B2 → (. . . (Bk → C) . . .)) tautology axiom
K ⊢ 2(B1 → (B2 → (. . . (Bk → C) . . .))) by necessitation
K ⊢ 2B1 → 2(B2 → (. . . (Bk → C) . . .)) axiom 2
ρ(2B1 → 2(B2 → . . . (Bk → C) . . .)) = T since ρ is good
ρ(2(B2 → (. . . (Bk → C) . . .))) = T by defn. of ρ.

2
K 6⊢ A implies that K does not tautologically imply A. Since K contains all tautologies

and is closed under modus ponens, K ∪{¬A} has to be tautologically inconsistent. (Note
that this reasoning relies on the compactness theorem for propositional logic.)

3I.e., for all B ∈ K ∪ {¬A}, ρ(B) = T .
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Now do this k − 1 more times to get ρ(2C) = T . So C ∈ Th2(ρ). 2

Claim 5: For all wff’s A and all good propositional truth valuations ρ,
φ(A, ρ) = ρ(A).

Proof: By induction on the complexity of A.

Case 1. A is pi. Then the claim is true by definition of φ.

Case 2. A is B ∧ C, B ∨ C, ¬B, or B → C. Then the claim is true by
induction and since both ρ and φ respect propositional connectives.

Case 3. A is 2B. Then, by definition of φ, φ(2B, ρ) = T iff for all good
ρ
′

, ρRρ
′

⇒ φ(ρ
′

, B) = T . Or, by induction, φ(2B, ρ) = T iff for all
good ρ

′

, ρRρ
′

⇒ ρ
′

(B) = T . So we want to show that

ρ(2B) ⇔ for all good ρ
′

, ρRρ
′

⇒ ρ
′

(B) = T.

⇒:4 If ρ(2B) = T and if ρRρ
′

, then ρ
′

(B) = T by definition of R.

⇐: Here, we want to show that if ρ(2B) = F , then there is a good
ρ
′

such that ρRρ
′

and ρ
′

(B) = F . So suppose that ρ(2B) = F .
Then B 6∈ Th2(ρ) by definition of Th2(ρ). So Th2(ρ) ∪ {¬B} is
tautologically inconsistent by claim 4. So there is a propositional truth
valuation ρ

′

such that ρ
′

|= Th2(ρ) ∪ {¬B}. Hence ρR+ρ
′

since ρ
′

|=
Th2(ρ). And ρ

′

is good by claim 3. So we have found a good ρ
′

such
that ρRρ

′

and ρ
′

(B) = F . 2

The proof of the completeness theorem for K is now immediate by claims
5 and 2. Claim 5 shows that if K 6⊢ A, then there is a world in the canonical
model where A is false. And claim 2 shows that it suffices to establish claim
5 in order to show that K is complete.

Compactness Theorem: If Γ is a set of formulas and for every finite
subset A1, . . . , Ak of Γ there is a Kripke model M and a world H ∈ M such
that (M, H) |= A1∧ . . .∧Ak, there there is a world ρ in the canonical model
such that for all A ∈ Γ, ρ(A) = T .

4Note that we have defined R in order to make this direction work.
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Proof: By the compactness theorem for propositional logic, there is a truth
valuation ρ such that ρ |= K ∪ Γ since every subset of Γ is tautologically
consistent with K.5 2

Normal Theories

Definition: S is a normal theory if S ⊇ K and is closed under modus
ponens and necessitation.

Definition: 6

T is K ∪ {2A → A},

S4 is T ∪ {2A → 22A},

K4 is K ∪ {2A → 22A},

S5 is T ∪ {3A → 23A},

G is K ∪ {2(2A → A) → 2A},

B is K ∪ {A → 23A}, and

TB is T ∪ {A → 23A}.

Each theory above constrains the relation R that can be used in a model
for that theory. The additional axiom for T expresses reflexivity. S4 ex-
presses reflexivity and transitivity. The K4-axiom expresses transitivity.
S5 expresses equivalence relations. The G-axiom is the Gödel-Löb axiom;
it expresses transitivity and no sequence of the form ρ1Rρ2, ρ2Rρ3, ρ3Rρ4,
. . .; i.e., R−1 is well-founded. In particular, R is not reflexive. The B-axiom
expresses symmetry. And TB expresses reflexivity and symmetry.

These theories are not independent. For example, the K4-axiom is in
G. It is hard to prove this, but two other examples are embodied in the
following theorems.

5I.e., every subet of Γ is true in some Kripke model, and every Kripke model contains
K (i.e., every consequence of K is valid in any Kripke model).

6Motivation: If we want 2A to mean that A is true now and at all times in the future,
then we would want a theory like T . To show that T is consistent, we would have to
show that 2A → A is consistent with K; i.e., find a Kripke model and a world in which
K ∪ {2A → A} is true.
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Theorem: S5 ⊢ A → 23A (the B-axiom).

Proof: Since A → 3A is the contrapositive of 2¬A → ¬A, and since S5 ⊃ T

(i.e., S5 contains 2¬A → ¬A as an axiom),

S5 ⊢ A → 3A (1)
S5 ⊢ A → 23A by S5-axiom. 2 (2)

Theorem: S5 ⊢ 2A → 22A (the K4-axiom).

Proof:

S5 ⊢ 32A → 2A by S5-axiom (3)
S5 ⊢ 2(32A → 2A) by necessitation (4)
S5 ⊢ 232A → 22A) by axiom 2 (5)
S5 ⊢ 2A → 32A) by (1) (6)
S5 ⊢ 32A → 232A) by S5-axiom (7)
S5 ⊢ 2A → 22A) by (6), (7), and (4). 2 (8)

Definition: The correspondence properties for the following theories are
defined by the following table:

theory correspondence property

T reflexive
K4 transitive
S4 reflexive and transitive
S5 equivalence
G transitive and R−1 is a well-founded strict partial order
B symmetric

TB reflexive and symmetric

Soundess and Completeness Theorems: A wff A is a consequence of the
theory S iff A is valid on any frame in which R satisfies the correspondence
property for S.

E.g., a formula true in any transitive frame is in K4.
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Soundness and Completeness for Normal Theories

Math 260C - Mathematical Logic

June 5, 1989

Recall from last time, the following normal theories and their correspon-
dence properties:

T ≡ K ∪ {2A → A} reflexive
S4 ≡ T ∪ {2A → 22A} transitive, reflevive
K4 ≡ K ∪ {2A → 22A} transitive
S5 ≡ T ∪ {3A → 23A} equivalence relation
G ≡ K ∪ {2(2A → A) → 2A} transitive, R−1 well-founded
B ≡ K ∪ {A → 23A} symmetric

Let S be any of the above normal theories.

Soundness Theorem: Any consequence of (member of) S is valid on any
frame with the correspondence property of S.

Proof:

Lemma: The set of formulas valid on a frame (K, R), {A :
(K, R) |= A}, is closed under modus ponens and necessitation.

Proof: By induction on the complexity of A.1

By the lemma, we just need to verify soundness for the axioms. In
particular, we just need to check the reflexive axiom, the symmetric axiom,
the transitive axiom, and the transitive plus R−1 well-founded axiom since
the other axioms are implied by these. I.e., we need to show that if A is any
wff, then

1For modus ponens, if A and A → C are valid, then C is also valid, since any proposi-
tional truth valuation respects the propositional connectives. Similarly, for necessitation,
if A is valid, then 2A is also valid, since A is true in any world reachable from one in
which A is true.

1



a) if R is reflexive, then (K, R) |= 2A → A,

b) if R is symmetric, then (K, R) |= A → 23A,

c) if R is transitive, then (K, R) |= 2A → 22A, and

d) if R is transitive and has no infinite sequence of related worlds H1RH2,
H2RH3, . . ., then (K, R) |= 2(2A → A) → 2A.

Cases (a) and (c) were done earlier2 So all we need to verify are cases
(b) and (d).

b) Suppose that R is symmetric, and take any H ∈ K such that φ(A, H) =
T . Then, for all H

′

, HRH
′

→ φ(3A, H
′

) = T , since H
′

RH by the
supposed symmetry of R.

d) Suppose that R is transitive and that R−1 is well-founded.3 Further
suppose, towards a contradiction, that there is an H ∈ K, a wff A, and
a propositional truth valuation φ on (K, R) such that M = (K, R, φ)
is a Kripke model and that

(M, H) |= 2(2A → A) ∧ ¬2A.

Let

Y = {H
′

: HRH
′

and (M, H) |= ¬A},

and let H0 be maximal in Y (i.e., forall H
′

∈ Y , ¬H0RH
′

). Note that
Y is not empty since (M, H) |= ¬2A and that H0 exists since R−1 is
assumed to be well-founded.

Claim: (M, H) |= 2A.

Proof: If not, then there is an H
′

such that H0RH
′

and
(M, H

′

) |= ¬A. But then, since R is assumed to be transi-
tive, HRH

′

. So H
′

∈ Y . But this contradicts our choice of
H0 as being maximal. 2

2See examples, 5/26.
3An equivalent condition for the well-foundedness of R

−1 is that for any subset Y ⊆ K,
there is a “maximal” H ∈ Y such that for all H

′

∈ Y , ¬HRH
′

.
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So (M, H) |= 2(2A → A) implies that (M, H0) |= 2A → A since
HRH0. Thus, by the claim, (M, H0) |= A. But this contradicts
H0 ∈ Y by the definition of Y . 2

Completeness Theorem: Let A be a wff. If A is valid on every frame
satisfying the correspondence property for S, then S ⊢ A.

Proof: (Except for G.) As in the proof of soundness for K, we’ll suppose
that S 6⊢ A and then find a frame and a world that doesn’t satisfy the cor-
respondence property. Similar to the earlier canonical model construction,
let K = {ρ : ρ is S-good}, let R be the restriction of R+ to K, and let
φ(A, ρ) = ρ(A). Then claims 1, 3, 4, and 5 of the proof of the soundness
of K apply here with S-good replacing good. What we get is a canonical
model M = (K, R, φ) for S such that if S 6⊢ A, then there is an H ∈ K with
(M, H) |= ¬A. It remains to show that (K, R) satisfies the right correspon-
dence property for S. Since we’re not proving the completeness for G, we
only have to check reflexivity, symmetry, and transitivity, since S4 and S5
can be expressed in terms of these properties.4 I.e., we need to show that
for all formulas A,

a) if 2A → A is in S, then R is reflexive,

b) if 2A → 22A is in S, then R is transitive, and

c) if A → 23A is in S, then R is symmetric.

So,

a) Let ρ be S-good. Then we want to show that ρRρ; i.e., for all formulas A,
if ρ(2A) then ρ(A) = T . But this is obvious because ρ(2A → A) = T .

b) Let ρ1, ρ2, and ρ3 be S-good, and suppose that ρ1Rρ2 and ρ2Rρ3. Then
we want to show that ρ1Rρ3. Let A be any wff. Then

ρ1(2A) = T ⇒ ρ1(22A) = T since ρ1(2A → 22A) = T

⇒ ρ2(2A) = T since ρ1Rρ2

⇒ ρ3(A) = T since ρ2Rρ3.

4Recall that S5 ⊢ 2A → 22A.
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c) Let ρ1 and ρ2 be S-good, and suppose that ρ1Rρ2. Then we want to show
that ρ2Rρ1. Suppose, towards a contradiction, that ρ2(2A) = T and
that ρ1(A) = F (i.e., ¬ρ2Rρ1). Then, since ρ1(¬A) = T , ρ1(23¬A =
T ) by the hypothesis applied to ¬A. And since ρ1Rρ2, ρ2(3¬A) = T ;
i.e., ρ2(¬2A) = T . But this contradicts ρ2(2A) = T . 2

The reason that the above construction doesn’t work for G is essentially
because we don’t get well-founded models. Next time, to prove completeness
for G, we’ll find a finite frame on which A is false if G 6⊢ A. Finite frames
are always well-founded provided that they are not reflexive.
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Completeness via the Filtration Method,

Arithmetical Completeness of G

Math 260C - Mathematical Logic

June 9, 1989

Last time, we proved the completeness of several normal theories by
constructing canonical models but were unable to apply the construction
process to G. Today, we’ll re-prove the completeness theorems and get a
stronger result.

Completeness Theorem: Let S be K, T, K4, S4, S5, B, TB, or G. If
S 6⊢ A, then there is a Kripke model M = (K, R, φ) such that

1. K is finite,

2. (K, R) satisfies the correspondence property of S, and

3. there is an H ∈ K such that (M, H) |= ¬A.

Proof: Later.

K being finite is the key here. By the construction process, it will turn
out that |K| ≤ 2|A|. This gives us the following corollary.

Corollary: S is decidable.

In fact, there is an exponential space algorithm (double exponential time
algorithm) for deciding membership in S.1 We just look at all finite models
whose size is ≤ 2|A|. If any of them satisfy ¬A, then S 6⊢ A; otherwise,
S ⊢ A.

1Even if we didn’t have the bound |K| ≤ 2|A|, the corollary would still hold. We could
interleave the enumeration of all finite models and all consequences of A under modus
ponens and necessitation until we find either a proof of A or a Kripke model in which A

is false at some world.
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The Kripke model construction process for proving the completeness of
the various theories is based on the filtration method. The idea is to take a
finite “homomorphic image” of the canonical model for S. From now on, for
notational convenience, let M = (K, R, φ) denote the canonical model for
S.2 K is big because we have propositional truth valuations over an infinite
domain. But in order to decide whether A is satisfied by a given model, we
only need propositional truth valuations over A and its subformulas. More
specifically then, the idea behind the filtration method is to identify ρ, ρ′ ∈ K
whenever ρ and ρ′ agree on subformulas of A; what ρ and ρ′ do on other
formulas is immaterial to the satisfiability of A.

Definition: B is a modal subformula of A iff either

1. B is A,

2. A is A1 ∧ A2 or A1 ∨ A2 or A1 → A2 and B is a modal subformula of
A1 or A2, or

3. A is ¬A1 or 2A1 and B is a modal subformula of A1.

Now, let’s fix A such that S 6⊢ A. Also, let Σ be {B : B is a modal
subformula of A}.

Definition: If ρ and ρ′ are propositional truth valuations, then ρ and ρ′

are equivalent, denoted by ρ ∼ ρ′, iff for every B ∈ Σ, ρ(B) = ρ′(B). The
equivalence class of ρ, denoted by [ρ], is {ρ′ : ρ ∼ ρ′}.3

Now we’re ready to prove the completeness theorem. Let K′ = {[ρ] : ρ is
S-good}. This is the set of worlds in our finite Kripke model.4 The proof of
completeness will be broken down into four cases for the theories K, T, K4,
S4, S5, B, TB, and G. In each case, we’ll first define a reachability relation

2If S is G, then (K, R, φ) is still a Kripke model, but R
−1 may not be well-founded

since we haven’t already proved the completeness of G. We’ll take care of this problem
later.

3Note that there are less than 2|A| equivalence classes since there are less than |A|

subformulas of A.
4One obvious set of worlds to try would be the set of all worlds reachable from a world

in which ¬A is true. This won’t work since it doesn’t guarantee a finite model. Note
that we’re not building as rich a model as in the earlier completeness theorem. In that
theorem, compactness was built into the model; i.e., if every finite subset of an infinite
set of formulas had a model, then the whole set had a model. In the current situation, we
don’t get compactness.
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tailored for the particular correspondence properties and a truth valuation
in terms of that reachability relation. Then we’ll show that K′ and the new
reachability relation and truth valuation is the desired finite Kripke model.

Case 1. S is K, T, B, or TB; i.e., R may be reflexive and/or symmetric but
is not transitive.

Definition: The new reachability relation, Rσ, is defined as [ρ]Rσ[ρ′]
iff there is a ρ1 ∈ [ρ] and a ρ2 ∈ [ρ′] such that ρ1Rρ2.

Definition: The new truth valuation φ′ is defined on propositional
variables as

φ′(pi, [ρ]) =

{

ρ(pi) if pi ∈ Σ
F if pi 6∈ Σ

and φ′(B, [ρ]) is the unique value compatible with the definitions of
Rσ and φ′ on propositional variables.

Now we have to show that (K′, Rσ, φ′) is the desired Kripke model.

Lemma 0: For some [ρ] ∈ K′, ρ(A) = F .

Proof: Take ρ ∈ K such that ρ(A) = F . Such a ρ exists by the con-
struction in the earlier completeness theorem. (Note that this works
even for G.) 2

Lemma 1: If ρRρ′, then [ρ]Rσ[ρ′].

Proof: Trivial by the definition of Rσ. 2

Lemma 2: For all B ∈ Σ and all S-good ρ, φ′(B, [ρ]) = ρ(B).

Proof: By induction on the complexity of B.

Basis: B is a propositional variable. Then the lemma is true by the
definition of φ′.

Induction: B is ¬C, C1 ∧ C2, C1 ∨ C2, or C1 → C2 for C, C1, C2 ∈ Σ.
Then the lemma is true by induction since φ′ respects the propositional
connectives.

3



B is 2C for C ∈ Σ. We want to show that φ′(2C, [ρ]) = ρ(2C).

If ρ(2C) = T , then for all ρ′ such that ρRρ′, ρ′(C) = T . So for all ρ′

such that [ρ]Rσ[ρ′], ρ′(C) = T . Hence φ′(C, [ρ′]) = T by the induction
hypothesis. So φ′(2C, [ρ′]) = T by the definition of φ′.

If ρ(2C) = F , then, from the proof of the earlier completeness the-
orem, there is a ρ′ ∈ K such that ρ′(C) = F and ρRρ′. Hence, by
lemma 1, [ρ]Rσ[ρ′]. So φ′(C, [ρ′]) = F by the induction hypothesis and
since [ρ]Rσ[ρ′] and ρ′(C) = F (i.e., there is a reachable world ρ′ at
which C is false). So φ′(2C, [ρ′]) = F by the definition of φ′. 2

This proves the completeness theorem for S = K since we’ve built a
finite Kripke model in which A is false at a world.

Lemma 3: If R is reflexive, then so is Rσ. And if R is symmetric,
then so is Rσ.

Proof: Easy using the definition of Rσ. 2

This proves the completeness theorem for S = T, B, or TB.

Case 2. S is K4 or S4; i.e., S is transitive and possibly reflexive, but not
symmetric.5 We’ll use the same set of worlds, K′, but we need a
different reachability relation and truth valuation.

Definition: [ρ]Rτ [ρ′] iff for all 2B ∈ Σ,

ρ(2B) = T ⇒ ρ′(B) = T and ρ′(2B) = T.

Definition: The box-sigma-theory of a propositional truth valuation
ρ, denoted by Th2Σ, is {B : ρ(2B) = T and 2B ∈ Σ}.

5The reason that we need another case for transitivity is that it is harder to handle.
To see why, take the reachability relation R

σ from case 1, and suppose that [ρ1]R
σ[ρ2]

and [ρ2]R
σ[ρ3]. This would imply that ρ

′

1Rρ
′

2 and ρ
′′

2Rρ
′

3 for some ρ
′

1 ∈ [ρ1], ρ
′

2, ρ
′′

2 ∈ [ρ2],
and ρ

′

3 ∈ [ρ3], where ρ
′

2 may not be the same as ρ
′′

2 . So the transitivity of R does not
necessarily imply the transitivity of R

σ.
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Using the definition of Th2Σ, an equivalent definition for Rτ is [ρ]Rτ [ρ′]
iff Th2Σ(ρ) ⊆ Th2Σ(ρ′) and for all 2B ∈ Σ, ρ(2B) = T implies that
ρ′(B) = T .

Definition: The new truth valuation φ′ is defined as in case 1 except
in terms of Rτ instead of Rσ.

Lemma 4: Rτ is transitive.

Proof: Obvious from the original definition of Rτ .6

Lemma 5: If ρRρ′, then [ρ]Rτ [ρ′].

Proof: We want to show that if ρRρ′ and ρ(2B) = T , then ρ′(2B) =
T , and ρ′(B) = T . By definition of R, ρ(2B) = T implies that
ρ′(B) = T . And ρ(2B) = T implies that ρ(22B) = T since ρ is
S-good and S ⊢ 2B → 22B. So ρ′(2B) = T by the definition of R.
2

Lemma 6: For all B ∈ Σ and all S-good ρ, φ′(B, [ρ]) = ρ(B).

Proof: By induction on the complexity of B. (Very similar to the proof
of lemma 2. Just replace Rσ by Rτ and usages of lemma 1 by usages
of lemma 5.) 2

This proves the completeness theorem for S = K4 since if K4 6⊢ A, we
have a finite Kripke model and a world in which A is false.

Lemma 7: If R is reflexive (i.e., S = S4), then so is Rτ .

Proof: Obvious using the definition of Rτ and since R is reflexive. 2

This proves the completeness theorem for S = S4.

6I.e., if [ρ1]R
τ [ρ2] and [ρ2]R

τ [ρ3], then there are ρ
′

1 ∈ [ρ1], ρ
′

2 ∈ [ρ2], and ρ
′

3 ∈ [ρ3] such
that

ρ
′

1(2B) = T ⇒ ρ
′

2(2B) = T

⇒ ρ
′

3(2B) = T and ρ
′

3(B) = T.
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Case 3. S is S5; i.e., S has the equivalence relation property. This case is
a combination of cases 1 and 2 and won’t be proved in detail. The
idea is to define the reachablility relation Rǫ by [ρ]Rǫ[ρ′] iff Th2Σ(ρ) =
Th2Σ(ρ′) and for all 2B ∈ Σ ρ(2B) = T implies that ρ′(B) = T .

Then, transitivity and reflexivity are shown exactly as before, and
symmetry is easily proved.7

The counterpart to lemma 5 is

Lemma 8: If ρRρ′, then [ρ]Rǫ[ρ′].

Proof: Use the fact that Rǫ is an equivalence relation. 2

Case 4. S = G.8

Definition: [ρ]Rγ [ρ′] iff Th2Σ(ρ) ( Th2Σ(ρ′) and for all 2B ∈ Σ,
ρ(2B) = T implies that ρ′(B) = T .

Note that this is almost like the definition of Rτ except for the proper

inclusion of Th2Σ(ρ). This is necessary to force irreflexivity.

Definition: The new truth valuation φ′ is defined as before except in
terms of Rγ .

Lemma 9: Rγ is transitive and irreflexive.

Proof: Transitivity is as before (in lemma 4). Irreflexivity is obvious
from the definition of Rγ (i.e., [ρ]Rγ [ρ] is impossible).

Lemma 10: For all B ∈ Σ and all G-good ρ, φ′(B, [ρ]) = ρ(B).

Proof: By induction on the complexity of B. As in lemmas 2 and 6, the
proof is easy for the cases where B is either a propositional variable or
composed by propositional connectives from formulas in Σ. The case
where B is 2C is a little different.

7Or, more simply, define [ρ]Rǫ[ρ′] iff for all 2B ∈ Σ Th2Σ(ρ) = Th2Σ(ρ′). Then,
transitivity, reflexivity, and symmetry are easily shown.

8Recall the G-axioms: 2(2A → A) → 2A, and 2A → 22A. That the second one
follows from the first is shown in a footnote on page 268 of Boolos and Jeffrey. Also, the
proof for case 4 above is similar to a proof by Robert Solovay in “Provability Interpretations
of Modal Logic”, Israel Journal of Mathematics, 25(1976), pp. 287-304.
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If ρ(2C) = T , then for all ρ′ such that [ρ]Rγ [ρ′], ρ′(C) = T by def-
inition of Rγ . So for all ρ′ such that [ρ]Rγ [ρ′], φ′(C, ρ′) = T by the
induction hypothesis. Hence φ′(2C, ρ′) = T by the definition of φ′.

If ρ(2C) = F , then we want to show that φ′(2C, ρ) = F ; i.e., we
want a ρ′ such that [ρ]Rγ [ρ′] and φ(C, ρ′) = F . By the induction
hypothesis, it suffices to find a ρ′ such that [ρ]Rγ [ρ′] and ρ′(C) = F .
More specifically, if Th2Σ(ρ) = {D1, . . . , Dk}, then we want a ρ′ such
that

1. ρ′ is G-good,

2. ρ′(C) = F ,

3. ρ′(2Di) = T for 1 ≤ i ≤ k,

4. ρ′(2C) = T , and

5. ρ′(Di) = T , for 1 ≤ i ≤ k.9

Let D = D1 ∧ . . . ∧ Dk, and note that 2D → 2D1 ∧ . . . ∧ 2Dk is
a consequence of K. If we can show that G ∪ {¬C,2C,2D, D} is
tautologically consistent, then by compactness10, there will be a ρ′

such that conditions 1-5 hold.

Suppose, for the sake of contradiction, that G ∪ {¬C,2C,2D, D} is
not tautologically consistent. Then

G ⊢ C ∨ ¬2C ∨ ¬2D ∨ ¬D (1)
2D ∧ D → (2C → C) (2)
2(2D ∧ D) → 2(2C → C) by necessitation and the

axiom 2(X → Y ) → 2X → 2Y (3)
2(2C → C) → 2C) by the Gödel-Löb axiom (4)
22D ∧ 2D → 2(2D ∧ D) a consequence of K (5)
2D → 22D by G-axiom (6)
2D → 2C by (3)-(6). (7)

In particular, G ⊢ 2D1 ∧ . . . ∧ 2Dk → 2C. But this contradicts the
facts that ρ(2Di) = T for 1 ≤ i ≤ k, that ρ(2C) = F , and that ρ is
G-good. So G ∪ {¬C,2C,2D, D} must be tautologically consistent,
and hence there is a ρ′ satisfying conditions 1-5. 2

9Conditions 3, 4, and 5 force Th2Σ(ρ) ( Th2Σ(ρ′) since we’re assuming that 2C 6∈

Th2Σ(ρ).
10Remember, G is infinite.
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So the completeness of G is established, and the entire completeness
theorem is proved.

Arithmetical Completeness of G

Definition: Let Ψ be a mapping from propositional variables to sentences
in the language of PA, and extend Ψ to all wff’s A such that

1. Ψ respects propositional connectives, and

2. Ψ(2A) = ThmPA(pΨ(A)q).

So we interpret 2A as “A is PA-provable”.

Arithmetical Completeness and Soundness Theorem: Let A be a
wff. Then G ⊢ A iff for all Ψ, PA ⊢ Ψ(A).11

Recall Löb’s theorem: if

PA ⊢ ThmPA(pThmPA(pAq) → Aq),

then PA ⊢ ThmPA(pAq). The arithmetical completeness and soundness
theorem generalizes this by allowing arbitrarily nested 2 formulas. In par-
ticular, 2(2pi → pi) → 2pi) iff

PA ⊢ ThmPA(pThmPA(pAq) → Aq) → ThmPA(pAq)

for all sentences A.

11Boolos and Jeffrey prove the soundness part of this theorem.
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