
Weak Formal Systems and
Connect ions to Computational

Complexity

Lecture Notes for a Topics Course
University of California, Berkeley

January-May 1988

Instructor:

Notes by:

Sam Buss

Frederick Teti
Maria Bonet
John Grosh
Martin Goldstern
Chrystopher Nehaniv
Eric Hughes
Stephen Carrier
Juan Bagaria
Jim Gloor
Alessandro Berarducci
Sam Buss

These lecture notes were written for a topics course in the Mathematics De-
partment at the University of California, Berkeley during the winter semester.
Each student was responsible for writing notes for three one hour lectures.
I would like to take the opportunity to thank each of F. Teti, M. L. Bonet,
J. Grosh, M. Goldstern, C. Nehaniv, E. Hughes, S. Carrier, J. Bagaria,
J. Gloor and A. Berarducci for doing such a superb job of producing complete
and exceptionally well-formatted lecture notes.

In addition to these lecture notes, the course covered two papers (listed below)
which are not included for copyright reasons. The topics covered included:

Propositional Sequent Calculus Page 1-1

Upper and Lower Bounds on the Size of Proofs in the
Propositional Sequent Calculus Page 1-8

Propositional Proof Systems Page 2-6

Resolution .. Page 3- 1

An Exponential Lower Bound for ResolutionPage 3-5

Frege, Extended Frege and Substitution Frege Proof Sys-
terns .. Page 4-3

The Propositional Pigeonhole Principle has Polyno-
mial Size Frege Proofs, S. Buss, J. Symbolic Logic
52(1987)916-927 .. not included

Circuit Complexity and Relations to Turing Complexity
and Extended Frege Proof Systems Page 5-1

Alternating Turing Machines Page 5-10

The Polynomial Time Hierarchy.. Page 6-2

First Order Theories of Bounded Arithmetic, their Lan-
guages and Axioms ... Page 6-10

C! -Definable Functions and A! -Relations of Bounded
Arithmetic .. Page 7-6

Relative Strengths of Induction Axioms, The Godel P
Function, C! -Definability of Polynomial Time Functions
in Si .. Page 8-1

First Order Sequent Calculus Page 8-9

Cut Elimination Theorem Page 9-3

Translating Si Proofs into Extended Frege Proofs Page 10-1

Equivalence of Extended Frege Proof Systems Page 11-1

Kreisel's Conjecture and Theorem of Rohit J. Parikh,
"Some Results on the Lengths of Proofs," Trans. of the
A.M.S. 177(1973)29-36 not included

Homework Problems .. Page H-1

Math 271 - Topics in Weak Formal Systems

Lecture Notes, Set #1
1988 January 20-27

Instructor: Sam Buss
Notes By: Frederick Teti

I. Propositional Sequent Calculus

A. Definitions

Symbols such as po, pl, . . . , p, q, r represent propositional variables. (,)
and the comma are used as punctuation. The logical connectives all have
their usual meanings. a typically stands for a truth assignment, that is, a
function from the variables to a convenient two-element set such as {T,F).
The natural extension of a to the set of formulas is denoted by b. Formulas
are defined in the standard recursive fashion.

Definition: A CEDENT is a finite, possibly empty, sequence of formulas.

Definition: A SEQUENT is a string of the form I?+ A where I' and
A are cedents. I? is the ANTECEDENT; A is the SUCCEDENT.

Given a truth assignment a, we define the truth value of I?+ A by

where the A; are the terms of I?, and the B; are the terms of A. We write
I= I?+ A if a(r+ A) = T for all truth assignments a .

B. Rules of Inference.

In the following, A and B range over formulas; I? and A range over cedents.
We assume for the nonce that the language for formulas comprises A, V,
and 1. We write A , r to stand for the sequent whose first term is A
and whose succeding terms are those of I?. The notions of PRINCIPAL
FORMULA and SUCCESSOR are defined by cases as the rules are listed.

1. Structural Rule: If r* > r (as a set), and A* > A (as a set), then the
following syllogism is a valid inference.

If A is a term of (or of A), then the SUCCESSOR of A is the
first occurrence of A in I?* (or in A*). There is no principal formula
associated with the structural rule.

2. (-right) Rule:

The indicated occurrence of the formula 1 A is the SUCCESSOR of
the indicated occurrence of the formula A. It is also the PRINCIPAL
FORMULA associated with the (1-right) Rule. If B is a term of r,
then the SUCCESSOR of B is the first occurrence of B in l A , r. If B
is a term of A, then the SUCCESSOR of B is the first occurrence of
B in A. (The successors of these so-called side formulas are all defined
similarly and are henceforth omitted.)

3. (l-left) Rule:

The indicated occurrence of the formula 1 A is the SUCCESSOR of
the indicated occurrence of the formula A. It is also the PRINCIPAL
FORMULA assoiciated with the (l-left) Rule.

4. (A-right) Rule:

The indicated occurrence of the formula A A B is the SUCCESSOR
of the indicated occurrences of the formulas A and B, It is also the
PRINCIPAL FORMULA associated with the (A-right) Rule.

5. (A-left) Rule:

The indicated occurrence of the formula A A B is the SUCCESSOR of
the indicated occurrence of the formula A. The indicated occurrence of
the formula B A A is the SUCCESSOR of the indicated occurrence of
the formula A. In both variations of the Rule, the indicated occurrence
of A A B or B A A is the PRINCIPAL FORMULA.

6. (V-right) Rule:

The indicated occurrences of the formulas A V B and B V A are both
SUCCESSORS of the indicated occurrences of the formula A, respec-
tively. They are also the PRINCIPAL FORMULAS of their own vari-
ations of the (V-right) Rule.

7. (v-left) Rule:

The indicated occurrence of the formula A V B is the SUCCESSOR
of both the indicated occurrence of A and the indicated occurrence of
B. It is also the PRINCIPAL FORMULA associated with the (v-left)
Rule.

8. Cut Rule:

The notions of successor and principal formula are not defined for the
Cut Rule.

C. Metatheorems

Definition: A sequent is an AXIOM if it has the form A + A for some
formula A.

Definition: A sequent calculus PROOF is a finite tree with a unique root
whose nodes are labelled with sequents in such a fashion that each leaf of
the tree is labelled by an axiom, and all other sequents are inferred from
their (1 or 2) children by a rule of inference. The sequent labelling the
root of the tree is the ENDSEQUENT and is the sequent PROVED.

Definition: A CUT-FREE proof is a sequent calculus proof with no cut
inferences.

Definition: The LENGTH of a sequent A, written Al, is
the number of characters it comprises.

Lemma (0) In any rule of inference but the Cut Rule and the Struc-
tural Rule, the length of the conclusion is greater than the length of any
hypothesis.

proof: Omitted. -I

N.B. We will abuse terminology and say that the formula A is proved when
in actuality the sequent + A is proved.

Theorem (1) (Soundness) If I?+ A has a sequent calculus proof, then
r+ A.

proof: It is a simple matter to check that all the axioms of the sequent
calculus are valid, and that all the rules of inference preserve validity.
Hence any provable sequent is valid. Details are left to the interested
reader. -I

Theorem (2) (Completeness) If I?+ A, then there is a cut-free proof
of I?+ A.

proof: We construct a tree with unique root whose nodes are labelled
with sequents. Label the root of the tree with I'+ A. Now suppose
we have constructed the tree up to a certain height. Let II + A be
any sequent on the periphery of the tree. Let A be the first non-atomic
formula occuring in II+ A. We continue to construct the tree as
described:

Case 1: B is 1 C and B E A

where A = l C , A*. For notational convenience, we assume that that B
is the first formula of A. In truth, l C , A* may abbreviate something of
the form Al , 4, A2. We make similar assumptions in the cases below.

Case 2: B is C A D and B E A

rI+ C,A* rI+ D,A*

\ I
rI+ c A D,A*

where A = C A D, A*.

Case 3: B is C V D and B E A

where A = C V D,A*.

Case 4: B is i C and B E II

where II = i C , II* .

Case 5: B is C V D and B E II

where II = C V D , n * .

Case 6: B is C A D and B E II

where I I = CA D,II*.

We stop constructing the tree when every formula at a leaf is atomic.
The process must come to an end because the number of logical connec-
tives in the sequents decreases as the tree is constructed.

Now assume there is a branch in the tree which ends at a leaf labelled
with such a sequent II + A that no variable p appears in both the an-
tecedent and the succedent. Define a truth asignment a by the following
rule:

T i f p ~ I I

otherwise anything

Claim: If @ is any sequent on this branch, then a(@) =F. Inspection of
the six cases above reveals that falsehood is preserved downwards, and a
assigns the leaf of this branch the truth value F. Since I? + A is a t the
bottom of this branch, it too must be assigned falsehood. Fortunately,
I?+ A is valid by hypothesis, so no such branch exists. We conclude
that for every sequent II+ A at a leaf, the set II n A is non-empty.

We now discuss how to convert the tree into a cut-free proof. First of
all, for any sequent II+ A at a leaf, find a variable p E n A and
tack above the leaf the sequent p+ p as axiom.

Now observe that the tree-pieces in cases 1, 2, 4, and 5 are valid infer-
ences as they stand provided we restructure the bottom sequent so that
the interesting formula is the first term of its cedent. To convert the
configuration of case 3 into a string of valid inferences, we doctor it as
follows:

The conversion of case 6 is similar; the only difference is the application

of the (/\-left) Rule instead of the (v-right) Rule. There is also a con-
siderable amount of restructuring as before. It is left to the doggedly
dubious student to confirm that the converted tree (together with its
labelling) is indeed a sequent calculus proof. -I

Corollary (3) (Cut-Elimination) If I?+ A has a sequent calculus proof,
then it has a cut-free proof.

proof: This follows immediately from the Soundness and Completeness
Theorems. -I

Lemma (4) (Subformula Property) In any rule of inference other than the
Cut Rule, each formula in the hypothesis is a subformula of some formula
of the conclusion. In particular, in a cut-free proof of I?+ A, every
formula appearing in the proof is a subformula of a formula in I?+ A.

proof: By induction on the rules of inference. -I

D. Results Concerning the Enormity of Sequent Calculus Proofs

Definition: The SIZE of a proof is the number of occurrences of symbols
in the sequents in the proof, i.e. the symbols inherent to the tree do not
count. The size of a proof P is denoted [PI.

We engage in a stream-of-consciousness estimate on the size of the proof
generated in the completeness theorem. Let n = [I?+ Al. Then the
length of any sequent in the unmodified tree is less than or equal to n ,
thanks to the Subformula Property.

There are fewer than or equal to n subformulas in I?+ A. Given any
subformula in I?+ A, it is possible to determine whether it will appear
in the antecedent or the succedent of a previous formula. Observe that
the only rules of inference in which the principal formula jumps across the
arrow are the 1 Rules, so we only need to count the number of negation
signs binding on the formula in question. So to specify a sequent in the
tree, it suffices to say which subformulas of I?+ A occur in it (up to their
order). We have to distinguish among different occurrences of a subformula

in r+ A. So there are fewer than or equal to 2" distinct sequents in
the tree. So the unmodified tree has size less than or equal to n2".

We must add the structural inferences which reshaped the tree into a
proof, and the conversions for cases 3 and 6. The structural inferences can
at most double the size of the tree. Each new sequent in the case-3-and-6
conversions is at most twice the length of the original sequent, and there
are three of them. Hence these coversions can introduce at most six extra
tree-lengths. In total, muliplying by 8 gives an upper bound of 8n2" on
the size of a cut-free proof of I?+ A. Note that this is just about on the
same order as the size of a truth table.

How good is our upper bound? It's difficult to say. It is not known whether
there is a subexponential upperbound on the size of proofs with cuts. If
there is a polynomial bound, then NP = co-NP (defined at the end of the
second set of notes).

To continue our investigation, we add the character > to the language, as
well as the following new rules of inference:

9. (>-right) Rule:
A,r+B, A

10. (>-left) Rule:
r + A , A B , r + A

The manic student can verify in detail that the Completeness Theorem
and the Subformula Property remain valid in this expanded system. In
particular, our calculated upper bound still works.

Definition: A function f : N + N is O(g) for some g : N + N iff there
exists a constant c > 0 such that for all n E N, f (n) I: c g(n).

Definition: A function f : N -+ N is o(g) iff for every constant c > 0,
there is some N E N such that for all n > N , f (n) < c g(n) .

Definition: A function f : N -+ N is O(g) iff there exists a constant c > 0
such that for all n E N , f (n) > c g(n).

Definition: A function f : N -+ N is w(g) iff for all constants c > 0, there
is some N E N such that for all n > N , f (n) > c g(n) .

Definition: A function f : N + N is 8 (g) iff f is both O(g) and O(g).

Let's now define some notation. Let cl, d l , c2, d z , . . ., be propositional vari-
ables. Keeping in mind that our convention for serial conjunction is asso-
ciation from left to right, we define

Let I',+ A, be Al V B1, . . . , A , V B,+ c,,d,. It is fairly easy to
verify that IFn+ A,(is O(n2).

Lemma (5) I',+ A, has a proof of size O(n3).

proof: The sequent

Fi, Ai+1 V Bi+l ci+l, di+l

has a proof with 13 sequents, and each sequent has O(i2) symbols. Hence

has a cut-free proof of size O(i2). By putting these sequents together
with cuts and structural inferences, one gets a proof (with cuts) of size
O(n3) of I',+ A,. -1

Math 271, Set #2
Date: Jan,29-Feb,3

Instructor: Sam Buss
Notes by: Maria Bonet.

Theorem A-1 : for arbitrary large m, there exists a valid sequent I? ---t A
of size m such that:

a) I? k A has a proof with cuts of size S(m1.5)
b) Any cut-free proof of I? + A has > 2 6 sequents.
References:

R. Statman in Annals of Mathematical Logic no.15 (p.225-287), 1978. G.
Takeuti: private communication, 1987. The proof presented below is a
slightly simplified version of Takeuti's proof.

Let's recall the following notation:

i

F; = A (c; V d;) we associate from left to right
k= 1

Al - Cl

A;+i F; > C;+I

B1 dl

Bi+1 = Fi > di+l

Let I?, + A, be:

IF, + A,[= S(n2)
To prove Theorem A-1 it suffices to show:

a)r, + A, has a proof with cuts of size S(n3) = S((n2)1-5)
b) A cut-free proof of I?, + A, has 2 2" sequents
Part a) was done in Lemma A-2(Fred Teti's Lemma 5)

Before proving Theorem A-1 we'll prove the following lemmas:

Lemma A-3: If P is a cut-free proof of A V B, r + A then there exists
a cut-free proof Pl of A, I? + A with I PI I 5 I P 1 and the number of sequents
in PI 5 number of sequents in P .

Notation:# Seq.(P)= the number of sequents in P .

proof: Find all the direct ancestors of the indicated A V B. Change them
to A. The result is a tree PI of sequents which can be modified to be a proof
by discarding some of the branches:

It can fail to be a proof in a V-left inference. In P we have:

In Pl it becomes:

In this case we have to discard B,I'* + A and everything above, and
optionally one of the A, I'* + A

(This proof could also fail if we were to allow axioms with non atomic
formulas. In that case we could have the sequent A V B + A V B as a leaf
in P, but in PI we might get A + A V B. This is easily derived but at the
cost of one extra inference.)

In the case of the structural rule, if in P we have, for example,

in Pl it could become either one of the following choices:

both choices are valid inferences. QED (lemma A-3)

Lemma A-4: if P is a cut-free proof of I' + A /\ B, A then there is a
cut-free proof Pl of I' --, A, A with I Pl I I I PI and #seq(Pl)I #seq(P).

Lemma A-5: if P is a cut-free proof of A > B, I' + A, then there are
cut-free proofs Pl and P2 of B,I' + A and of I' + A,A with IP;I 5 [PI
and #seq.(P;) I #seq. (P) .

Lemma A-6: Any cut-free proof of I', + A, has 2 2" sequents.

proof: the idea is to have to use many V-left rules and keep the two
branches. Since there are n disjunctions in l?, this would lead to 2" distinct
branches in the proof tree. However, in general just having n disjunctions in
l7, won't lead to 2" branches, since if one of the two branches gets canceled
all the time, the proof can become polynomial. Example:

has polynomial size tree-like cut-free sequent calculus proofs.
Let P be a cut-free proof of l?, - An with the fewest possible number

of sequents. The last inference of P is either structural or a V-left operation
with one of the A; V B; as principal formula.

The final nonstructural inference of the proof is of the form:

We are being imprecise in our notation: the E;'s can occur multiple times
and in arbitrary order and, strictly speaking the A; V B; should be the first
formula in the lower sequent. However, we assume without loss of generality
that no other occurence of A; V B; is in the upper sequents. This is because
P is the shortest possible proof, and by problem 4 (HW #I), a cut-free proof
of A, A V B, l? - A can be shortened to a cut free proof of A, l? - A.

It will suffice to show that any cut-free proof R1 (S1) of

can be shortened to get a proof of l?,-l -+ An-l with fewer sequents in
the proof. Then,

#seq.(P) > #seq(R1) + #seq(S1)
> 2.#seq(shortest proof of l?n-l -+ An-1) -

#seq.(P) 2 2".

Let's see how we can shorten PI to a proof l?,-I - An-l:

case 1: i=n.
Suppose R1 is a cut-free proof of El,. . . , En-1, A, -+ c,, d,.
Since A, = Fn-l > c, by lemma 5, R1 can be shortened to a cut-free proof
R2 of

El,. . . , En-1 -+ Fn-~,cn,dn with #seq.(Rn) 5 #seq.(Rl).

Since Fn-1 Fn-2 A (~ ~ - 1 V dn-1), by lemma 4 there is a cut-free proof R3 of

The variables c,, d, occur only as indicated in the succedent. Hence c,, d,
were introduced by weakening. So R3 can be shortened to a cut free proof
R4 of

E l , . . ., En-1 -+ cn-1 v dn-1

and this can be shortened to a cut-free proof of

and #seq.(R1) 5 #seq.(the shortest proof of r,-1 -+ A,-1).

Case 2: 1 5 i < n.
Let R1 be a cut-free proof of El , . . . ,Ai , . . . , E n -+ c,, d,
Idea: we are going to delete any occurrence of c; V d; from the proof. Let,

The goal from now on is to shorten the proof Rl to a proof of:

Since A; is Fjm1 > c; by lemma A-5, R1 can be shortened to a cut-free proof
R2 of

E1,..-,E;-l,ci,E;+l,.-.,En --+ cn,dn

In R2 replace every occurence of the subformula F; by Fi-l to obtain a new
tree of sequents R3. This changes evay Fj to F;, Aj to A:, Bj to B: (if

j
i = 1 replace each Fj by /\ ct V dt and replace E2 by c2 v d2).

1=2
The only case where this is not a valid proof tree is where Fi was a

principal formula of in inference in R2. For instance

This becomes after the substitution:

To fix this modify R3 by discarding II --+ c; V d;, A and the tree above. Now
it's again a valid inference.

It's not possible to have F; as principal formula in the antecedent in R2,
because it's preordained where the parts of F; > c;+l will go. Also, we will
never have F; --+ F; as an axiom in R2 because of our convention about
having only atomic formulas in the antecedent and succedent of the formula.
Hence the above changes to Rg make it a valid proof.

So c; occurs only in the antecedent of the endsequent of R3. So, it must
have been introduced by weakening. So we delete c; everywhere in the proof
to get a cut-free proof of:

Now for all j > i we rename the variables cj, d j to cj-1, dj-l. This gives a
cut-free proof of --+ A,-1. QED(1emma A-6,Theorem A-1)

Propositional Proof Systems

Let C be any finite alphabet. 1x1 > 2. Let C* be the set of finite strings
from C. We'll suppose that C contains: p, 1, 0, (,), V , 1, 3, and comma.

Def: A propositional proof system is a function F computable in poly-
nomial time with image the set of tautologies, and domain all C*.

Example 1:

if w is a valid cut-free proof of + A
Fcut- ree(w) = p V l p otherwise

Example 2:

if w codes a truth table proof of A
V l p otherwise

Example 3:

if w is a ZF-proof that A is a tautology
v -p otherwise

Def.: A decision problem is a subset of C*.

Def.: A decision problem Q is in P iff there is a Turing Machine M such
that for every x, a) x E Q iff M accepts x.

b) for some polynomial p(n), M halts on input x
within ~(1x1) steps.

Examples:
a) the set of palindromes is in P
b) set of cut-free proofs is in P (encoded as as string of symbols).

Feasible means doable on today's or next century's computers. P is the
mathematical notion for the vague idea of 'feasible'. One might question
whether they really coincide, since when the constants or exponents are very
big in a polynomial function, the function doesn't seem very feasible.

Def: a decision problem Q is in NP iff there is R(,) in P and a
polynomial p(x) such that,

Vx(x E Q iff 3w(lw(I p(151) A R(5,w)).

Def: Co-NP is the set of complements of members of NP . So,
AECO-NP iff C*\A E NP .

Def.: f E FP iff f : C* + C* and there is a polynomial time Turing
Machine M which starting with x on its input tape halts with f (x) on its
output tape in 5 p(lx1) steps.

Consider the set SAT ={A: A is satisfable). Cook showed that SAT is
NP Complete. ie., for every Q E NP there is a many-one reduction f of Q
to SAT , and f E FP . By a many-one reduction f of Q to SAT we mean
a function f such that: Vx(x E Q H f (x) E SAT).

Proposition: Let TAUT be the set of all tautologies. Then: a) TAUT is
in Co-NP . b) TAUT is Co-NP Complete.

proof:
a) TAUT E NP because:
cp E TAUT iff cp 4 TAUT

iff there is a truth assignment a s.t. a(cp)=F.
iff 3w(wl =# of variables in cp,coding a truth

assignment a s.t. a(cp) = F.
Since TAUT E NP iff TAUT E Co-NP , TAUT E Co-NP .
b) It suffices to show that TAUT is NP -complete (A many-one reduc-

tion of Q to TAUT is the same as a many-one reduction of Q to TAUT).
It suffices to give a many-one polynomial reduction of SAT to TAUT :
cp E SAT e l c p 4 TAUT l c p E TAUT So the reduction is

f : cp H -9. QED

Many-one reduction versus Turing reduction: In the many-one reduction
you ask one question, and the answer you get from the oracle in one step is
the total answer. In the Turing reductions you are allowed to ask the oracle
as many times as you want, getting the answer in one step each time.

Recall we defined a Propositional Proof System to be a function
f E FP such that f : C* + C* and the image f(C*) is TAUT .

Def: a propositional proof system f is Super iff there is a polynomial p()
s.t. Vx E T A U T 3w Iwl < p(lxl)s.t. f(w) = x.

Theorem:[Cook-Reckhow 19741
There exists a super propositional proof system iff N P =Co-NP .

proof:
(=J) Suppose that f is super. Let p j be the polynomial bound on the

length of the proofs.
First note that TAUT E N P since,

Vx [x E T A U T 3wlwl < pj(lxl)s.t.f(w) = XI.
Now, let's prove that N P =Co-NP . Suppose that Q E Co-NP . Q is

many-one reducible to TAUT . Since T A U T E N P , Q is many-one re-
ducible to SAT by g € FP . So for all x,
x E Q * g(x) E SAT @ 3w I w I 5 Ig(x)I, w is satisfying truth assignment of g(x).

That shows that Co-NP C_ N P . To see that N P Co-NP , suppose
Q E N P .Then Q E Co-NP . S O Q E NP and Q E Co-NP .

(+) Suppose that NP =Co-NP . So TAUT E N P . So there is a poly-
nomial p() and R(,) EP s.t., Vx(x E TAUT iff 3wlwl < p(lxl)s.t.R(x.w))

Then the proof system is:

if v =< x, w > and R(x, w)
f (v) = { 6 v -p otherwise

QED.

Note: P = N P implies N P =Co-NP (because P is closed under com-
plement). So N P # Co-NP implies P # N P . Therefore, if there is no
super propositional proof system then P # N P .

Def: A propositional proof system g simulates a propositional proof sys-
tem f iff there exists a polynomial p such that for all x and w with f (w) = x,
there exists a w' satisfying Iw'l 5 p(lw1) and g(w') = x.

Math 271 - Topics in Weak Formal Systems

Lecture Notes, Set #3
February 5-10,1988

Instructor: Sam Buss
Notes By: John Grosh

Resolution Another Propositional Proof System.

Reference: G. S. Tseitin, "On the complexity of derivation in propositional
calculus." circa. 1966, appears, Automation of Reasoning 2 pp. 466 - 483
Springer-Verlag 1983

Definitions

A propositional variable is denoted by p, q , r . Each propositional variable
has a conjugate (or negative) denoted jj . Also = p.

A literal is a propositional variable p or a conjugate ji.

A clause is a finite set of literals, where the meaning of the clause is the
disjunction of the literals in the clause. For example {pl, &,p3) means
Pl v a v P3.

If a is a truth assignment, a(ji) = opposite of a(p) . For a clause C , a (C) = T
iff a(x) = T for some x E C .

C is satisfiable if there is some truth assignment a such that a (C) = T. Note
that only 0 is not satisfiable as a clause.

More importantly, if C is a set of clauses, C is satisfiable if there is a truth
assignment a such that a (D) = T for all D E C .
We will never allow an empty set of clauses.

Resolution Rule

Cl u C2
Resolution has no axioms. Instead, we take C to be a set of hypotheses to
which we apply the resolution rule.

Observation: If a(C1 u {x}) = T and a(C2 U {T}) = T then a(C1 U C2) = T.

Theorem 1 If a (C) = T and i f D can be inferredfrom C by repeated use of
the resolution rule, then a(D) = T .

proofi repeated use of the above observation.

Corollary 2 If there is a resolution derivation of 0 (the empty clause) from
C , then C is not satisfiable.

Resolution is a 'refutation' proof system; from a conjunctive normal form
formula obtain a set of clauses, then derive the empty clause to refute the
original formula.

Theorem 3 (Completeness) If C is an unsatisfiable set of clauses, then
there is a resolution derivation of the empty clause 0 from C .

pro05 (Reference: Davis, Putnam "A Computing Procedure For Quantifica-
tion Theory" JACM 1 (1960) pp. 201-215. They prove a stronger result .)

Let the propositional variables in clauses in C be among pl . . . p, , p1 . . . p,

Goal: Get rid of one variable, say p,, by deriving a nonempty set of clauses
C* from C such that neither p, or IS , appears in any clause of C* and C* is
unsatisfiable.

C contains four types of clauses.
(a) clauses that contain p, and not p,.
(b) clauses that contain p, and not p,.
(c) clauses that contain neither p, or p, .
(d) clauses that contain both p, and p, .

Directions for forming C* .
(1) Put every clause of type (c) into C* .
(2) Throw away all clauses of type (d).
(3) For each clause C of type (a) and D of type (b), C* contains

the result of resolving C and D with respect to p, .

We claim that C* is not empty. We may assume that C is not empty since we
don't allow the empty set of clauses. Then C* is empty just in case both: (1)
C has no type (c) clauses, and (2) either C has no type (a) clauses or it has no
type (b) clauses. In this case, C is satisfiable with a(p,) = T or a(pn) = T
resp.

The next claim is that if C* is satisfiable then C is also. Suppose a(C*) = T.
We let a, and afin be the truth assignments extending a such that a, (p,) =
T and up, (p,) = T.

Consider the following cases:

Case 1: C had no clauses of types (a) or (b). Then define a(p,) = (anything)
and a satisfies C .

Case 2: C had no clauses of type (a) [resp. type (b)] then up, [resp. a,,]
satisfies C .

Case 3: C had clauses of both types (a) and (b). Suppose that neither a,, nor
up, satisfies C . Then we must have clauses Dl of type (a) and D2 of type (b)
such that apn(D2) = False and afi(D1) = False. Consider the resolution of
Dl and D2 on the variable p, . It will yield D = Dl \{p,} U D2\{pn} where
neither p, or p, occurs in D . By construction of C* we know that D E C* .
So a(D) = T. Then for some x E D (either a propositional variable or its

negative) a(x) = T. And x E Dl or x E D2 . This is a CONTRADICTION
since we forced a,, and ah to extend a . Hence one of a,, , up, satisfies C .
So C is satisfiable.

We have now produced an unsatisfiable set C* of clauses with no occurrences
of p,, p,. Completing the induction we will be able to produce a resolution
derivation of the empty clause.

So resolution is a proof sys tem for Disjunctive Normal Form (DNF) formulas.
Given a formula A in DNF, write the negation of A (1A) as a Conjunctive
Normal Form (CNF) formula. Convert this to a set of clauses (each conjunct
becomes a clause and each disjunct within a clause becomes a member of
the clause). Refute 1 A as in the completeness theorem to show that A is a
tautology.

It is desirable to have resolution be a proof system for arbitrary propostional
formulas, not just DNF formulas. There are two methods for achieving
this. The first method might be to convert our formulas to DNF first, then
use resolution. The problem is that this may make the formula exponentially
larger. So we discuss a second method called resolution with limited extension.

Resolution with Limited Extension

Resolution with limited extension will work as a proof system for general
propositions.

Idea: Introduce new variables for each subformula. For each subformula B of
our formula A we will have the variable p~ with the following requirements.
(1) If B is atomic, say B is p;, then pg = pi. (2) Otherwise the p~ are distinct
for distinct subformulas of A.

Definition For a formula A we define a set of clauses LE(A), (the limited
extension of A) as follows. For each subformula B of A,

Case 1: B is 1 C then { p ~ , p c) , { j j ~ , j j c) E L E (A) . It is not hard to see that
truth assignment a will satisfy these two clauses iff a (p B) = a(jjc).
Case2: B i s CVD then { P B , F C) , { P B , F D) , { ~ ~ B , P C , ~ D) E L E (A) . Again
a satisfies these three clauses iff a (p B) = a (p c v p D) .
Case3: B i s CADthen { ~ B ~ P C) , { p ~ , p o) , { p B , j j C , j j D) E L E (A) .

Definition: The size of a clause is the cardinality of the clause. The size of a
set of clauses is the sum of the sizes of its clauses.

Remark: I L E (A) I is O (J A 1) .

Theorem 4 (a) A is satisfiable iff LE(A) U { { P A)) is satisfiable.
(b) A is valid iff LE(1 A) U { { j j ~)) is not satisfiable iff there is a resolution
derivation of 8 from LE(1 A) U { { F A)) .

The proof proceeds by induction on the complexity of B, a subformula of A ,
showing that a (B) = a (p B) for all a satisfying L E (A) .

We will next examine sizes of resolution proofs of the pigeonhole principle.

Pigeonhole principle: For each n, if f : (0 , . . . , n) + (0 , . . . , n - 1) then f is
not one-to-one.

For each i and j with 0 5 i 5 n and 0 5 j 5 n - 1 we will have the
variable pi , j which 'means' f (i) = j .

PHP, A V ~ i , j) + V V Pi, j A Pm,j
O<i<n O<j<n-1 O<i<m<_n 0s jsn-1

\ d \ * .- /

f is total f is not one-to-one

We've omitted the requirement that f be single-valued.

This expresses i P H P n in conjunctive normal form.

C -pHpn contains { pi,,, . . . , pi,.-, } for each i = 0, . . . , n . And { pi,j, p m j }
f o r each i , j, m suchthat 0 < i < m < n and O < j < n - 1 .

Theorem 5 (A. Haken) There exists a constant c > 1 such that any reso-
lution derivation of 0 from CIPHPn has een clauses.

Reference for proof: A. Haken, "The Intractibility of Resolution." TCS 39
(1985) pp. 297-305.
also S. Buss and Gy. Tur in . . . to appear TCS.

Recall: Resolution proofs are sequences not trees. There were earlier results
for 'tree-like7 and 'regular7 resolutions. (e.g. see G. S. Tsietin - 1966)

proof: Assume P is a derivation of 0. We want a lower bound on the size of P.
A clause is pictured as an n x (n + 1) array of +'s, -'s and blanks. For
example

Initial clauses
in i P H P n
look like:

Similarly a truth assignment a is pictured as an array of O's, and 1's where
0 = False and 1 = True.

Definition: A truth assignment is critical if it has exactly n 1's with
no two in the same column. (i.e. it codes a partial one-to-one function
f : (0,. . . , n) + (0,. . . , n - 1) with n values of f defined. One 'pigeon' is
undetermined.)

Definition: The O-column of a critical truth assignment is the index of the
column with no 1 's in it.

Each critical truth assignment will be assigned a clause in P.

Lemma 6 Let a be a critical truth assignment. There is a clause C in P such
that:
(a) a (C) = F
(b) C has esactly I;] + 's in the 0-column of a .

proofi Note that if, in a resolution inference Dz, we have a (D) = F then
a(D1) = F or a(Dz) = F but not both. By tracing backwards through P we
get a unique sequence of clauses C1, . . . , Ct such that:

(1) Ct is the final clause 0.
(2) C;+l is (resolution) inferred from C; and something else.
(3) C1 is an initial clause.
(4) a(C;) = F for all i 5 t .

Since a is critical, C1 must be the clause with n +'s in the O-column of
a. Of course, Ct has no +'s in the O-column of a . Let C be the first C;
with 5 If] + 'S in the O-column of a . Then C has exactly [f] + 's in the
O-column of a since the + 's disappear one a t a time (by being resolved on).

Lemma 7 Let a be critical. Suppose C is a clause in P with < If] + 's in
the O-column of a such that a (C) = F , then there i s a clause D before C i n
P such that a (D) = F and D has ezactly I;] + 's in the O-column of a .

proof: same as previous lemma except letting Ct be D instead of 0. CI

Definition: If a is a critical truth assignment, we define C, to be the first
clause in P satisfying:
(a) a(C,) = F
(b) C, has exactly I:] + 's in the 0-column of a .

Definition: An FS1 (fixed set of 1's) is a set S of la] 1's in distinct rows
and columns of the array.

Definition: a i s compatible with S if a(pj j) = T for all p;,j E S.
We will take CS to be the first clause in P of the form C, for some a
compatible with S . CS is called a complex clause.

Lemma 8 Any complex clause has 2 (I;] + 1) columns which either contain

2 [B] +I s or contain a - .

proot Let CS be a complex clause, and S an FS1. Then CS = C, for some
a compatible with S. Here's an example:

Note that - 's (resp. + 's) in C, can appear only where 1's (resp. 0's) appear
in a. For pictorial convenience we showed a with 1's on the diagonal and 0's
elsewhere but of course the rows and columns may be scrambled.

To resume the proof of Lemma 8, assume CS has < la] columns with either

I;] + I s or a -.

Goal: Find a truth assignment T such that T is compatible with S and C,
precedes C, = CS in P. This will CONTRADICT the definition of CS . T is
obtained by swapping a column i of o with column n + 1 of o where n + 1
is the 0-column of o .

Choose the column i such that T will satisfy the following:
(1) T is compatible with S.
(2) r(CS) = F .
(3) CS has < I;] +' s in the column i (and hence in the

0-column of T .

To do this, pick i such that:
(a) i is not a column containing a variable of S.
(b) i is not a column with a 1 in a row where the column of CS

corresponding to the 0-column of o has a +.
(c) i is not a column in which CS has a minus sign.
(d) i does not have > 1 a] +' s .

By counting, we find that there must be at least one such column i . Condition
(a) excludes exactly I f] possibilities for i (look at the size of S) . Condition (b)

excludes exactly [:I possibilities for i since the column of CS corresponding

to the 0-column of o has in it exactly 151 +'s by the definition of CS = C,.

By the assumption of our lemma, (c) and (d) exclude at most values for
i . Since we have n + 1 columns there must be at least one choice of column
for i.

Now our goal is achieved by Lemma 7. (Recall our requirements (2) and (3)
for T .) This finishes the proof of Lemma 8.

We now resume the proof of Haken's theorem.

Put g(n) = maxc{l{S E FS1 : CS = C)I) and h(n) = IFS11.
Then h(n)lg(n) is a lower bound to the length of a resolution proof, since
it is clearly a lower bound on the number of distinct complex clauses in the
resolution proof. Let k = 121 . To compute h(n) and g(n) suppose we have
a particular complex clause C. By Lemma 8 we can choose k + 1 columns
which contain a - or at least 151 + 's. To count the total number of
S E FS1 we let the variable i denote the number of variables in S in the
chosen k + 1 columns. Then we have:

Similarly, to get the upper bound g(n) on the number of S E FS1 such
that CS = C we let i be the number of variables of S in one of the
k + 1 columns. In each of these k + 1 columns there are at most 151 variables
which can be in such an S; this is because a + in C excludes the correspond-
ing variable from S and a - in C implies that if S has a variable from that
column it must be the variable corresponding to the - . Thus,

k + l m - k - 1 (n - i)!
g (n) 'x (i=o i) (k - i) 1 (n-k)!

. . .

) [;l i (n - i)!
n !

2
k + l m - k - 1 (i)(k - i

since for i 5 [a] ,
[;I (n - i)! i
-

n !

The ratio of the (i - 1) -th term over the i -th term in the summation in the
denominator is

i(m - 2k + i - 1)
$(k - i + l)(k - i + 2)

It is easily verified that this is less than 1 for i 5 &, . $, and hence the terms

in the denominator are increasing while i 5 8 $. Thus we can give a weaker
lower bound (with smaller numerator and larger denominator):

Hence the number of distinct (complex) clauses in P is at least exponential
in n.0

Math 271 - Topics in Weak Formal Systems

Lecture Notes, Set #4
1988 February 12-24

Instructor: Sam Buss
Notes By: Martin Goldstern

This exponential lower bound (from the previous notes) for resolution is
bad for automated theorem provers, since most theorem proving systems use
resolution.

Could it be that this exponential length occurs only in a "few" patholog-
ical cases? No. Not "only" the pigeonhole principle needs these "long"
proofs: Chvbtal and Szemerkdi ("Many hard examples for resolution") ex-
tended Haken's work to show that in some sense "almost all" sets of clauses
formulas (are unsatisfiable and) have a shortest proof of exponential length.

We can still hope that in applications these "worst cases" don't happen.
But even if we could somehow guarantee the existence of a polynomial-sized
refutation, it might be hard (i.e. require exponential time) to find it.

There are several strategies that try to avoid this:

Strategy # 1: Use a restrictive form of resolution. This sounds paradoxical,
since it may make proofs longer, but the proofs may be easier to find.

Example: A linear resolution of a set A of clauses is a sequence of clauses
C1, . . . , C,, where C1 E A, and C;+l is obtained by resolution from C; and
a clause in A U {C1,. . . , C;-l). Why is this easier? When we want to do
a resolution, we already know that we have to use C,, so we have (roughly)
only O(llAll) options, instead of O(llA112) options. It can be shown that

linear resolution is complete, i.e. if A is an unsatisfiable set of clauses, then
there is a linear refutation of A.

Strategy # 2: Restrict what sets of clauses A are allowed. The most common
restriction is the restriction to Horn clauses.

Definition: A Horn clause is a clause with at most one unnegated proposi-
tional variable.
The Horn clause {po, pl, . . . , p,) corresponds to the formula pl A. . . Ap, + po,
which is commonly written as

Not every proposition is expressible as a set of Horn clauses, e.g. A + B V C.

In "expert systems", one usually has a "database" A consisting of Horn
clauses. One such clause might be '

To use this database, we input a set r of "observations", for example : r =
{ {PFEVER) , {PRASH) , {PTEA)), and the "query" 7: Does he have measles?, i.e.
7 = { ~ E A S L E ~) . The answer will be "yes", iff A U r U is unsatisfiable.
We use linear resolution to find an answer. The fact that r U A is satisfiable
can help the search. In particular, C1 = in linear resolution.

It is not hard to show that sequent calculus (with cuts) simulates resolution.
The proof will be left as an exercise. Notice that modus ponens is a form of
resolution, and vice versa.

Definition: Let S and T be proof systems. Then we say that S p-simulates
T ("polyn~rniall~ simulates T") , if there is a polynomial-time algorithm
which, given a T-proof of a formula A, produces an S-proof of A.

Note that the length of this S-proof is polynomially bounded by the length
of the T-proof, since an algorithm that terminates after a "short" time can

l A few weeks ago a person with measles was at the math department's tea hour. The
next day there was a note on the bulletin board, saying that anybody who had been to
the tea, and developed a rash and fever during the next week probably got infected.

only produce "short" output. Hence every p-simulation is a simulation. Is
every simulation a p-simulation? If not, then P # NP.

Frege Proof Systems

A Frege (F) proof system consists of

1. A language L, a finite complete set of propositional connectives.

2. A finite set of axiom schemata

3. A proof will be a sequence of propositions A1,. . . , A,, where each A; is
either a substitution instance of an axiom, or inferred by MP (modus
ponens) from some Aj and Ak, where j, k < i.

4. The proof system must be complete (and, of course, consistent).

What does MP mean? If -+ is in the language, then MP is the rule

A , A - + B

If -+ is not in the language, let cp(p, q) be a (fixed) formula equivalent to
p -+ q, and use the rule MP,:

The size of a Frege proof is the sum of the sizes of the formulas, where the
size of a formula is the number of symbols in it.

Remark: The sizes of formulas in a Frege proof has no polynomial bound
in terms of the size of the formula to be proved. Hence counting only the
number of lines in a proof would not give the same notion of "long" proofs.

It does not really matter what particular Frege system we choose:

Theorem: If Fl and F2 are Frege systems with the same language, then Fl
simulates F2.

Proof: Since Fl is complete, it has for each axiom B of F2 a proof of B . Any
instance B(pl/A1, . . . , pn/An) has an Fl-proof of size O(lAl 1 + . . + IAnl).

Any F2-proof can be converted into an Fl-proof by adding, for each F2-axiom
instance B, an Fl-proof of it. This makes a linear increase in the size of the
proof.

Here is an example of a Frege system:

The logical connectives used are (1, V, A, +} . "+" is associated
from right to left, i.e. c p + + + x is an abbreviation for c p +
(+ + X) (which is equivalent to c p A + + x).
The axiom schemata are

A substitution Frege (SF) proof system consists of

1. A language L, a finite complete set of propositional connectives.

2. A finite set of axiom schemata.

3. Two rules:

Modus Ponens

The substitution rule:
A

(where A(p/B) means: replace every occurrence of the variable p
by the formula B).

4. The notion of "proof" is defined as usual.

5. The proof system must be complete (and, of course, consistent).

An extended Frege (e3) system consists of

1. A language L, a finite complete set of propositional connectives.

2. A finite set of axiom schemata

3. Two rules of inference:

Modus Ponens

Extension rule

4. An e 3 proof is a sequence Al, . . . , A,, where each A; is either an axiom,
or inferred from some previous Aj's by MP, or is of the form

(read: "p abbreviates B"), where B is as formula and p is a variable not
appearing in Al, . . . , A,-1, A,, B. (If t, is not in the language, choose a
formula cp, (p, q) equivalent to p t, q, and let p t,B stand for cp,(~, B).)
Notation: Whenever we talk about extension Frege systems, a t, binds
stronger then any other propositional connective.

5. The proof system must be complete (and, of course, consistent).

(This is aimed a t the way people do mathematics, e.g. we introduce the term
"real numbers" by definition, and then don't refer to "cuts of rationals" every
time.)

Theorem: Any two e F systems with the same language simulate each other.

Theorem: Any two SF systems with the same language simulate each other.

The proofs are exactly as for F sys tems.

Remark: In the above three theorems, the restriction that the systems have
the same language is unnecessary; but the proofs are harder.

Theorem: Given a SF and an e F system in the same language, then the
SF system simulates the e F system.

Before we start the proof, we need this

Lemma: There exists a polynomial p such that:

For all formulas A, for any e F proof P of A using only
the extension rules pl -A1, . . . , pk + + A k , there exists a
Frege proof Q of

where IQI I p(lPI).
k

(Remember that the t+ in A p; ct A; binds stronger
i=l

9
than the A. By definition, in this proof A associates

r=p
9 9

from right to left, i.e. A 4; = 4, r\ (A 4;))
r=p i=p+ 1

Proof of the lemma: Let P = B1,. . . , B,, where B, = A. We
define Q1, . . . , Q, (sequences of formulas), which together will
give Q.

Case 1: Bj is an axiom. Let
k

Q = B j + a derivation of Bj t (A p; HA;) t Bj
i=l

k

+ (A pi *Ai) + Bj (inferred by MP).
i= l

k
The formula B j t (A pi *Ai) t Bj is an instance of the

i=l
tautology cp t t,h t cp, which can be proved with a constant
number of inferences (it is an axiom in the system given
above). Hence lQjl = O(lP1).

Case 2: B; is inferred by MP from B, and Bt = B, t Bj. In
this case, let Q j be a derivation of

This is an instance of the tautology

k
Use MP twice to get (A p; *Ai) t Bj. Again we have

i= 1

Case 3: B j is inferred by extension, Bj = pm *Am. Q j will
be the concatenation of

1. a derivation of

(Note: This is an instance of cp A $ t cp, and this is
derivable with a constant number of inferences.)

2. a derivation of

(This is an instance of (cp t $) + (X A cp t $).)
3. By MP,

4. repeat 2. and 3. until you get

In this case, lQjl = O(IPI2).

The lemma is now proved by concatenating Q1,. . . , Q, to give Q,
where IQI = O(JPI3).

Now we can start the proof of the theorem:
Let P be an e F proof of A using only extension rules pl * A1, . . . , pk H Ak.
The SF proof begins with Q. W.1.o.g. the p; *A;'s are numbered in reverse
order of how they appear in the proof, so p; does not appear in Aj, for j 2 i.
By the above lemma, there is a F proof Q which ends with

which is the same as

Append a substitution inference to the end of Q to get

Now append a derivation of

(this is an instance of ((cp * cp) A 1C) + X) + (1C) + x)). Use MP to get

Do this k times, until you get A. Hence we have a proof of size O(I PI 3).

Remark: It is an open problem, whether F systems simulate e F (or equiv-
alently, SF systems). Of course we can transform every e F proof into an
F proof, by replacing p; everywhere with A;, but that can make the proof
exponentially large, for example if each p; contains 2 occurrences of P, -~.

Theorem: Given a SF and an e F system in the same language, then the
e F system simulates the SF system.

Remarks: This was an open problem for some time. The first solution ap-
peared in Dowd, "Model-theoretic aspects of P # NP" , not yet published.
The proof we will give is from KrajiEek-Pudlak, "Propositional proof systems,
the consistency of first order theories and the complexity of computations",
1987, preprint. There is a more general, "high-level" proof than the one
presented below.

Proof: Let P be an SF proof, P = Al, . . . , Ak, using variables pl, . . . ,p,. Let
p'= (p l , . . . ,pn). Let q;j (for i = 1,. . . , k, j = 1, . . . ,n) be distinct variables.
Let = (qil,. . . and assume all the q;j are new, except that q'k = p'.
Write A; = Ai(p'), and let B; = A;(p'/G) = A;(g). We will construct a e F
proof that proves the B;'s. This suffices since Bk = Ak.

+
Define vectors pi = (Pil, . . . , Pin) as follows:

Case 1: If A; is an axiom or inferred by MP, then pi = q7.

Case 2: A; is inferred by substitution from A,, say A; = A,(p,/a). Then
p.. - r3 - qij for j # S, and Pis = (~(g/z).

The e F proof is as follows:
First we introduce the qij7s by the extension rule:

qij * (Ci A lBi+1 A P;+l,j) V (Ci+l A lBi+2 A Pi+2, j) v . . .
V V (Ck-1 A l B k pkj),

where C, is an abbreviation for B1 A . . A B;. It is easy to see that there is
a polynomial-size proof of

whenever r > i.
Secondly: The e F proof derives Bl, C1,. . . , Bk, Ck. (Since Ak = Bk, this
suffices.) Suppose B1, C1, . . . , C,-l, B, are already derived, r > 0. From B,
and C,-l it is trivial to derive C,. Now derive B,+l from C, according to the
following cases:

Case (i) If A,+l is an axiom, then so is B,+l.

Case (ii) (This is the hardest case) If A,+1 is inferred from A, and A, by
MP, where A, = A, + A,+1, then: From (*) and C,, get (using a
constant number of lines)

and

lBr+l + (qvj * Pr+l,j).

From this we get

and
-.Br+l + (B v * ~v(@/Br+l))

(by induction on the length of A,, A,). These imply

By tautological implication (again using a constant number of lines),
essentially MP (remember that A, = Au t we get

-r+1 + ~ r + l ($/Br+l),

and since Ar+l (13/Br+l) is B,+I, this is

lB r+ l + Br+1,

from which we can get Br+l with a constant number of lines.

Case (iii) = Au(p8/a). By (*),

But clearly

Again, from this we get 1Br+1 + Br+l and consequently, Br+l.

This finishes the construction of the p-simulation of SF systems by e F sys-
tems.

In the following picture, x + y means "x simulates (in fact, p-simulates) y".

extended t----$ substitution
Frege Sys tems Frege Systems

1
Frege S ys tems t----$ sequent calculus

1 with cuts
resolution with

limited extension

J \
cut-free resolution

sequent calculus

It is known that resolution with limited extension does not simulate Frege
systems. The following questions are open: Does resolution simulate cut-free
sequent calculus? Or vice versa? Are Frege systems super?

Theorem: (Cook-Reckhow, JSL 1979) : The formulas P HP, have polyno-
mial-sized e F proofs.

Theorem: (Buss, JSL 1988) PHP, also have polynomial-sized F proofs.

(The proofs of these theorems are not included in the scribe notes. See the
references for proofs.)

This takes PHPn off the list of potential candidates for "separating" F and
e F , leaving no "nice" sequence of formulas on it. However, there is a set of
formulas cp, (related to "self-consistency" assertions), such that:

If F and e F can be separated, then the cp, separate them.

Math 271 - Topics in Weak Formal Systems

Lecture Notes, Set #5
1988 March 3-11

Circuits and Circuit Complexity

Instructor: Sam Buss
Notes By: Chrystopher Nehaniv

A circuit is a finite labelled directed acyclic graph. By "labelled" we
mean that each vertex has a label. In particular, we allow disconnected
circuits.

We define the indegree of a vertex to be the number of edges whose
target is that vertex. Similarly, the outdegree of a vertex is defined
to be the number of edges whose source is that vertex. For example, in
the portion of a graph shown below, the vertex has indegree three and
outdegree two.

There are three kinds of vertices:

input vertices: These have indegree zero and are labelled with a
Boolean input variable x (or a conjugate T) or with one of the constants
from {T,F). Note that isolated vertices will thus be "unused inputs".

internal vertices: These have indegree and outdegree both strictly
greater than zero, and are labelled with elements of (1, V, A) and pos-
sibly with other names. Internal vertices are also called gates.

output vertices: These have outdegree zero and indegree equal to
one. As a matter of convention, an output vertex will be labelled with
an output name in the case that there is more than one output vertex.

For example, in the circuit show below, the vertex labelled "V" has
indegree three and outdegree two.

We think of things flowing in the direction of the arrows of a graph.
That is, Boolean values travel in the direction of the arrows. At a
gate, the function designated on the label of that gate is applied to the
arriving Boolean values, and the result is the value that then travels
away from the gate in the direction of the outgoing arrows.

Further, we define the fanin of a gate to be its indegree. The fanout
of a gate is defined to be its outdegree. In our circuits, we shall allow
that a vertex labelled with "A" or "V" have arbitrary fanin and fanout;
but we require that a vertex labelled "1" have indegree equal to one,
although it may have arbitrary fanout. The fanin of a circuit is the
maximum of the fanin of its gates. The fanout of a circuit is defined
similarly to be the maximum fanout of its gates.

A circuit with k inputs and n outputs computes a Boolean function

f : {T, F) ~ + {T, F)"

and, conversely, every Boolean function can be realized as a circuit
(because it can be realized as a formula).

The size of a circuit C is ICI = the number of edges in C. (Since
we shall be interested only in polynomial size circuits, an alternative
definition for size of a circuit would be the number of vertices. Note
that the (# ~ e r t i c e s) ~ 2 #edges).

Let S be a predicate, S C (0, I)*, the set of finite words from the
alphabet {0,1). C is a family of circuits recognizing S iff C =
{Co, C1, C2, C3,. . .), where each C; has inputs among XI, z1,. . . ,xi, T;

and C; is a circuit which determines whether words of length i are in
S. That is, for w = w1 w; E (0, I)', C; with inputs

outputs T iff w E S.

Definition: S has polynomial size circuits iff 3 C a family of
circuits for S and there exists a polynomial p s. t. Vi 1 C;I 5 p(i).
Example: Parity is the set S of strings from the alphabet { O , 1) with
an odd number of ones:

S = {w E C* : w has an odd number of 1's)

Polynomial Size Circuits for Parity

For these circuits: for i > 0, we have IC;+l I = IC;I + 7. Hence, we see
this set of circuits to be bounded in size by p(i) = 7i + 1.

A formula is basically a circuit with fanout 1. More precisely, 3 poly-
nomial p s.t for every formula A, there exists an equivalent circuit C A
with fanout 1 and with lCAl 5 p(lA1). Conversely, for every circuit C
with fanout 1 and with one output there exists an equivalent formula
Ac with Ac 5 p(1 C I) . 0 bviously p can be taken to be a linear function.

There is a natural correspondence between formulas and circuits with
fanout 1 with one output. The obvious translation works. (NB: A
circuit with fanout 1 could have arbitrary fanout at an input node,
because fanout of a circuit is defined over gates).

The depth of a circuit is the maximal length over all paths through
the circuit from an input to an output.

If we try duplicating subcircuits to make the above circuits for Parity
have fanout 1, then we get into exponential size formulas. This is
because we must have two copies of C; to construct C;+l.

However, there do exist polynomial circuits for parity with fanout 1.
The following is a circuit for input of length 8. Use this type of circuit
for input of any length n padding with F inputs to get 2r1°g nl inputs.

Where each box
of the form

is

replaced by

(This has fanout 2, but it can be converted to a circuit of fanout 1 with
only a polynomial increase in size. The crucial point is that the circuit
has logdepth and bounded fanin - every gate has fanin 1 or 2.)

One might expect that having polynomial circuits corresponds to ease

of computation; but consider that following:

Example: Polynomial Circuits for a Non-Recursive Set

Pick your favorite non-recursive set AC N. Let S = {w : Iwl E A).
Clearly S is non-recursive because A is. S has circuits of size 1. Namely,
let C; be

Thus we see that circuit complexity is a non-uniform notion of com-
plexity, because we have separate circuits for each possible length of
input.

2. Turing Machines and Circuits

To code circuits for input to a Turing Machine or another circuit, we
shall code the circuit as a string of zeroes and ones, using two lists:
{(vertex#j, label on that vertex)) and {(f rom-vertex, touertex)).
This is done in a finite alphabet { O , l , A, V,T, x,",",(,)); and we can
represent each letter of this alphabet as a string of four zeroes and
ones.

The size of the coding of a circuit and the size of the circuit are poly-
nomially related.

As before, P denotes polynomial time computable predicates and FP
denotes polynomial time computable functions.

We defined our Turing Machines to be multitape TM's. Actually for
polynomial time, we get the same results by using single-tape TM's.
Indeed, if f (x) is a function computable in time t(x) on a multitape

Turing Machine, then f (x) is computable in time O(t(x) 2, on a single-
tape TM.

A logspace TM has a read-only input tape and multiple (or a single)
work tapes, and there 3c constant, s.t. on input of length n, at most
c log n + c work tape cells are used.

A predicate is in Logspace iff it is recognized by a logspace TM. Sim-
ilarly, a function is in Logspace iff it is computed by a logspace TM.

Theorem 1 Logspace is a subclass of P (or FP, respectively).

pfi There are only co(l0g n, instantaneous descriptions of a logspace
machine on a given fixed input x of length n. In this context, an
instantaneous description includes the TM's work tape contents, state,
and input head position at some time i - but does not include input or
output tape contents. So the TM either halts in polynomial time no(c)
or goes into a loop (and never halts) .O (Theorem 1)

Definition: If A, B C* then a many-one reduction of A t o B is
a mapping f : C* + C* s.t Vx E A ($ f(x) E B. So computing f(x)
allows the question x E A? to be reduced to the question f (x) E B?

This type of reduction is more restrictive than a Turing reduction,
which allows us to use B as an oracle asked many times.

Definition: A decision problem A is P-complete with respect t o
logspace many-one reductions iff A E P and V B E P, 3 a many-one
reduction of A to B computable in Logspace.

So if you know how to solve A, then with logspace reductions, you can
solve every B in P.

Important: The many-one reduction here is from a lower level of com-
plexity (namely, Logspace). m: Any A # 0, A # C *, A E P is
P-complete with respect to many-one polynomial time reductions.

Definition: T h e Circuit Value Problem (CVP) is the question,
Given a fanin 2 circuit with no input variables (just fixed T,F1s as
inputs) is its output T? (Strictly speaking CVP is the set of codes of
such circuits with output T).

Theorem 2 CVP is P-complete with respect to logspace reductions.

Proof: CVPEP. This is easy. Think of the natural algorithm to eval-
uate the output of a circuit. Just cycle through assigning values to
gates.

Given B E P, we want a logspace many-one reduction fB of B to CVP.
So given a the Turing Machine M accepting B in time p(n) for p some
polynomial and n = 1x1, we want fB s.t.

f ~ (x) E CVP M accepts x

Given an input x to M, f B creates a circuit. The circuit will emulate
the computation of M on input x. Without loss of generality, M is a
single tape Turing Machine. A tape cell of M will be represented by
a pair (q, r), where 7 is the symbol in the cell and q is either a state
if the tapehead is at that cell or is some other symbol #, to indicate
that the tapehead is not at that cell.

There is a constant upper bound on how many (q, 7)'s are possible. So
(q, 7)'s can be represented by k binary signals. Represent the configu-
ration of M at time i by k . p(n) signals:

p(n) arcs each carrying k signals coding a single (q, 7)

The circuit will be constructed to put the right values on these signals.

time (outgoing arcs carry signals coding configuration a t time i+i)

(incoming arcs carry signals coding configuration a t time i)

5- 7

Each of the ~ (n) ~ circuits labelled D takes 3k inputs coding the prior
state of the tape cell and the prior states of its two neighboring tape
cells. D is a fixed circuit depending on M, such a D exists because
circuits are complete.

The whole circuit fB(x) is as follows:

(These outputs are ignored

initial configuration of M on input x 1,x2, . . . , x,

Some state q, is a halting accepting state. W.1.o.g. M always halts
at its starting position and never moves left of its starting position.

By our constraints, this circuit has output T iff M(x) accepts.

Furthermore, the circuit f B(X) can be computed in Logspace: D is just
a fixed circuit. Run through all times i = 0,. . . ,p(n) - 1 and take

positions j = 0,. . . , p(n) - 1, outputing the corresponding piece of the
above circuit. Basically, we need to save i and j in the workspace,
resulting in a use of O(log(p(n))) work cells, i.e. O(1og n) work cells.
O(Theorem 2)

Corollary 1 Any predicate B in P has polynomial size circuits.

Proof: (Immediate from the previous proof) f B(X) produces a circuit
for determining if x is in B. Recall f E FP. The circuit fB(x) depended
only on the length of x, although its inputs depended on x. This fB(x)
gives a set of polysize circuits for B. O(Corollary 1)

Corollary 2 CVP E Logspace iff P=Logspace. [This is the whole
point of "P-completeness". CVP is a hardest problem in PI.

Lemma: If f and g are logspace computable functions then so is

9 o f .

Proof: The problem here is that we can't just compute f (x) and
then g(f (x)) because there's not enough room to write out f (x) on
a logspace work tape. The solution to this dilemma is to repeatedly
re-compute f (x) as we need it. Details: f and g are computable by
M and M, which are logspace machines. These have kf and kg work
tapes respectively. Define Mgof to be a machine having kf + kg + 2
work tapes.

kf of these tapes will be used in simulating M f . One tape will hold
a counter giving location of M f's output head. kg tapes are used to
simulate the actions of M ,'s work tape contents. The last tape holds
the location of Mgls input tape head.

Mgof acts as follows on input x: Repeatedly simulate a single step of
M, on input f (x) by doing the following: Run Mf on input x, but
instead of writing f (x) on the output we just keep track of the output
tapehead location. Run Mf on input x until it halts. Note the final
symbol which would have been written to the location that M,'s input
tapehead is at. That gives the symbol M, should be reading on its
input tape. So we can now simulate a single step of M,. When M,
would write on its output tape, Mgof does write on the output tape.

Claim: Mgof is a logspace TM.

kf tapes use only logspace (since M does). M, and M only run for
polynomial time so 110 tapeheads only move polynomially many cells.
So logspace suffices to specify their location. Finally I f (x)] is less than
or equal to p(lxl), p a polynomial. M,(f(x)) uses O(1og ~(1x1) space,
which is O(log(lx 1)) space. q (Lemma)

Proof of Corollary 2

-+=: Trivial

*: Given A E P, 3logspace many-one reduction f from A to CVP.
Thus XA is XCyp o f and is in Logspace. (Notation: Xz is the charac-
teristic function of 2.) O(Corollary 2)

3. Extended Frege Systems as Logics on Circuits

Recall that Extended Frege Systems allowed us to introduce abbrevia-
tions. In effect, this allows "circuits" to be handled. In fact, e 3 could
have been defined as a logic on circuits just as Frege Systems are a
logic on formulas. To see this: What can be expressed in a formula
in an e3-proof (as a function of the Boolean variables in the formula
being proved)? Polysize e3-prooh can express what can be defined
by polysize circuits. Any formula in the e3-proof can be expressed
directly as a circuit. The symbols introduced by abbreviation (i.e. by
the extension rule) correspond to gates with fanout > 1 being allowed.

Conversely, a circuit value can be defined by a polynomial size formula
using symbols defined with extension: just introduce a new variable for
each internal node of the circuit.

e 3 is essentially a logic on circuits. Since CVP is P-complete, we
might expect a relationship between e3-proof systems and polynomial
size computations. There is indeed such a relationship [due to Cook].

4. Alternating Turing Machines

An alternating Turning machine M is defined to be a multitape
machine with

- k tapes, of which kl are readable and k2 writable.

- finite alphabet I?

- finite set of states Q

- transition "function" S : Ckl x Q Q Ck2 x Q x {+1,0, -l)k (where
S is partial and possibly multivalued, i.e. a relation)

- states are designated as (exactly one of) universal, existential, deter-
ministic, accepting and rejecting.

- S is single-valued on deterministic states.

Without loss of generality, we assume S is two-valued in every configu-
ration involving a universal or existential state. When S has no value,
the machine halts; we shall require that this happens exactly when the
machine is in an accepting or a rejecting state.

A nondeterministic TM is an alternating TM with no universal
states. A co-nondeterministic TM is one with no existential states.

Then execution t ree of M is a (possibly infinite) tree of degree 5 2 at
all nodes. Each node node is labelled with an instantaneous descrip-
tion(ID), i.e. M's tapes' contents, tape head positions, and internal
state. The root of the tree is labelled with the initial configuration of
M on input x. If a node is labelled with configuration a, then there is
exactly one child for each of successor configuration of and there are
no other children.

Inductive Definition: The configuration of M leads to accep-
tance(resp. rejection) iff:

(a) if is a halting configuration, then leads to acceptance (resp.
rejection) if is an accepting (resp. rejecting) state.

(b) if is deterministic and Q follows in one step, then leads to
acceptance (resp. rejection) if Q does.

(c) if is an existential state, then leads to acceptance (resp. re-
jection) iff at least one (resp. all) of its successors does.

(d) if is a universal state, then leads to acceptance (resp. rejec-
tion) iff all (resp. at least one) of its successors does.

Math 271 - Topics in Weak Formal Systems

Lecture Notes, Set #6
March 14-18, 1988

Run Times

Instructor: Sam Buss
Notes By: Eric Hughes

Reference: Chandra-Kozen-Stockmeyer "Alternation" JACM 1981.

Definition: Run Time of an Alternating Turing Machine (the stan-
dard one) An alternating Turing Machine accepts in time t on input x iff
when the execution tree is truncated at depth t + 1, the truncated tree also
accepts x (according to the above definition of acceptance).

Note: A leaf of a truncated tree need not be either accepting or rejecting.
This may occur in an accepting truncated execution tree if the leaf is a
descendant of an existential node.

Definition: M accepts input x if the initial configuration of M with input
x leads to acceptance.

Definition: An alternating Turing machine (ATM) runs in time t(n) iff
for all x which M accepts, M accepts z within time t(lx1).

Definition: An ATM M accepts x in space s iff the following subtree of
the execution tree of M also accepts x. For each node of the tree whose ID
has space > s, define that node to be not accepting and discard all of its
children and their respective subtrees.

Definition: An ATM M runs in space s(n) iff for all x which M accepts,
M accepts x in space s(lxl).

Definition: t(n) is time constructible iff there exists a deterministic T M
which on an input of length n runs for exactly t(n) steps.

Definition: s(n) is space constructible iff there exists a deterministic T M
which on an input of length n visits exactly s(n) work tape cells.

Generally we have t(n) 2 n and s(n) 2 logn. For t(n) time constructible
and s(n) space constructible, the above definitions of time bounds and space
bounds can be equivalently stated as follows.

Definition: (alternate) An ATM M runs in time t(n) iff we can add a clock
to M and require that for every n and for every branch of the execution
tree, M halts before time t(n) on the internal clock.

Definition: (alternate) An ATM M runs in space s(n) iff we can add end-
markers to each tape of M at distance s(n) from each starting position and
require that for every n and on every branch of the execution tree, the tape
heads of M do not pass over the given markers.

Fact: Polynomials are both space and time constructible.

Let us recall the definition of NP.

Definition: N P Let Q be a decision problem, i.e. Q C*. Then Q E N P
iff (3R E P) (3 polynomial P(-))VX [x E Q * (3w, Iwl 2 p(lzl))R(x, w)].

Definition: N P (alternate) Let Q be a decision problem. Then Q E N P
iff there is a polynomial time non-deterministic (i.e. no universal states)
T M which recognizes Q.

Definition: Polynomial Time Hierarchy (original) Let Q be a decision
problem. Then Q E C: iff (3 polynomials pl, . . . , pk)(3R E P)Vx [x E Q *
(3 ~ 1 , l ~ l l I pl(Ix1)) (V Y ~ , 1921 L ~ 2 (1 2 1)) --• (Q Y ~ , l ~ k l I ~k(lxI))R(x,C)l.
Since the pairing function is in P, we could also allow blocks of similar

quantifiers in place of single quantifiers.

Definition: Let Q be as above. Q E II: iff C* \ Q E c:.

Open Question: II:.

Proposition: If (3ko 2 1) Cr0 = IIE, then (Vs > ko) CF0 = Cy = II:.
Proof: Left to reader.

References: Stockmeyer, TCS vol3 (1977). Wrathall, TCS 3.

Definition: Ck- and IIk-Alternating Turing Machine M is a Ck ATM
if on all inputs x, on each branch of M, M makes some existential moves
(where some can be zero), some universal moves, and so on, with at most
k - 1 alternations bet ween existential and universal moves. II I, ATM's are
defined similarly.

Definition: Polynomial Time Hierarchy (alternate 1) Let Q be as
above. Then Q E Cf iff Q is accepted by a polynomial time Ck ATM.
Also, Q E IIF iff Q is accepted by a polynomial time I tk ATM.

Theorem: The original and first alternate definitions of C r and II; are
equivalent.

Proof:
A. cp it-1-C:

Let Q be defined by (3~1, lyil 5 P i (l ~ l)) . . . (Qyk,(ykl 5 pk(lxl))R(~,y').
Then Q is accepted by a Ck ATM which first existentially guesses yl , the
universally chooses y2, . . . guesses/chooses yk, and finally checks whether
R(x, c) holds and either accepts or rejects accordingly. The total runtime
is c:., p;(Ix 1) plus the runtime of R.

Suppose M runs in time p(n) and is a Ck machine. Then M accepts x

iff (3 ~ 1 , IwiI 5 P (~ x ~)) (V W ~ , 1 ~ 2 1 ~(1x1)) -.. (Qwk, lwkl 5 P (~ x ~)) A (x , ~) ,
where A(x,G) says that when each w encodes quantified (i.e. 3 or V)

choices, wl encodes the first block of 3 moves of M(x), w2 encodes the
second block of V moves, . . . , wk encodes the last block of 3 or V moves,
then M accepts x on that branch of the execution tree of M(x). Here each
w; is a string of L's and R's which identify a branch of the execution tree.
Finally, A is computed in polynomial time by simulating M(x) according
to the w;'s.

Definition: Oracle Turing Machine An Oracle Turing Machine is a
set of strings from C*, called the oracle, and a deterministic TM with the
following features added to it. It has three special states: query, query
accepting, and query rejecting, called q,q,, and q, respectively. It has a
query tape for writing out input to the oracle. We make requirements on
the transition function. If the OTM is in the state q at time t, then at time
t + 1 it is in either the state q, or in the state q,, corresponding to whether
or not the string on the oracle tape is in the oracle. If, at time t, the OTM
is in the state q, then none of the tape heads change position from time t
to time t + 1.

Definition: Let X be a class of oracles. Then PX is the class of predicates
which are recognized by a polynomial time TM using some oracle from
X.

Notation: If !2 is an oracle, then Pn = ptn).

Example: pNP = PSAT, where SAT = {q5 : q5 is a satisfiable propositional
formula), because SAT is NP-complete.

Definition: Polynomial Hierarchy (2nd alternate)

A? d" p

cp d"' N P

A t l kf pxf , p n r

+ ef {predicates Q : (3 polynomial p)(3R E A f'+,)
(vx>[x E Q tt (3w, Iwl I p(lxl))R(x, 41

IIKl d" - co-c&, = {Q : c* \ Q E c*Ptl}

We now have three definitions of the polynomial hierarchy. The first def-
inition was in terms of polynomial time, C k-ATM's. The "first alternate"
definition characterized CF as the class of predicates definable with k poly-
nomially bounded quantifiers in front of a polynomial time predicate. The
"second alternate" definition intersperses polynomial computations with al-
ternating quantifiers. We have already proved that the first two definitions
are equivalent and we prove below that the second alternative definition is
also equivalent.

Example: Given a propositional formula 4(pl,. . . , pk), order the satisfy-
ing truth assignments lexicographically. Question: In the least satisfying
assignment a for this 4, what is ~ (p k) ?

Claim: The set of 4 such that a(pk) = T in the least satisfying assignment
is a predicate in PSAT. Indeed, the least satisfying assignment a can be
found by a polynomial time OTM with the oracle SAT.

Proof: To find this assignment, do a binary search on the truth table. First
evaluate the predicate (3a) [a(pl) = F A a(4) = TI. If so, set up, = F,
otherwise set it to T. Next evaluate (3a)[a(p2) = F A a(+(pl Ivpl)) = TI.
Set v, accordingly, and so on for the rest of the variables.

This technique works for many problems.

Example: Travelling Salesman Problem Given a graph with edges
labelled with distances and a given total distance. Question: Does there
exist a way to traverse the graph with total distance travelled less than
the given distance? This problem is NP-complete. Finding a journey with
minimum possible distance is a problem in F P SAT.

It is important to have an efficient Godel numbering for sequences. For
the purposes of this discussion, let the alphabet C = {0,1). Supose each
w; E C* and zo' = w1, ..., WL. We shall define the Godel number of zo',
denoted (wl,. . . , wk), and this value will be E C*.

Construction: First write out the string "wl, w2,. . . , wk,", which is in the
set {0, l , comma)'. Note the extra comma at the end of the string. Then

apply the following map:

0 H 10

1 H 11

comma H 01

This yields (wl , . . . , wk) E C*. Note that nothing maps to 00; this precludes
problems with leading zeroes.

Example: (> = the empty word = 0.
(0)

- bb 7, - - , - 01.
0 111, 1 0 1 = 1001110111110111101101.

Note: I$\ = 2Cf=,(l + 1w;l). Thus Iw'l 5 2(number of elements in G)(l +
max{lw:I))-

Notation: $ = wl,. . . , wk
length($) = k
P(i,G) = wj
(G) * Wk+l = (~ 1 , . , Wk, ~ k + l)

Definition: (Polynomially bounded quantifiers) Here p is a polynomial.

Definition: (Logarithmically bounded quantifiers) Again, p is a polyno-
mial.

(3i I p(lxl)),(Vi L p(lxl))

Lemma: Quantifier Exchange Property Let A(v, w, x) be a predicate.
Let p, q be polynomials. Then the formula

is equivalent to the following formula. Note that j* is the Godel number of
a sequence.

Pj*, lj*l 5 2(q(lxl) + l) (p(l~I) + 1))

(Vi 5 p(lxl))(A(i,B(i + l , j *) ,x) A IBG + l , j*)I 5 ~(1x1))

Proof: + Easy.

There are only polynomially many values of i for which a corresponding
j exists. We concatenate these values into a sequence j*. The size bound on
the Godel-number of sequences gives the polynomial bound on the length
of j*.

Corollary: Each of c:, It:, and A: are closed under logarithmically
bounded quantification.

Proof: To show that Ck and Itk are closed under logarithmically bounded
quantification, we use induction on k and at each step use the quantifier
exchange property to push the outer, logarithmically bounded quantifier
one level inward and use the fact that Itk-l and Ck-1, respectively, are
closed under this operation. For the base case, we note that if A(v, w, x) is
polynomial time (optionally, relative to an oracle O), then so is the following
predicate which appears in the statement of the above lemma, namely

This is because there are only polynomially many values of i 5 p(x).

Theorem: The original definitions and the second alternate definitions of
C: and It: are equivalent.

Proof: Let 2nd-alt-C: be the class given in the second alternate definition.
By induction on k, it is clear that since It:-'_, A:, then C: 22nd-alt-~:.

For the converse, let Q E 2nd-alt-Cf'. Then there is a predicate R E Af'
and a polynomial p such that

Q = : (3 ~ 9 I w I 5 ~(1x1)) R(x,w))

To show that Q E ~ f , we need to show the existence of a predicate R' E
IIf-)_, and a polynomial q such that

We proceed by induction on k.

Case k = 1. A: = P and X: = N P are the same for both definitions.

Case k > 1. By the definition of R, there is a polynomial time OTM
M which runs in time ~ (n) on all inputs of length n and uses an oracle
fl E IIf- and M accepts (x, w) iff R(x, w) is true.

x E Q H (3w, lwl 5 p(lx I))"M(x, w) accepts"

X E Q *
(3w, lwl 5 p(1x1))(3v' = vl, . . . , the v;'s code an accepting com-

putation of M(x, w)"

At this point we note that each v; uses 5 ~(1x1) space on each tape. We
also know that the "v;'s code . . ." iff vl is initial, vr(l,l) is final, and each
v; + 1 follows from v; by one step of the OTM. For notational convenience,
let QTC(v;) be the query tape contents in the configuration coded by v;;

note that QTC(v;) E C*.

X E Q H

(3% IwI 5 p(Ixl>>
(3v = (~ 1 , - , ~ r (l x l)) , IvI 5 0 (2 (~ (1 ~ 1) + 1)2))
(Vi I ~(1x1))

(i = 1 + "v; codes the initial configuration of M on
input (x, w)")

~ (i = ~(1x1) + ' 'v~(~,~) is an accepting configuration")
~ (1 5 i < ~(1x1) + (

("v; is not in the query state" + "v;+l follows
from v; by one deterministic step")
A (("v; is in the query state" A QTC(v;) E R) +

(6 v;+l is the same as v; except that v;+l is in state

9,"
A (("v; is in the query state" A QTC(v;) $? R) +

"v;+l is the same as v; except that v;+l is in state

~ n "

1 1
Everything in quotes is polynomial time, as well as is QTC. In fact, the only
thing that is not is R. But R E 2nd-alt-II;"_,, which is equal to by the
induction hypothesis. So QTC(v;) E R can be expressed as k polynomially
bounded quantifiers, which begins with a universal quantifier, in front of a
P predicate.

Next we use prenex operations to pull out quantifiers alternately from the
predicates QTC(v;) E R and QTC(v;) $? R. Represent these predicates by
formulas 0, and 0, which are in zE1 and II;-l respectively. We first pull
out an existential quantifier from O,, then a universal quantifier from On,
then a universal quantifier from O,, then an existential quantifier from On,
an so on until we have an expression of the following form:

X E Q H

(3w, IwI I P (I x I > > (~ v , lvl 5 r*(Ixl))(Vi I r(Ix1))
(3V El . . . QQ) "something polynomial time"

We then collapse the adjacent quantifiers using pairing and the ,B function.
By k applications of the quantifier exchange property, we move the quan-
tifier (Vi 5 r(lxl)) to the end of the expression, where it is absorbed into

the P predicate. We now collapse the first three quantifiers (two originally
and one pulled from 0,) to express Q as follows:

where Q* E P. Thus Q is in CE.

First Order Theories of Number Theory and Fragments of Peano
Arithmetic.

We will no longer work with strings from an alphabet, but will work with
integers, i.e. we will move from C* to N. An integer n E N can be rep-
resented as a string from O , 1 * by binary representation and some fudging
over leading zeroes.

Language: Logical: A V 1 -+ V 3 =
Non-logical: 0 S + 5 1x1 Liz] #

1x1 will represent [log2(x + 1)1, which is the length of the binary represen-
tation of x. We define 101 = 0. 1x1 and Lf x] are not crucial to the theories,
but it makes the axioms easier to state.

x#y = 21xl.l~l. # is pronounced 'smash' and was introduced by E. Nelson.
It is an important symbol, since it is what allows polynomial growth rate
for functions.

1x#yl = 12'"1.1~ll = 1x1 . Iyl + 1

which is a polynomial in the lengths of x and y.

Claim: Any function 2p(IXl), where p is a polynomial, can be expressed by a
term in the language { 0, S, ., #, x).

Proof: For multiplication, x#y = 2121'1~l. For addition, we note that (11 = 1
and thus that

(x#l) . (y#1) = 21x1 . 214 = 214+lyl

Furthermore, any term t (Z) in the language can be bounded by a function

2~(l.'I), where p is a polynomial.

This is easy to prove by induction on the complexity of terms.

In particular, polynomially and logarithmically bounded quantifiers will
be expressible in the language. Our terms have the right growth rate for
polynomial time computable functions. Without #, the lengths of terms
would have linear growth rate rather than polynomial.

Definition: Let F be a class of functions. Then f has growth rate of class
F iff

(31, E F) (Vx) (If (211 L ~(1x1))

Math 271 - Topics in Weak Formal Systems

Lecture Notes, Set #7
March 21-26, 1988

Instructor: Sam Buss
Notes By: Stephen Carrier

Language for a Fragment of Arithmetic

We have the language of PA plus some other symbols:

Where the nonobvious intended interpretations are:

1x1 = [log,(x + 1)l = the number of digits in the binary representation of x

x#Y = 2lzl.lvl

We have three kinds of quantifiers:

Regular unbounded quantifiers Vx and 3s.

Bounded quantifiers Vx 5 t and 3s 5 t for t any term.

Sharply bounded quantifiers Vx < Is1 and 3s 5 Is1 for s any term.

We might have taken (Vx 5 t) (- . -) to be an abbreviation of Vx(x < t -+ . a)

but we didn't. Instead we enlarged the syntax of first-order logic to include
bounded quantification as a distinct syntactic construction. We assume there
are sufficient logical axioms to make bounded quantifier formulas logically
equivalent to what they would have been were they not simply themselves.

Sharply bounded quantification is just a special case of bounded quanti-
fication.

We will show that there is a natural correspondence between bounded quan-
tification and polynomially bounded quantification on one hand and between
sharply bounded quantification and logarithmically bounded quantification
on the other hand.

Consider the polynomially bounded quantification (Vx, 1x1 5 p(lz1)). Let t
be a term such that t(z) = 2p(IZI) (Such terms always exist). Then (Vx, 1x1 <
p(Izl))(. . .) is equivalent to (Vx 5 t(z))(x # t(z) + .). For the other
direction, consider (Vx 5 s(z))(-..) where s is a term. Then there exists
a polynomial p such that Is(z)l < p(lz1) for all z. So (Vx 5 s(z))(. a) is
equivalent to (Vx, 1x1 5 p(lzl))(x < s(z) + . .).

Similar transformations are obtainable between sharply bounded quantifica-
tion and logarithmically bounded quantification.

Another Definition of the Polynomial Hierarchy

This definition will be syntactic in the sense that we will define classes of
formulas. For every class of formulas there is the corresponding class of the
predicates defined by those formulas. All the classes of predicates about to
be indirectly defined will together be the same old polynomial hierarchy.

Definitions: A bounded f o m l a is a formula in which only bounded quan-
tification occurs. A sharply bounded formula is a bounded formula in which
only sharply bounded quantification occurs.

Definition: Let At be the class of sharply bounded formulas. The classes
Ct, IIP are defined inductively on i as the smallest classes satisfying:

1. Ct = II; = At

2. For i 2 1, Ct > IIt-l.

If A, B E Cf then A A B, A V B E Cf.

I f A ~ C f a n d B ~ l J p t h e n l B ~ C f a n d B > A E E ~ .

If A E Cf then 3x 5 A, Vx 5 IslA arein Cf.

3. This is the dual to (2) obtained from simultaneously transposing all V
with 3 and all C with II.

The bounded hierarchy counts alternations of bounded quantifiers but ig-
nores sharply bounded quantifiers; this is analogous to the arithmetic hier-
archy which counts alternation of regular quantifiers but ignores bounded
quantifiers. Because of the equivalence of term-bounds with polynomial and
logarithmic bounds, we have already verified that the analogous quantifier
exchange properties do hold.

Open Question: The bounded hierarchy can be denoted by A,(#) which
is the class of bounded formulas in the usual arithmetic language expanded
by including #. Is A,(#) = A,?

Axioms of Bounded Arithmetic

We examine several forms of restricted induction. We are interested in
theories much weaker than PA.

Definition: Let Q be a class of formulas.

8-IND is the axiom scheme: For A E 8:

A(0) A Vx(A(x) + A(Sx)) + VxA(x)

Definition: 8-PIND is the axiom scheme: For A E 8 :

A(0) A Vx(A(1f XI) + A(x)) + VxA(x)

(In the above two definitions A = A(x, 3 is allowed to have parameters z'.)

This is essentially induction on the length of x. Suppose we know A(0) and
Vx(A(L;xj) + A(x)). We can simulate PIND to deduce A(100) in seven
steps, as follows:

4 0)
hence A(1)
hence A(3)
hence A(6)
hence A(12)
hence A(25)
hence A(50)
hence A(100)

Our intuition should be that PIND is more 'feasible' than IND because when
we have the power of the PIND hypothesis we can convert an induction proof
to a brute-force proof (simulating the induction by hand for a particular
value) with fewer steps. Simulating an IND proof of A(n) takes n steps,
whereas simulating a PIND proof of A(n) takes only In1 steps. Since PIND
is more 'feasible' than IND we might expect that the Q-IND axioms imply
the Q-PIND axioms; we shall prove such results below.

Definition: Q-LIND is the axiom scheme: For A E Q:

We notice that Q-IND + Q-LIND. We will later see that Q-LIND e~
Q-PIND for reasonable Q over some simple base theories.

In the theories we are considering Vy3x(lxl = y) is not a theorem. In words,
exponentiation is not total. In such theories \E-LIND is not necessarily equiv-
alent to Q-IND.

In addition to induction axioms we must have a base theory. The base theory

is called BASIC and consists of the universal closures of:

(Bl) y l x > y L S x
(B2) x # Sx
(B3) O < x
(B4) x < y A x # y * S x L y
(B5) x # 0 > 2 . x # 0
(B6) Y I x V X ~ Y
(B7) x < y A y < x > x = y
(B8) x < y A y < z > x < z
(B9) 1 0 (= 0

(B10) x # 0 > (2 . X I = S((X() A (S(2 x) (= S((X()
(B11) IS01 = SO
(B12) x < Y 3 1x1 l l ~ l
(B13) Ix#yl = SOxl . lyl)
(B14) O#y = SO

(B15) x # 0 > 1#(2 X) = 2 (1 # ~) A 1#(S(2. x)) = 2 (1 # ~)

(BIG) X#Y = Y#X

(B17) 1x1 = Iy(3 x#z = y#z
(Bl8) 1x1 = (21) + lvl 3 X#Y = (u#Y) (v#Y)
(B19) x L x + y
(B20) x < y ~ x # y > S (2 . x) < 2 . y ~ S (2 . x) # 2 . y
(B21) x + y = y + x
(B22) x + 0 = x
(B23) x + Sy = S (x + y)
(B24) (x + y) + z = x + (y + 2)
(B25) x + y l x + z + + y l z
(B26) x . 0 = 0

(B27) x (Sy) = (x . y) + x
(B28) x - y = y . x
(B29) x (y + z) = (x y) + (x z)
(B30) x ~ S O > (x . y < x . z * y < z)

(B31) x # O 1 1x1 = s(lL+xJI)
(B32) x = L f Y] * (2 - x = y V S (2 . x) = y)

With stronger induction axioms such as C!-IND we could prove the associa-
tive law:

(x + y) + z = x + (y + z)

with a much weaker base theory. The BASIC axioms are so numerous because
PIND is so weak and because there are so many functions to define.

Definitions: Let Si = BASIC + Ct-PIND. Let Tj = BASIC + Ct-IND. Let

Later we will prove that S2 = T2.

Theorem: For i 2 0, Si I- Cq-LIND

proof: Let A(x) E Ct. Argue in Si. We want to show

Let B(x) be the formula A(lx1). B is also Ct. 101 = 0 is in BASIC so
Si I- A(0) + B(0). By this and axiom 31,

Since VxB(x) is VxA(1x1) we have proved LIND for A(x) and are done.

The converse of this holds for i 2 1 . Precisely:

Theorem: For i 2 1 , Si + Cq-LIND I- Ct-PIND. Equivalently: Si =
BASIC + Cq-PIND E Si + Ct-LIND.

Introducing Function and Predicate Symbols

We will see that we can extend the language with new function and predicate
symbols in such a way that the new symbols can be used in induction axioms.

Definition: A formula A said to be A: with respect to a theory R if there
exist formulas B, C E C: such that

Definition: A function f : N k + N is CP-defined by R if and only if there is
a Cf-formula A(y , XI , . . . , x k) and a term t such that

(i) R I- VZ(3y 5 t)A(y, Z)
(ii) R I- VZVyVyf(A(y,Z) A A(yf,Z) + y = yf)
(iii) For all n' E Nk, N N A(f(ii),ii)

By a theorem of Parikh, the condition that a term t bounds y is superfluous
for theories R which have only universal closures of bounded formulas as
axioms. Si, Ti, S2, T2 are such theories because induction axioms on bounded
formulas can be re-expressed in bounded form. For example

is stronger than IND(A) but can be proven from IND(y 5 x + A(y))

Theorem: Let R be one of Si or Ti. Let A(y, Z) be a C!-function definition
in R, and let R* R + VZ(A(f (Z), 2)) . Let Cf(f) be the class of formulas
defined as the CP-formulas were defined, except that the new symbol f is
allowed in open formulas and in bounding terms. Then for B(Z) any Cf(f)-
formula there exists a formula B*(Z) E CP such that:

proof: By the definition of C!-definable there is a term t that R*-provably
bounds f .

For every occurrence of f in the bounding term of a quantifier, such as Vz 5
s(f(i;?)(.-.) replace that term so that we haveVz 5 s(t(T))(z 5 s (f (3) +
. . -). This uses the fact that since all the the original functions of Si are
nondecreasing in each argument, every term built from such functions is also
nondecreasing in each argument.

If f occurs more than once in the same bounding term the transformations
that remove occurrences of f can proceed in arbitrary order.

By this procedure we have obtained B1 in which f does not occur in any
quantifier bounds. Now use prenex operations to obtain B2 E C! in prenex-
normal form. B2 has the form:

(ax1 5 t l) . . . (Q x ~ I: tk) C(f(7))

C(f (7)) is P-equivalent to both

Replace C(f (7)) by whichever one of these does not increase the number of
quantifier alternations. Do this for every occurrence of f in the matrix of B2.

Corollary: Fix i 2 1. Let R be Si (or resp. Ti). Let f be C!-defined in
R. Then the theory R + Vc'A(f (Z) , 2) + C!(f)-PIND (resp. C!(f)-IND) is
conservative over R.

So Ci-defined function symbols can be introduced and used freely in induc-
tion axioms. We actually only showed this for one function symbol but it
is easy to extend this argument to the case of many function symbols. A
similar proof shows that A!-defined predicates can be introduced and used
freely in induction axioms. A formula analagous to B2 is obtained in the
same way. A!-predicates have both C! and II! formulas to express them, so
an appropriate formula can always be found that won't increase the number
of alternations of quantifiers.

Ct-definable functions for S,'

Theorem: Si can C!-define the predecessor function:

P is defined by b = P(a) % M(a, b) where M (a, b) is the formula

proof: First we note four simple theorems in S,'.

S i I - x s x (from B6)
S,l I- x 5 Sx (fiom previous statement plus B1)
Sit- ~ S X < x (from previous statement plus B2, B7)
Sit- 1 S x = 0 (from previous statement plus B3)

We need to prove both

(uniqueness) S,l I- VxVyVy'(M(x, y) A M(x, y') -+ y = y')
(existence) S; I- Vx(3y < x)M(x,y)

(uniqueness:) First S,' + M(0,y) + M(0, y') I- y = y' obviously, since S;
knows that 0 is the successor of no element. It suffices to show

s; + (Sy = x) + (Sy' = x) I- y = y'

Argue in the so-extended theory:

I- Sy = Sy' = x
I - y < y ' - i y = y ' v S y < y ' (by B4)
I - y < y ' - + y = y ' V S y l < y ' (by Sy = x = Sy')
I - y L y ' - i y = y ' (because 1Sy' < y')

Similarly I- y' < y -+ y = y'. We conclude I- y = y' using (B6).

(existence:) S,' I- (3y 5 O)M(O, y) obviously. So by C!-PIND it suffices to
show:

s: I- (3 ~ 5 LfxJ)M(Ltx l ,~) -+ (3 ~ < ~) M (x , Y)
This is proved by division into cases:

First case:
Si I-x=S(2. [+x])-+ M (x , ~ . LfxJ)
S i t x = S (2 - L ixJ) -+2 . LkxJ < x

Second case:

In (*), S (2 . y) works because:

SS(2 y) = S (2 . Y) + SO
= 2 . y + s s o
= 2 - y + 2 . s 0
= 2 (y + SO)
= 2 . S y
= 2 [ix] = x

This uses the deep result that 2 SO = SSO. Thus is the proof completed.

That was a demonstration. Such details will be omrnitted in the future. Be
assured that somebody else has checked them and they work. Instead of
treating such details for every function and predicate that we want to use
we just exhibit their Ct and At-definitions and emphatically assert without
proof that S; proves existence and uniqueness.

Facts: The following are C!-defined functions and At-defined predicates in
Si and all larger theories.

By similar methods define > , >, #.

Define min similarly.

df Power2 (a) "a is a power of 2" u S(IP(a) 1) = la1

df df c = Exp (a , b) = 2m'n(a*lbl) u Power2(c) A lcl = 1 + min(a, lbl)

For the next two definitions, 2b means 2m'n(b*lal). The most significant part
is defined:

The least significant part is defined:

c = Bit (b, a) Mod2(MSP (a, b))

Bit (b, a) is the bth bit in the binary representation of a. By the way, S,'
proves that a number is completely determined by its binary representation:

S,' I- 1.1 = lbl A (Vi < lal)(Bit (i, a) = Bit (i, b) + a = b)

Now subtraction is definable:

The definability of this function is mentioned so late because the machinery
of bit-functions is needed to prove existence.

bla Rem(a, b) = 0 A b # 0

df Even (a) t-t Mod2(a) = 0

Odd(a) t% Mod2(a) = 1

Protosequences

We won't try to rely on traditional Godel numbers in S2 because exponenti-
ation is not total. Instead we code a sequence of numbers as follows: Write
each number in binary representation, with the least significant figures on
the right, as is traditional. Prepend each number with a comma, and con-
catenate them from right to left. Translate this three-symboled string into a

unique string of zeros and ones by translating each of 0 , 1, and comma into
a couple of bits.

0 H 10
1 H 11
, H 01

Such codes will be sequences. Because of technical difficulties with the
formalization of sequences, we will formalize protosequences first. Proto-
sequences are sequences which use equal-length binary representations for
each of their elements.

Comma(b, a) % Even (b) A Bit (b + 1, a) = 0 A Bit (b, a) = 1

Comma (b, a) means that the bth bit of a is the first (from the right) of a pair
of bits that denote a comma.

c = Digit(b,a) % (c = Bit(b,a) h Even(b) A Bi t (b+ 1 ,a) = 1)
V (C = 2 A (Odd (b) v Bit (b + 1, a) = 0))

Digit (b, a) returns 0 or 1 respectively if the bth bit is the first of a pair of bits
which denote 0 or 1 respectively. Otherwise, Digit (b, a) returns the value 2.

df ProtosqSL (a , b, c) t-, la1 + 2 = 2 . c . Sb

A(VY < IaI>[((2 . b + ~) I (Y + 2) + Comma(y , a))
A (l (2 b + 2)l(y + 2) + Digit (2 y, a) < 2)]

ProtosqSL (a , b, c) says that a is a sequence of c numbers each represented by
b pairs of bits.

b = Protosize (a) % (Comma (2 b, a) A (Vi < b) (1 Comma (2 . i , b))
~ (b = O A (Vi < l a J) (~ C o m m a (2 - i , b))

Protosize (a) is the position of the first comma in a as measured by counting
pairs of bits. If there is no comma in a then Protosize (a) = 0. If a is
a protosequence then b is the number of pairs of bits used to code each
element of the sequence.

Protolength (a) = lal + 1
12 Protosize (a) + 2 J

If a is a protosequence then Protolength(a) will be the number of elements

Protoseq (a) % ProtosqSL (a , Protosize (a) , Protolength (a))

Protoseq(a) says that a is a protosequence.

b = Protop 1 (a) % I b(5 Protosize (a)
~ (v i < a) (i < Protosize (c) -+ Bit (i , b) = Bit (2 i , a))

Protop1 (a) is the first element of the protosequence a.

Protop (b, a) " I m t o p l (M S P (a , (2 . Protosize (a) + 2) (b-1))

Protop (b, a) is the bth element of the protosequence a .

So far we haven't used the # function in the definitions of extra functions
or in the proofs of their existence and uniqueness. The # function will be
important for proving the existence of codes for sequences under reasonable
conditions.

Math 271 - Topics in Weak Formal Systems

Lecture Notes, Set #8
April 4-8,1988

Instructor: Sam Buss
Notes By: Juan Bagaria

Earlier we showed: Q-PIND -+ Q -LIND for Q a class C f .

Theorem: Let i 2 1.
(a) S,' + CP-LIND t CP-PIND
(b) T; + CP-LIND t CP-PIND

Corollary:
(a) S,' + cP-LIND E Si (i > 1)
(b) Ti 2 Sl (i 2 1)

Proof: (a) Si - S,' + CP-PIND.
(b) Cq-LIND CP-LIND is obvious.

Proof of the Theorem: We prove (a). The proof of (b) is identical.
We need MSP(x , 2) = lx -2-'J and - to be C! -definable. Let A(x) be any
Cf -formula. We want to show:

Let B(x, u) be A(MSP(z, 1x1 - u)). We will use LIND on B with respect
to u . Note that B is in Cf. We have S,' t A(0) > B(0) since Si t
MSP(x , 1x1) = 0. Also

where c is a new variable symbol, since [$MSP(x, u + l) J = MSP(x, u).
So, using CP-LIND,

But S,1 + cP-LIND I- B(c, Icl) > A(c) since MSP(c, 0) = c. So,

and use V-introduction. q.e.d.

Theorem:
(a) S,l + cP-PIND = S,l + IIP-PIND
(b) S,1 + Cf-IND G S,1+ IIP-IND
(c) Si + CP-LIND S,1 + IIP-LIND

Proof of (a) >: Let A(x) be in II;. We want to show that S,1+ cP-PIND
proves induction on A. Let B(x, u) be the formula A(MSP(x, u)) . So,
S,1 I- A(0) > B(c, Icl), where c is a new variable. Also,

S,' I- Vx(A(L$x]) > A(x)) > Vu(B(c, u + 1) > B(c, u))

Equivalently:

Note that 1 B is in Ep. So,

s,' + c;-PIND I- -B(c, 0) A VU(TB(C, U) 3 TB(C, + 1)) 3 TB(C, 1~1).

(Since PIND 5 LIND). And S,1 I- B(c,O) > A(c). So,

and we are done by V-introduction. The other direction: (a)C is similar.
(b) and (c) are proved similarly. Idea: to do induction on A(x) you instead
do induction on B(c, x) E -A(c - 2).

Theorem: 1 5 i. Let A(x) be a A!-formula with respect to Si. (For
i = 1 A is a A! -defined predicate of Si). Then, S,1 proves regular induction
for A, i.e.

S; I- A(0) A Vx(A(x) > A(x + 1)) > VxA(x)

Corollary: Si I- CP-,-IND. So, Si > T;-'

Proof: Let AE(x) E C! , Au(x) E II! and Si I- A(x) = AE(x) and
Si t A(x) - &(x) (from the definition of A being At).

Let B(x, z) (Vy < z + l)(A(x I. y) > A(x)). Note that B(x, z) is
(equivalent to) a formula in II; . Let c and d be new variables.

Claim: Sh t (Vx 5 c)B(x, Lid]) > (Vx < c)B(x,d)

Proof: We argue informally inside Si . Assume that (Vx < c)B(x, Lid])
holds. Let x 5 c,y 5 d + 1 and suppose A(x y) holds. We want to show
A(z) , We have that A(x y) > A(x - Lf Y]) since (x - y) - (x Lf y]) <
Lid] + 1 And A(x - Lf y]) > A(x) since [i y] < [id] + 1 and so the claim
is proved.

By the Claim and by II! - P I N D on (Vx 5 c) B(x, d) with eigenvariable d
we have that Si proves

(VX < c)B(x,O) > (Vx < c)B(x,c)

Now,
Sf I- Vx(A(x) > A(x + 1)) > VxB(x, 0).

Also,
Sh I- B(c, C) > (A(0) > A(c)).

so,
S: t A(0) A Vx(A(x) > A(x + 1)) > A(c).

Theorem:
(a) Vi 2 1 , Ti > Si > T;-'.
(b) Sz = T2

Proof: Si > T;-' is the previous corollary. And Ti proves C! - L I N D
which implies Ct - P I N D by the first theorem above.

Remark: It is open whether S,2 and Ti are actually distinct. Takeuti
has shown that Si # Ti by showing that the predecessor function is not
definable in S,O .

It
CP-LMIN u strong CP-replacement a (CP+l n II:+l)-PIND

Relationships among axiomatizations for Bounded Arithmetic
relative to the base theory S,1 with i > 1

The following are C! -definable functions and A! -definable predicates of S,1.

b = Numones(a) w "Number of ones in a's binary represent ation". i.e.

b = Numones(a) w 3w, Iwl < 2(I(lal)l + l) (lal+ 2) such that

[PSqSL(w, I(lal)l, lal + 1) and

Protop(1, w) = 0 and

Vi < la((Protop(i + 2, w) = Protop(i + 1,w) + Bit (i ,w)) and

b = Protop(la(+ 1, w)]

Notice that this is a C! formula.Also notice that the first bounded quantifier
in this formula can be expressed as 3w 5 ((4(a + 1))#(2(lal + This

is the first place we needed the # function (although even here it can be
eliminated).

A proto - sequence has fixed length entries. Adding an extra element
to the sequence,when the new element is larger than the sizes of the old
elements, would require all entries to be "stretched". This is a problem with
protosequences. So, instead we define a more general notion of sequences
which have variable length entries.

Like protosequences, sequences will be a string of 0's and 1's and commas
represented as a binary number by writing 11 in place of 1, 10 in place of 0
and 01 in place of ,(comma).

Notice: If A(x, Z) is a A! -defined predicate, then f (x, Z) = (number of i 5
Ix 1) A(i, Z) is a C! -defined function of S;. (Translate to: If A E P , then
f E FP).

[Proof: Let g(x,.Z) = b H Ibl 5 1x1+1 and (Vi 5 Ibl)[Bit(i, b) = 1 = A(i,Z)]
So, g is C!-defined. But f (x, Z) = Numones(g(x,Z)). q.e.d.1

Also Notice: If A(x, Z) is a At -defined predicate, then

if no such i exists

This is a C! -defined function.

[Proof: f (x,Z) = (number of i 5 Ixl)Vj 5 Ixl(j 5 i > iA(j,Z)). q.e.d.1

0 t her Ct -definable functions and A! -definable predicates of Sl are:

Seq(w): w is a sequence.

Len(w): length of w.

P(i, W) : the ith element of w.

w * a: adds a as a new element to w.

v * *w : concat enat es v and w.

For example, the first can be defined by:

Len(w) = (number of i 5 Jw l)Comma(i, w)

And the second by:

Seq(w) e (Vi < Iwl)(Even(i) > Comma(i, w) V Digit(i, w) # 2)

and (w = 0 V Comma(0, w))

We leave the definitions of P , * and ** as an exercise.

Theorem: If f : Nk 4 N is in FP, then St can C;-define f .

Proof: Let M be a deterministic Turing Machine which on input Z runs in
time p(IZ1) and outputs f (Z).

WLOG, M has a single tape which extends in one direction only. An ID
of M is coded by ((ql, al), (q2, az), ) where a; is the ith symbol on the
tape and q; = a state if tape head is at position i (=blank, otherwise).
f (Z) = z e 3w, (wl 5 2(p(lZl + [w = (wl, ..., w , (~ ~)) and wl codes
initial ID of M(Z), w;+l follows w; by one step and w,(l.q) has z written on
the tape].

All the conditions above are expressible by A:-predicates. Use C: - LIND
to prove that w = (wl, ..., w;) exists, by induction on i up to i=~(IZ[).q.e.d.

Aside: We have two definitions of " f is an NP-function":

(1) the graph off is in N P n co - N P

(l b) the graph of f is in N P

Note that (1) =+ (l b) . Also, (l b) =+ (1) since f (x) f y can be expressed as

34s # Y A f (x) = 4
(2) the predicate f (x) 2 y is in N P

Another possible definition gives the class 17;:

(3) f can be computed in polynomial time with an oracle from N P

Note that (1) + (2) + (3). However it is not known whether the converses
hold.

Aside:

Definition: 0: = pCLl the set of functions computable in polynomial time
with an oracle from C:-'_, .

Theorem: If f E ~ ? (i 2 1), then Si can C!-define f.

This theorem was stated and proved above for i = 1. The general case with
i > 1 is proved in a similar manner. Recasting this theorem in terms of
predicate symbols gives the following Corollary. (The proof is an exercise.)

Corollary:
(a) If A E P , then S,1 can A! -define A.
(b) If A E Ar,then Sa can A!-define A.

Every A E P can be expressed as C!-formula which is provably equivalent
to a II! -formula in S,1.

Later we shall show that the converse to the above Corollary holds; namely,

if A(x) is At with respect to S,1 then A(x) E P. We show on the next page
that a predicate is definable in N by a Ci (or 11; respectively) formula iff
it is N P (or co- N P respectively) .It follows that any predicate S,1 -provably
in N P n co - N P is actually polynomial time.

Recall: It is open whether N P n co - N P = P.

Remark: Defining a polynomial time function in S; by the above theorem
may not give an intensional definition.Example:

0 if x is a Godel number of an Si proof of 0 = 1
1 otherwise

For this function, S,1 does not prove Vx(f (x) # 0)

Theorem: A predicate Q C N is in N P iff there exists a C!-formula
A(x) such that Vz(x E Q * N + A(x))

Proof: Recall that Q E N P iff there is R E P and a polynomial q such
that

Vx(x E Q * 3w, I w I I q(IxI)R(x,w))

To prove the theorem: +- : Since R E P , it is A! -definable in Si , in
particular, there is a Ct formula A(x, w) such that

(Notice that the existential quantifier is polynomially bounded.It can be
reexpressed as (3w 5 t(x))[lwl 5 p(lx1) A A(x,w)] which is a Ct formula.)
+ : If A(x) is a C: formula, put A in prenex normal form,say:

All universal quantifiers are sharply bounded and B(x, y', z") is quantifier free.
Reexpress bounded (respectively sharply bounded) quantifiers as polynorni-
ally (respectively logarithmically) bounded quantifiers and use quantifier

exchange property to get a formula which shows that A(x) expresses an
N P predicate.q.e.d.

Theorem: More generally,

Q E Cf e 3A E C4 such that Vx[x E Q e N A(x)]

(These theorems are due essentially to Stockmeyer and Wrathall. Kent and
Hodgson have stronger versions than what I stated here.)

So, Sh uses length induction on N P predicates.

Cook(1975) introduced a theory P V having function symbols for each poly-
nomial time-function and length induction on polynomial-time predicates.
It turns out that Sh is conservative over PV.

Goals: To prove that:

*Every C!-definable function of Si is in 0: . SO, every C!-definable function
of Si is a polynomial-time function.

**Any polynomial predicate A such that Sh k VxA(x) has a polynomial
size extended Frege proofs.[Cook] More precisely, given A A!-defined by
S,1 (and hence expressing a property in P) there are propositional formulas
llAlln n = 1,2,3,.. where ((All, says (Vx, 1x1 = n) A(x) and llAlln will
have polynomial size eF proofs (as a function of n).

To prove this we need some proof theory for first-order logic.

Sequent calculus for First-Order Logic

Language: A, V, >,i, V, 3, V 5, =

Variables: Free: a,b,c ,... Bound: x,y,z ,...

In formulas, only free variables can occur free and only bound variables can
occur bound. Terms have only free variables. Semiterms are like terms

except that they contain both free and bound variables.

Non-logical symbols: 0 ,S,+, . ,5 ,1~1, Liz],#

The sequent s have the following rules:

v :left, V :right, :left, A :right, >:left, >:right, 1 :left, 1 :right, cut rule
and structural rule are identical to the propositional calculus rules.

where t is a term

where the eigenvariable
b does not occur in the
lower sequent

where b does not appear
in the lower sequent

V 5 :right
b I ~ , r + ~ (b) , A

where b does not appear r+ (VZ I S)A(X),A in the lower sequent

b < s, A(b),I'+ A
3 5: left where b does not occur in

(32 5 s)A(x), I?+ A the lower sequent

3 5: right
r+ A (~) , A

t 5 ~ , r + (32 5 S)A(X),A

Exercise: Show that + (32 5 s)A = 3x(x 5 s A A) is provable with the
above rules.

Gentzen defined LK (Logische Kalkul) as the system above without
bounded quantifiers. Let L K B be LK + bounded quantifiers.

Logical axioms: A+ A for A atomic.

Equality axioms:

Sl = tl+ S(s1) = S(t1)

and similarly for each unary function symbol.

and similarly for each binary function symbol.

Math 271 - Topics in Weak Formal Systems

Lecture Notes, Set #9
April 11-15,1988

Instructor: Sam Buss
Notes by Jim Gloor

Sequent Calculus for First-order Logic (con't)

In addition to the logical and equality axioms, we add non-logical axioms
which are sequents based on the BASIC axioms for bounded arithmetic. The
only formulas occurring in these axioms should be atomic. For example, we
have.. .

(1') y 5 x+ y 5 S x
(2') x = Sx+
(3') + 0 2 x
(4') x < y + x = y , S x L y , and S x < y + x L y ,

and S x 5 y,x = y+
(5') s s o - x = o + x = o

(6') + Y L 2, x I Y
(7') x < y,y < x + x = y
(8') x < y , y L z + x < z
etc.

In addition to the logical inferences, we add the following induction rules,
where is a class of formulas. . .

-PIND Rule:

where A E a , t is a term, and b is an eigenvariable which does not occur in
the lower sequent. Note that this is sound in that if the upper sequent is valid,
then the lower sequent is, too.

@ -1ND Rule:

where A E @, t is a term, and b is an eigenvariable which does not occur in
the lower sequent.

Fact: The @-IND rule is equivalent to the @-IND axiom (i.e.,
+ (A(O)A Vx (A(x) > A(Sx))) > Vx A(x)) and similarly for PIND.

Proof: (e) This is clear.
(+) First we derive without the induction rule the sequent

Then letting c be a new variable, @-IND gives

Applying V:right, we have

and finally after two A :lefts, a structural inference, and a > :right we derive

A similar proof works for PIND.

Note that in general (e.g. in a Hilbert-style calculus), the induction axioms
and rules are not equivalent. The difference here is that we have the side
fonnulas r and A in our induction rules.

Definition:

(a) Si is the sequent calculus system LKB + BASIC axioms + C!-PIND
rule.

(b) Tj is the sequent calculus system LKB + BASIC axioms + c!-IND rule.

These are equivalent to the previous definitions by the above fact.

Definition: The following notions are defined just as with the sequent cal-
culus for propositional logic: successor of an occurrence of a given formula,
descendant (chain of successors), ancestor (opposite of descendant), di-
rec t descendant (descendant in which given occurrence of formula remains
unchanged), d i rect ancestor (opposite of direct descendant), principal
formula of an inference, and side formula of an inference.
Note that in an induction inference there are two principal formulas-namely
A(0) and A (t) .

Definition (Takeuti): A cut inference in a proof P is free unless one of
the cut formulas is a direct descendant either of a principal formula of an
induction inference or of a formula in an equality or non-logical axiom.

Our goal is to prove the following cut-elimination theorem.. .

* * * Theorem (Gentzen): Suppose P is an Si - (or Tj-) proof of I? 4 A. Then
there is a bee-cut b e e Si - (or Ti-) proof, P*, of I?+ A such that eve?
induction formula in P* is a substitution instance of an induction fomula in
P.

Reference: Takeuti, Proof Theory. Our proof follows Takeuti's proof almost
directly.

We will say that A is a subformula of B in t h e wide sense iff A is a
substitution instance of a subformula of B where we substitute for both free
and bound variables. If P* is a free-cut free proof of I?+ A , then every
formula in P* is either: (a) a subformula in the wide sense of I?+ A , or
(b) a substitution instance of a principal formula of an induction inference in
P*, or (c) it is used in an equality or non-logical axiom. So the next three
corollaries follow directly from the main theorem.

Corollary: If I? + A has an LKB-proof, then I?+ A has an LKB-proof
in which every cut formula is atomic (i.e., is the direct descendant of a formula
used in an equality axiom).

Corollary: If l? 4 A has an LKB-proof not involving any equality axioms,
then I?+ A has a cut-free proof.

Corollary: If every formula in r+ A is in C! U II! and if Si I-r+ A ,
then there is an Si -proof of r+ A in which every formula is in Cf U IIf

In order to simplify the proof of Gentzen's theorem, weintroduce the following
new rule of inference. . .

Mix Rule:

where A occurs in both II and A , and II* and A* are obtained by deleting
every occurrence of A from II and A , respectively.

By use of structural rules, it is fairly easy to see that the mix and cut rules
are equivalent.

Proo~? For cut =+ mix we have

r,n* + A,A*,A A,r , I I* +A*,A
(cut on A) r,n*+ A*,A

and for mix=+cut we have

F + A , A A , r + A
(mix on A).

r , r*+A*, A

We say that a mix inference in a proof, P, is free unless one of the occurrences
of A in II or A is the direct descendant of a principal formula of an induction
inference or of a formula in an equality or non-logical axiom. Note that the
property of "free-ness" is not altered when we switch from mixes to cuts and
vice-versa.

Using this equivalence between cuts and mixes, it is clear that the following
lemma suffices to prove Gentzen's theorem by working our way down a proof
of r+ A from the "leaves", eliminating free cuts/mixes as we go.

Lemma: If P is an Si - (or Tj -) proof of + A that has only one bee mix
inference which occurs as its final inference, then there Cs a bee-mix bee ,$ -
(or Tj-) proof, P*, of I?+ A such that eveq induction formula in P* Cs a
substitution instance of an induction formula in P.

Before we begin the proof of the lemma, a few definitions.. .

Definition: Suppose P is as in the lemma and that the final inference of P is

Then we define

(a) for any formula, B, Grade (B) is the number of logical symbols in B.
(b) Grade(P) = Grade(A).

(c) the right-age of P is the maximum length of a path beginning with
ll+ A and going up toward the axioms such that a direct ancestor of
A in n is in the antecedent of each sequent on the path.

(d) the left-age of P is defined similarly for r+ A (looking a t direct
ancestors of A in A).

(e) Age (P) = right-age (P) + left-age (P).

Since right-age(P) and left-age(P) are always 2 1, we have that Age(P) 2 2.
Also note that Takeuti uses the term "rank" instead of "age" in his proof of
the lemma.

P roo f of Lemma (by double induction on Age(P) and Grade(P)): We
will give a purely syntactical, constructive approach, manipulating proofs
instead of looking at models.

Case 1: Age(P) = 2

1.1
A+ A n- A

- (A) is the final inference of P.
A , n * + A

Obtain P* by changing this inference to
n- A

by a structural
A ,n* + A

rule.

1.2 Dualwhere ll+ A is A+ A. -
1.3 Aisintroducedinto A byastructuralrule ... -

I',ll*+ A*, A (A) ,

where rl l-' as sets and A1c A as sets with A not occuring in A1.

Change this to the structural rule l-'l +A1 to obtain P*.
l-', ll*+ A*, A

1.4 Dual where A is introduced into ll by a structural rule. -

1.5 A is introduced into A and into ll by a logical inference. The type of -
logical inference is determined by the outermost connective of A. . .

1.5(i) Ais B V C
Then P ends with

I?+ B,A1 A C , l l l + A
I?+ B V C , A 1 B V C,Ul + A

(B v C).
l-',Ul+ A1,A

Note that this is indeed a free mix. From this form a proof, PI, which
ends

where U; and A; are obtained from ill and A1, resp., by deleting all
occurrences of B.
If this is a free mix, since Grade(P1) < Grade(P), we use the induction
hypothesis to get a free-mix free proof, P,* , of l-' , ll; + A;, A. If it is not
a free mix, set P;=Pl. Then since P is free-mix free LLabove" l-' + B, A1
and B, lIl + A , we have that P; is free-mix free in either case. Form

1.5 (i - (i v) A is 1 B, B A C, and B > C are all handled similarly.

1.5(v) A is 3x 5 t B(x)
Then P ends with

where b is an eigenvariable which doesn't occur in the lower sequent and
w.1.o.g. no variable in the term s is used as an eigenvariable in any
inference of P (if so, simply change variable names).
So by substitution of s for b, we get a free-mix free proof of

s 5 t, B(s) ,n , -+ A .
Now form PI, which ends

where ll; and A; are obtained by deleting occurrences of B(s) (and
w.1.o.g. B(s) # s 5 t) .
If this is a free mix, since Grade(P1) < Grade(P), we may use the
induction hypothesis to get a free-mix free proof, P,' , with the same
endsequent. If it is not a free mix, set P;=Pl , which again gives a
free-mix free proof.
A structural inference gives us P* . . .

...
1.5 (vi)-(wii) A is Vx 5 t B(x), Vx B(x), and 32 B(x) are all handled

similarly.

Case 2: Age(P) > 2
2.1 right-age(P) > 1 -

r + A n+A
If A occurs in r , then change (A) to the struc- r,n*+ A*,A

tural inference "- A to obtain P*. r, n*+ A*, A
Similarly if A occurs in A .

2.1.2 Suppose n+ A is inferred from @ + Q and A is not the
principal formula of this inference. Then P ends with

r+ A ++ 'I'
Form Pl which ends with the mix (A), where +* r, +*+A*, 'I'
is obtained by deleting all occurrences of A from +. Since right-age(P1)
= right-age(P)-1 and since this must be a free mix, by the induction
hypothesis there is a free-mix free P; which has the same endsequent as

Pl
Now form P* as

p;
a*, r+ Q, A1

Here the first and third inferences are structural rules while the second
is obtained from the original inference of a+ Q to II+ A (this is
possible since A is not the principal formula of this inference).

2.1.2' Suppose II+ A is inferred from two sequents and A is not the
principal formula of this inference. Then P ends with

This case is handled similarly to the previous one.

2.1.3 r doesn't contain A and A is the principal formula of the infer-
ence producing II + A. Then since right-age (P) > 1, there are other
occurrences of A in II.

21.3() A is B V C
Then P ends with

\u " V,.

r,II;+ A*,A

Form PI and Pz which end respectively with the free mixes

and

r+ A C,IIl + A
r, C, II; +A*, A

(B v C).

Since the right-age of both of these inferences equals right-age(P) -1, by
the induction hypothesis there are free-mix free proofs, Pi and P,' with
the same endsequents. Form P3 as

p; pz'
B, r, II; +A*, A C,F, II; +A*, A

l?+ A
B V C, l?, II; +A*, A

r , r , n ; +A*,A*,A (B v C)

Now right-age(P3) = 1 and left-age(P3) = left-age(P). So Age(P3) <
Age(P) and we use the induction hypothesis to get free-mix free P,' with
the same endsequent as P3.
Finally, by a structural inference, form P as

213(i i) (iv) A is 1 B, B A C, and B > C are all handled similarly.

2.1.3(v) A i s 3x 5 t B(x)
Then P ends with

where b is an eigenvariable and w.1.o.g. b doesn't occur in r+ A
(otherwise replace b everywhere on the right side of P with a new vari-
able).
Form PI ending with the free mix

As before, we use the induction hypothesis to get a free-mix free P,' with
the same endsequent. Now, using the fact that b is not in I? or A , form
P2 as

b t, ~ (b) , r, n; +A*, A r+ A
3~ 5 t B(x), r, n; +A*, A

r, r, n; +A*, A*, A
(3x 5 t B(x)).

Once again, since right-age(P2) = 1, we can use the induction hypothesis
to get a free-mix free P,' with the same endsequent and a final structural
inference gives us P* . . .

...
2.1 3 (v) - (v) A is Vx < t B(x), Vx B(x), and 3x B(x) are all handled

similarly.

2.2 left-age(P) > 1 -
This is the exact dual of case 2.1.

Notice that throughout the proof, we have left out the statement "every
induction formula in P* is a substitution instance of an induction formula
in Pn. It is easy to check that this is indeed the case, since the induction
hypothesis always includes this statement for P,', P,', etc. and the "worst"
we changed any individual formula was possibly to substitute one variable for
another.

This completes the proof of the lemma.

Note again that the proof actually gives a constructive method for eliminating
free mixes from a given proof. Of course, even a non-constructive proof would
give an algorithm, although it would not be very feasible, being of the form
"enumerate all proofs until you find a free-mix free one."

Carefully watching the sizes of the proofs formed in each step of the lemma
shows that we have

9 IPI

J

although Buss is fairly sure that we actually have

where q is the maximum number of quantifiers in a formula of P .

Compare this with the propositional sequent calculus, where we had IP*I 5
2°(lpl). I P I . In fact, this could beextended to IP*I 5 2°(lr-'AI)- I r + A I,
where r+ A is the sequent being proved, and this was more-or-less optimal
for tree-like proofs.

Statman [Annals of Mathematical Logic 15 (1978)] first showed that the
upper bound given above is fairly good for tree-like free-mix free LKB-proofs,
while Pudlik ["Cuts, Consistency Statements, and Interpretations," JSL 50

(1985)l gave another, high-level, proof that super-exponentiation is necessary.
Although Pudldk discussed Herbrand consistency, his results apply to free-cut
free proofs as well.

Math 271 - Topics in Weak Formal Systems

Lecture Notes, Set #10
Apr. 28 - May 4,1988

Instructor: Sam Buss
Notes By: Alessandro Berarducci

References: The main theorem proved in these notes is essentially due to
S .Cook, 'Feasibly constructive prrofs and the propositional calculus', 7 th
ACM Symp. on Theory of Computing, 1975. An extension of Cook's work
is due to J. ~ r a i i c ~ t k and Pudlak, 'quantified propositional calculus and frag-
ments of bounded arithmetic', preprint, Jan. 88.

Goal: We will translate arguments formalizable in Si into arguments that
can be formalized by polynomial-size extended Frege proofs.

Example: As an intuitive motivating example we consider counting. We
know that in a Frege system we can count the number of true x's among
xo, xl , . . . , x,-~ by using carry save addition (as in the T- proof of P HP). In
S,1 we can count by using the function Numones(x) which gives the number
of 1's in the binary representation of x. There is no known way of directly
mimicing the Si construction in a Frege system, hovever this can be done in
an extended Frege system as follows: we will introduce new variables p;,j by
the extension rule in such a way that 6 will code an integer a; giving the
number of true xk 'S among xo, XI , . . . , x,-1 with k I 2 . So & will code either
0 or 1 according to whether xo is true or false and is defined by:

p;fl will either add 1 or 0 according to whether x;+l is true or false:

The second clause expresses the fact that there is a carry in position j when 1
is added. Now pnZl will code the number of true xk's among XI, 5 2 , . . . xn-1

and moreover there are polynomial-size eT-proofs that this definition is
equivalent to the carry save addition definition.

To carry out our goal we will define a map which translates a It;-formula into
a family of propositional formulas (which have polynomial size with respect
to the length of the integers being substituted for the free variables of the
formula). We need some preliminary definitions.

Definition: Let t be a term of Si. The bounding polynomial qt(n) of t is
defined inductively by:

1. qo(n) = 1

2. q,(n) = n for any variable a.

3. q,(,)(n) = qt(n) + 1 where s is the successor function.

4. q,+t(n) = q,(n) + qt(n)

5. q,.t(n) = q,(n) + qt (n)

6. q,#t(n) = q,(n) -qt(n) + 1
7. qltl(n) = qLtt,(n) = qt(n)

Proposition: If t(al, . . . , ak) is a term and XI , . . . , xk are natural numbers of
length < n , then It(Z)c')l 5 qt(n) (here It(?) ')l denotes the length of the binary
representation of the value of t(Z)) .

Proof: By construction.

Definition: Let A be a bounded formula of Si . The bounding polynomial
q~ of A is inductively defined by:

Proposition: The formula A(xl,. . . , xk) where [xi[< n , only refers to
numbers of length 5 qA (n) .

Proof: By construction.

Note that there are fan-out 1 boolean circuits for computing the function
symbols of the language of Si . For example there is a circuit [+I, which takes
2 -m inputs (the code of two integers in binary) and outputs m binary symbols
(their sum; any overflow is lost). Similarly we define the polynomial-size (in
m) family of circuits Cob, I s l , CL+I I,, O IL , [#b, C.L - For C-b we
use carry-save addition. It is important that these circuits have fan-out 1
because we want to translate them into boolean formulas.

We are now ready to define, for each term t , a vector of m propositional
formulas [tK giving the first m bits of the value of t when its free variables
are assigned values of length < n (in general we will assume that m 2 qt(n)).

For each free variable a in t , the formulas [t E will have a sequence of n
propositional variables vE-, , . . . , v," representing the value of a (an integer
< 2"). If m is bigger than the length of the value of t we expand the value of
t with a sequence of leading 0's (represented by the truth-value false).

Definition:

1. [OX is a sequence of m false formulas (for eample p h ip)

2. If a is a variable, [a E is a sequence of rn - n false formulas followed
by vR1,. . . ,v,".

3. [s + t E is [+]m([sE, [t]:) (the formulas corresponding to the circuit
for addition applied to the output of [s x and [t c).

4. Similar definitions work for the remaining cases.

Remark: Since a formula is essentially a circuit with fan-out 1, for each bit
of s + t we need to compute the values of s and t again. Also note that for
fixed t , the size of [t]: is polynomial in m.

The next goal is to define, given a XI:-formula A, a propositional formula
CAR, (where rn 2 qA(n)). To do this we proceed as follows:

Definiti0n:Given a formula B we assign to B special 'existential' proposi-
tional variables e t , e;, ef , . . . , and special 'universal' propositional variables
,$, ,vf, ,$, . . . (all new and distinct), with the convention that we will assign
different sequences of existential variables to distinct occurrences of B but all
occurrences of B use the same universal variables. From the context it will
be clear which occurrences we are referring to.

Definition: A first order formula is in negation-implication normal form
(NINF) if every negation is applied to an atomic subformula and there are

no implications. For A E II; in N I N F and m 2 qA(n) , we define the
propositional formula [AX inductively as follows:

1. [S = t c is E Q - - ~ (~ % , [t c) (EQm-l($, 9 has been defined in a
m-1

previous lecture as /\ (pk o qk)).
k=O

2- E < tl: is ~~m-l([sK,[t$)

3. EAK is -.LAC for A atomic.

4. [A A BE is [AE A [BK
5. [A v B e is [A 6 v [BK
6. [(3x < t)A(x)K is [b < t A A (b) K ({ ~ b / v ~) ~ ~ ~) where t is not of the

form Is1 and b is a new free variable not appearing in A(x) .
7. [(VX < t)A(x)C is [-.b 5 t v A(~)~({~"v!}:;~) where t is not of the

form 1s 1 and b is a new free variable not appearing in A(x) .

8. [(Vx < <tI)A(x)K is "/~l[-k < It1 V A(kJK where k is a term with
k=O

value k and length cx log k (use binary representations, for example 1
is 1 + 2 (0 + 2)). Note that It1 < m (by our assumption on m).

Proposition: For fixed A E II; the propositional formula [AK is
polynomial-size in m (hence in m, n since m 2 qA(n)). Moreover [A]:
expresses 'A is true' in the sense that if A is true for every assignment of its
free variables to numbers of length < n , then for any assignment of truth
values to the universal variables and to the v!'s, there is a truth assignment
to the existential variables that makes [AK true.

Definition We extend the map sending A to [AX to every formula in II;
by first putting A in N I N F and then applying the previously defined map.

Definition: Given a propositional formula $J with universal and existential
variables, an e3-proof of $J is similar to an ordinary e3-proof of $J (as
defined in a previous lecture), except that we allow the existential variables
of 1C, (but not its other variables) to be defined by an extension inference.
More precisely a valid extension inference is of the form p t, cp where: (a) p
does not occur in cp and p has not occurred earlier in the proof; and (b) p
does not occur in 1C, or p is an existential variable in 1C,.

Theorem: If A(Z) E II; and S,' I- VZA(Z), then there are polynomial-size
(in n) e3-proofs of [AX(,) where q(n) is any polynomial 2 q ~ (n) .

Remark: The degree of the polynomial bounding the size of the e3-proof
can be superexponential as a function of the size of the Si -proof.

proof: We can assume without loss of generality that A is in N I N F . Since
Si I- A(Z) there is an S,' -proof of A(Z) in which every induction formula
is in N I N F and in C!. By the free cut free elimination theorem, there is
a proof P in which every sequent has the form Al,. . . , Ak+ B1,. . . , Bl
with A; E C! , B, E II; and each A;, Bj in N I N F . We will show by
induction on the number of lines of P that for each sequent as above there
are polynomial-size e3-proofs of [-.A~ v . v - .A~ v BI . . . v w]:(,)

Base case:

Logical axioms: The translation of a logical axiom B + B (B atomic)
is the propositional formula [-B] V [B] which clearly has polynomial-size
e3-proofs (we omit superscripts and subscripts).

Equality axioms: Easy. For example [l a = b v l c = d V a + c = b + d]
has short e3-proofs.

Basic axioms of Si : Consider for example [(x + y) + z = x + (y + r)&,).
We already claimed in a previous lecture that this formula has polynomial-size
3-proofs when we gave 3-proofs of PHP . The other cases are similar.

Induction step:

Case 1: (V - right). Suppose P ends with

F+ B , A

For notational convenience we will assume in the rest of the proof that r and
A are single formulas.

1) > 2) has a simple 3-proof. Now the thesis follows easily from theinduction
hypothesis.

Case 2: (A - right) .Similar.

Case 3: (Structural rule). A structural rule can be either a weakening
inference or an exhange inference or a contraction:

3.1 : (Weakening).

3.2: (Exchange).
r+ Al, B, c, A2
r+ Al, c, B , A2

3.3: (Contraction).
F+ B , B , A

F+ B , A

Weakening and exchange are easily handled by the methods of cases 1 and 2.
The problem with the contraction rule is that different occurrences of B have

different existential variables (but recall that all B's have the same universal
variables). Suppose that the first B has existential variables el, e,, . . . , the
second B has existential variables ei, E;, . . . , and the B in the lower sequent
has ey, e;, By induction hypothesis there are polynomial-size eF-proofs
P, of [-I' v B v B v A];,). We form eF-proofs Q, by concatenating the
following:

1. The proof P, , followed by:

2. The definition of ey by the following extension rule:

3. A proof of [-I?] v [B](G) v [A] from [lr] v [B](5) v [B](E?) V [A].

C a s e 4: (A-right). P ends with

A r + c , a
r+ B A C , A

We separate this inference into two steps:

r + B , A r + C , A

The first inference is not included in our original definition of the sequent
calculus but it is a valid derived rule and is easily handled by the method
of cases 1 and 2. The second inference is a structural rule and is already
handled by case 3. Note that we do not need two copies of r since [-I?] has
no existential variables so the two [-r]'s are identical.

C a s e 5: (V-left). Similar to case 4.

C a s e 6: (Cut). P ends with

Note that B must be C! . By induction hypothesis there are polynomial-size
proofs P, and Rn of [-I' v B v A](,) and of [-I' v - B v A]:(,). Now suppose
that

[B] has existential variables e l , e2, . . .

B] has universal variables p1 , p2, . . .
The first [A] has existential variables ei , ea, . . .
The second uses ey, ey, . . .

We construct a proof Q, of [I'+ A&,) by combining the following:

1. The proof P, of [-I'] v [B] (q v [A] (G)

2. The proof R, with each pi in R, changed to e; . This gives a proof of
C-rl v bB](E' /F) V [~ 1 (& ")

3. A proof of [-I?] V [A] (F) v [A](?'), obtained from the previous two
proofs and tautological inference.

4. A proof of [-I? v A] obtained using the method of case 3 for the
structural rule.

Case 7 : (C i - P I N D) . P ends with

A(libJ),r'--+ A(b), A where b is the eigenvariable.
A(O), I'+ A(t) , A

Let [tlb;,) be {(pili < q (n) } , that is (p: is the formula giving the ith bit of t .
Let U P be variables specifying the value of b. Let Pn,k be the proof of

obtained by substituting the formulas cpf-k for the variables v;b where cpf-k is
p A -p if k > i . Now put all the proofs Pn ,k together, for k = q(n), . . . , l,O,
using the method of case 6 for the cut inference. The resulting proof will be a
proof of the translation of the lower sequent whose size is still polynomial in
n . Note that this case depends heavily on the extension rule.

Case 8: (3 <-right).

Case 8.a: (sharply bounded). P ends with

r + B(s), A
I ~t l , r + 3s I I ~ ~ B (X) , A

By induction hypothesis there are polynornial-size proofs Pn of [-I' V B(s) v
9(n)-1

A]:(,) . Recall that [(3x < Itl)B(x)&,) is V [k I A ~(k)];((,). Now
k=O

there are simple e3-proofs of [s 5 It1 > s = & V s = I v . . . v s = q(n) - 11
and for each k 5 q(n) - 1 there are e3-proofs P n , k of

where the Z, ji are the existential and universal variables of B(s) and the 9, iik
are the existential and universal variables of B (Q . Now we use tautological
implication to combine the proofs P n , k to get a proof of

Finally we use the method of case 3 (structural rule) to get a polynomial-size
e3-proof of

[-s 5 ~ t l v -r v (3 ~ 5 I ~ ~) B (x) v A]

Case 8.b: (not sharply bounded). P ends with

By induction hypothesis there are polynomial-size eF-proofs Pn of

Let E ~ , E ; , . . . be the existential variables for the outer quantifier in (3x 5
t) B(x) . Let q: be the formula giving the ith-bit of s . We form the desired
eF-proof Qn by combining the following:

1. The definition of E; o qq via extension.

2. The proof Pn

3. A derivation of [is < t V -r V (S < t A B(s)) v A]

4. A derivation of ks 5 t V -r V (32 5 t)B(x) V A] obtained by changing
some of the qq to E ; .

Case 9: (V <-left). Similar to case 8.

Case 10: (V <-right)

Case 10a: (Sharply bounded). Suppose P ends with the inference

The free variable a is the eigenvariable and appears only as indicated. The
induction h~pthesis states that there are polynomial size eF-proofs Pn of
[a < It1 A r > B(a) V A]:(,). Recall that v l is the propositional variable

giving the i-th bit of the value of a . For k E N, let 4; be the formula

specifying the i-th bit of the integer k ; 4: is the formula given in the
definition of [k]. For each k 5 n , let Pn,k be the eF-proof obtained from
Pn by replacing each v,D with the formula &. So Pntk is an eF-proof of
[k 5 It/ > B(kJ v A]. Use tautological implication to combine the Pn,k 'S to
get an eF-proof of

and as usual, use the method of Case 3, structural inference, to contract the
multiple A's and thereby get an eF-proof of [TI' V (Vx 5 Itl)B(x) V A]).

Case lob: (Nonsharply bounded). Suppose P ends with the inference

a < t ,I '+ B(a),A
I' + (Vx 5 t)B(x), A

where now t is not of the form Is1 for any term s . The induction hypothesis
gives polynomial size, eF-proofs Pn of [a 5 t A r > B(a) V Recall
that pB are the universal variables used to represent the value of x in
[(Vx < t) ~ (x)] . We can transform Pn by replacing the propositional variables
vq with the universal variables p; and using a simple tautological implication
to get an eF-proof of [lr V (Vx 5 t)B(x) V A].

Case 11: (3 5: left). This case is dual to Case (10) and is proved in
exactly the same manner.

Q.E.D.

Math 271 - Topics in Weak Formal Systems

Lecture Notes, Set #11
May 6-9,1988

Instructor: Sam Buss
Notes By: Sam Buss

As an application of the theorem on page 6 of the previous set of notes, we
will prove a theorem of S. Cook which shows that the extended Frege proof
systems are the strongest proof systems which can be proved consistent by Si .

For the rest of the notes, let eFo be an fixed extended Frege proof system with
language (7, V, A) . Earlier in the course we showed that any two extended
Frege proof sys tems in the same language p-simulate each other, so the choice
of axiom schemas for eFo is not important. Every formula [A] is a formula in
the language of eFo and the theorem from the previous lecture notes applies
to eFO.

Theorem 2 below states that if B is a propositional proof system such that
S,1 proves that every consequence of B is a tautology, then eFO p-simulates
8. Before we can state and prove this precisely, we need to see that S;
can define metamathematical concepts such as "propositional formula" and
"truth assignment'' :

Definition: We assume there is some natural way to assign Godel numbers
to propositional formulas and to truth assignments. We write 'q5' to denote
the Godel number of 4. For example: assign small Godel numbers to logical
symbols 1, V and A and to parentheses and assign 100 + i to the variable
pi . If A is a1 an then the Godel number 'A1 = ('al ', . . . , 'a ,') .

Truth assignments T will be coded in an unusual but compact way. If T is a
truth assignment and A is a formula then the Godel number of T for evaluation

of A is the integer 'rl such that the i-th bit of its binary representation is
equal to 1 if and only if the i- th propositional variable appearing in A is
assigned "True" by T . Note that the Godel number of T depends on the
formula being evaluated; or conversely, a given integer can represent more
than one truth assignment, depending in the formula being evaluated.

The formula True('A1, '7') is a A! formula of Si which asserts "'A1 is a
Godel number of a propositional formula, 'T' is the Godel number of a truth
assignment and T(A) = T." (We use T and I as symbols for truth and
absurdity, respectively.)

The property of m being the Godel number of a propositional tautology is
defined in S: by the following formula:

Note that because of our efficient way of coding truth assignments, the Godel
number of a truth assignment for A is always less than the Godel number of
A. Thus, since True is a A! formula, Taut is a II! formula.

Lemma 1 There is a polynomial p (n) such that the following holds. If A
i s a propositional formula with variables pi,, . . . ,pi, (in increasing order of
subscript), then there is a n eFo proof of

of size less than p(lA() where q i s a n appropriate bounding polynomial. The
substitution (vj/xij) substitutes the t ruth value r(xij) which is given by the
j - t h bit of T for the variable xij in A (this i s done for each j) .

The import of Lemma 1 is that e F o can give polynomial size proofs of the
fact that (the translation of) the A! formula True correctly defines the truth
value of a given propositional formula. We shall not prove this lemma here;
however, the essential idea is similar to the proof of the theorem on page
6 of the previous set of notes. Namely, the S,' definition of True when
translated into propositional form r rue] can be effectively reasoned with

by the extended Frege proof system. To properly prove Lemma 1, we would
introduce a new A! formula TrSbFmla('A1, 'T', i) which asserts that if T is a
truth assignment to the variables of the propositional formula A and if B is
the subformula of A whose principle logical connective is the i-th symbol in A
then T(B) = T . The extended Frege system eFo can prove, successively for
larger and larger subformulas B with principle connective the iB-th symbol
of A, that

[~ r ~ b ~ m l a (~ ~ ' , 'rl, i B)] r B (v l / x i j)

Theorem 2 (Essentially due to Cook [STOC 19751.) Let G be a propositional
proof system with language (1, V, A) and let G be a -definition of G . If S,1
proves

VmVw(G(w) = m -+ T a u t (m))

then eFo p-simulates G .

Theorem 2 is a consequence of the next two lemmas:

Lemma 3 If A(b) is a C! -formula with only b as free variable, then there
is a polynomial q (n) such that whenever k E N and N + A (k) there is an

e ~ o - p r o o f of [~ (k)] & ~ of size 5 a(lk I) .

Proof This is very straightforward. The eFo-proof defines the existential
variables of [A@] equal to the values that make A (k) true and then for
each subformula B of [A(&] either proves or disproves B (in order of the
complexity of B) .

Lemma 4 There is a polynomial p such that if G(w) = 'A1 then there is an
eFo-proof of A of length 5 ~ (1 x 1) .

Lemma 4, of course, immediately implies Theorem 2.

Proof of Lemma 4 and Theorem 2. By the main theorem of the previous set
of lecture notes, there is a polynomial pl such that eFo has proofs of

of size 5 pl (n) , where q is a suitable bounding polynomial. Also, by Lemma 3,
there is a polynomial p2 such that eFo has a proof of

of size 5 p2(lxl). This is because E is polynomial time computable and hence
I'A1/ 5 pt(lxI) for some polynomial pt . Thus there exists a polynomial p3
such that there is an eFo-proof of

of size 5 p3(lxl). Note that pl , pz and are all independent of A. Now by
Lemma 1 there is a polynomial p (again independent of A) such that there is
an e& -proof of A of size 5 ~ (l x 1).

Corollary 5 If eFl is an extended Frege system whose language includes
(1, V, A) then e& can p-simulate eFl in the following sense: There is a
polynomial p such that for every tautology A in the language (1, V , A) i f eFl
has a proof of A of size n then eFo has a proof of A of size 5 p(n).

Proof I t is straightforward to show that Si proves that every consequence
of the extended Frege proof system eFl is a tautology. This is done by using
LIND to show, for i 5 n that the i- th formula in the proof is a tautology.
Since Taut is a IT! -formula and Si implies IT!-LIND; this is possible to carry
out. The corollary now follows from Theorem 2.

R. Reckhow [Toronto Ph.D. dissertation, 1975, "On the lengths of proofs in
the propositional calculus"] defined a more general notion of p-simulate and
simulate than we have used in this course. He also showed that any two
extended Frege systems (with no restrictions on their languages) p-simulate
each other. We shall not give the general definition of p-simulation here;

instead we note that Corollary 5 shows that there is no extended Frege proof
system which is stronger than eFO in terms of proving tautologies in the
language (1, V, A). The next theorem proves another piece of Reckhow's
theorem by showing that eFO is also the weakest possible extended Frege
proof system.

Theorem 6 (Reckhow). Let e31 be a n extended Frege proof sys tem with
language Ll . Then there is a translation a of formulas in the language
(1, V, A) into L1 -formulas such that

(a) For all formulas A, a(A) is tautologically equivalent to A; and la(A)I is

O(14) .
(b) There is a constant c such that if A has a n e30-proof of size n then a(A)

has a n e 3 ; -pro0 f of size 5 c n .

Proof We begin by describing the translation a. Since e 3 ; is an extended
Frege proof system, its language L1 is complete. In particular there are
L1 -formulas &(p), +A(p, q) and &(p, q) such that &(p) is tautologically
equivalent to i p and q5v (p, q) is tautologically equivalent to pV q and similarly
for We claim that there further exists formulas $,(p), $A(p, q) and
$,,(p, q) which satisfy all of the above and additionally p (resp., p and q)
appear exactly once in $, (resp., in Gv and in $^).

It should be noted that other variables besides p (and q) may occur in the
formulas. In this case, the other variables will be reassigned to be new
variables that are used only as placeholders. (If the symbols T or I are in
L1 then either of them may be used as replacements for the extra placeholder
variables.

An example of what is happening is as follows: suppose L1 contains only
the "nand" symbol I . Then 4, might be p I p. However this would not be
acceptable as for $, since p occurs twice. If T were in the language we could
take p I T as $, . But in this case we have to use a new variable x and take
$, to be p ((x I (x 1 x)) . It is now easy to give formulas $v and $,, .

So, if T is not LC1 we will instead let T denote an LC1-tautology which
uses only the new variable x . Similarly, I will denote some unsatisfiable
LC1 formula involving only the variable x .

Suppose 4, contains n occurrences of the variable p (the only other variable
in $, is w.1.o.g. x . Let 4: denote the formula from 4, obtained by replacing
every x by T ; note that 4: still is tautologically equivalent to ~ p . Now
let $!, be the formula obtained by replacing the first i occurrences of p in
Fl by T and the remaining n - i occurrences by I. Note that each $!,
is either a tautology or is unsatisfiable. Since 4: is a tautology and $I: is
unsatisfiable there must exist a k such that 4: is a tautology and is
unsatisfiable. Now let $, be the formula obtained from 4: by changing the
first k occurrences of p to T , changing the last n - k - 1 occurrences of p
to I and leaving the k + 1-st p untouched. It is easy to see that $, satisfies
the desired properties.

A similar but more complicated construction yields the formula $,, . First let
4: be obtained by replacing each x in $,, by T . Now let $? be obtained
from 4: by replacing the first i occurrences of p and the first j occurrences
of q be T and changing the rest of the p7s and q 's to I. Let contain r
occurrences of p and s occurrences of q. We claim that there are values k
and m such that the formulas $:", $:"+I , $ k f ,, lpm and $i+l'm+' satisfy the
following condition:

(*) either (a) exactly three of them are tautologies and the other
is unsatisfiable or (b) exactly one of them is a tautology and the
other three are unsatisfiable

This is proved by noting that $?O, $?", $2' and $2" satisfy condition (*)
since is equivalent to p A q. We can now do a "binary search" to find
k by noting that if kl < k2 < k3 and ml < m2 and if $ 2 ~ ~ ' ~ $f;'*m2,
$ p , m l and $ppm2 satisfy condition *) then either $ 3 ; ' ~ ~ ' , $F7"", $Fyml

m &,m2, &,"I and $Fvm2 satisfy condition (*) or $,, , and $2'm2 satisfy
condition (*) . Similarly a binary search yields a value for m. Let ~ (p , q) be
the formula obtained from 4: by replacing the first k occurrences of p and
the first m occurrences of q by T and replacing the last r - k - 1 occurrences

of p and the last s - m - 1 occurrences by I. Then ~ (p , q) contains exactly
one occurrence of each of p and q and as a Boolean function of p and q
assumes the value T exactly three times and I once or vice-versa. Now $,
can be defined as

$- (x ($ - (P) , + - (q))

where the $,'s may be omitted as necessary to make $, tautologically
equivalent to p A q .

The formula qV can easily be defined similarly or in terms of $, and $,, .

Now we are ready to describe the translation a . We define a (A) inductively
on the complexity of A by:

(a) a (p i) is p i ,

(b) 4 - B) is $, (a (B)) ,

(c) a (B A C) is $ A (~ (B) , a (C)) ,

(d) a (B V C) is $v(a(B) , a (C)) ,

Since each p and q occurs at most once in $,(p) , +,(p, q) and $,(p, q) it is
easy to verify that the size of a(A) is linear in the size of A.

The above completes the proof of part (a) of Theorem 6. The proof of
part (b) is relatively straightforward; if an eFo proof consists of the formu-
las Al , A2, . . . A,, then eFl can emulate the proof by proving successively
a (A l) , a (A2) , . . . , a(A,) . The size of the resulting eF1 proof can be made
linear in the size of the eFo-proof.

It should be noted that no reverse translation may exist of the type given in
Theorem 6. For example, the formula p ++ q can not be expressed in the
language (1, V , A) by a formula which contains only one occurrence each of
p and q .

Math 271 - Topics in Weak Formal Systems

Homework #1
Due February 12,1988

Instructor: Sam Buss
UC Berkeley

1. Give cut-free sequent proofs of:

(a) A A B + A v B .

(b) +AV 1A.
Can this be proved without the use of a structural inference?

(c) A v (B v C) + (A V B) V C

(d) (1A) A (i B) + i (A V B)

2. Suppose the propositional sequent calculus has been defined so that
initial sequents A + A must have A atomic. Let B be a formula of
size n; give a polynomial upper bound on the length of the shortest cut
free proof of B + B .

3. Expand the sequent calculus to allow the symbol t, (logical equiva-
lence) in the language. You should give additional rule(s) of inference
and show that the soundness theorem, the completeness theorem, the
cut elimination theorem and the subformula property all still hold.

4. Suppose P is a cut free proof of A, A V B , r+ A . Show there is a
cut free proof P* of A , r + A with IP*l < IPI and with the number
of sequents in P* less than or equal to the number in P . Use the
convention that only atomic formulas are allowed in the initial sequents.

5. Cut free proofs may also be represented as sequences of formulas rather
than as trees. (In a tree-like proof it may be necessary to rederive an in-
termediate sequent many times.) Prove that there exists a cut free proof
sequence of the sequent I?,+ A, (from the proof of Theorem A-1)
with size polynomal in n .

Research Problems. These are questions I do not know the answer to.
Especially difficult problems are marked with an asterisk.

*6. Give either a non-polynomial lower bound or a sub-exponential upper
bound on the length of sequent calculus proofs (with cuts) of valid
sequents.

7. Try to give a 0(n3) lower bound on the size of such proofs. A quadratic
lower bound is not too difficult to achieve.

8. When cut free proofs are coded as sequences instead of trees, is there an
infinite family of valid formulas which require exponential size cut free
proof sequences?

Math 271 - Topics in Weak Formal Systems

Homework #2
Due February 26,1988

Instructor: Sam Buss
UC Berkeley

1. A set A of clauses contains x as a pure literal if x appears in some
clause in A but T does not. Let A' be obtained by discarding every
clause in A containing the pure literal x . Show that A' is satisfiable iff
A is.

2. Suppose there is a resolution refutation of A with n inferences. Further
suppose C c D E A . Prove that there is a resolution refutation of
(A \ {D)) U {C) with 5 n inferences. This justifies the subsumption
principle; namely, you may discard any clause which is a proper superset
of any other derived or initial clause.

3. (Elimination of Tautologies) Suppose there is a resolution refutation of
the set A U { p , ~) which is n inferences long. Prove that there is a
resolution refutation of A with 5 n inferences.

4. Show that resolution with limited extension (polynomially) simulates
the cut-free sequent calculus.

5. A (tree-like) resolution derivation is regular if each variable is resolved
on at most once along each branch of the proof. Suppose there is a
tree-like resolution derivation of C from A with n inferences. Prove
that there is a regular, tree-like, resolution derivation of a subset of C
from A with 5 n inferences.

6. A Horn clause is a clause containing at most one unnegated propo-
sitional variable. Show that the result of applying resolution to Horn
clauses is itself a Horn clause.

7. A unit resolution inference is one in which one of the resolvands (i.e.,
parent clauses) is a singleton. Suppose A is an unsatisfiable set of Horn
clauses.

(a) Show A contains a singleton or the empty clause.

(b) Show that the empty clause can be derived from A by unit resolu-
tions.

(c) Give an example of an unsatisfiable set of clauses (not all Horn)
from which there is no unit resolution derivation of the empty
clause.

8. An input resolution derivation from A is a derivation in which every
resolution inference has one its resolvands a clause in A.

(a) Show that if there is an input derivation of the empty set from A
then A contains a singleton clause or the empty clause.

(b) Show that there is an input derivation of the empty clause from A
if and only if there is a unit derivation of the empty clause from A .

(c) In this case, is there always a derivation of the empty clause from
A which is both a unit derivation and an input derivation?

Research Problems. These are questions I do not know the answer to.
Especially difficult problems are marked with an asterisk.

9. Let P H ~ ~ express the pigeonhole principle that there is no one-to-one
function mapping a set of cardinality n2 into a set of cardinality n .
How many inferences long are the shortest resolution proofs of these
propositional formulas?

10. Does resolution simulate cut-free Gentzen systems (with respect to
disjunctive normal form formulas)?

11. Does a cut-free Gentzen system simulate resolution (with respect to
disjunctive normal form formulas)?

H - J

Math 271 - Topics in Weak Formal Systems

Homework #3
Due April 15,1988

Instructor: Sam Buss
UC Berkeley

1. The TF-substition rule allows you to infer either 4(p/T) or 4 (p / l)
from 4 where p is a propositional variable and all of the occurences of
p in 4 must be replaced. T and I represent some fixed tautology and
unsatisfiable formula, respectively. Show that a Frege system plus the
TF-substitution rule simulates a substitution Frege system in the same
language.

2. The renaming rule allows you to infer $(p/q) for any propositional
variables p and q. Show that a Frege system plus the renaming rule
simulates a substitution Frege system in the same language.

3. Let 1\41 Ie3 (resp., 1 lq511fph) represent the minimum number of symbols
(resp., formulas) in an extended Frege proof of a tautology 4. Show

fmla that there is a polynomial p such that I1411e3 5 ~(141, llq511e3) .

4. DTIME(t(n)) is the class of predicates recognized by some deter-
ministic multitape Turing machine that runs in time t(n) for all in-
puts of length n . Prove that DTIME(n2) is a proper superset of
DTIME(2n) . In the proof that you give, to what extent can the run
time bounds n2 and 2n be replaced by arbitrary bounds tl(n) and t2(n)
with tl(n) > t2(n)?

5. Show that DTIME(t(n)) = DTIME(c . t(n)) for c 2 1 a constant
and t time-constructible with t(n) 2 2n for all n .

6. DSPACE(s(n)) is the class of predicates recognized by some deter-
ministic multitape Turing machine that uses work space s(n) for all
inputs of length n . Prove that DSPACE(n2) is a proper superset of
DSPACE(n) . In the proof that you give, to what extent can the space
bounds n2 and n be replaced by arbitrary bounds tl(n) and t2(n) with
t~ (n) > t2(n) ?

7. Show that DSPACE(t(n)) = DSPACE(c. t (n)) for c > 0 a constant
and t space-cons tructible.

8. Let ATIME(t(n)) be the class of predicates recognized by an al-
ternating Turing machine that runs in time t(n). Show that
ATIME(t(n)) c DSPACE(t(n)) for t a time-constructible function.
Hint: first show that ATIME(t(n)) DSPACE((t(n))2).

*9. NSPACE(s(n)) is the class of predicates recognized by some non-
deterministic Turing machine that runs in space s(n) for all inputs
of length n . Show that NSPACE(t(n)) C ATIME((t(n))2) for t
a time-constructible function. Hint: try recursively computing the
predicate EM($, @, 9, m) which states that there is a nondeterministic
execution of M using space t(lxl), of 5 m steps, begining with the
configuration @ and ending with the configuration a.

10. Use theaboveresults to show that NSPACE(t(n)) C_ DSPACE((t(n))2)
for t time-constructible. (Actually the assumption on t can be greatly
weakened .)

You will probably wish to use the following theorem to prove 4 and 6:

Theorem. If a predicate is accepted by a time t(n) bounded (resp, space
s(n) bounded) Turing machine with k work tapes, then it is accepted by a
time t(n) log t(n) (resp, space s (n)) bounded Turing machine with two (resp,
one) work tapes.

Research Problems. These are questions I do not know the answer to.
Especially difficult problems are marked with an asterisk.

*ll. Does a Frege system simulate an extended Frege sys tern?

*12. Is DSPACE(t(n)) equal to ATIME(t(n))?

Math 271 - Topics in Weak Formal Systems

Homework #4 (Extra Credit)
Due April 15,1988

Instructor: Sam Buss
UC Berkeley

1. Fill in the details of paragraph (a) on page 36 of chapter 2 of Bounded
Arithmetic. Specifically, prove the existence and uniqueness conditions
for the max and min functions in Sl .

2. Prove that Si can A!-define every predicate in P using the fact that
Si can Ci -define every polynomial time computable function.

3. Show that the Numones function can be C!-defined without the use of
the # function. You may omit proving the uniqueness and existence
conditions in Si .

4. The Q-MIN axioms are

for A a formula in 9. Show that relative to the base theory Si , Cf-MIN
is equivalent to Cf-IND.

Research Problems. These are questions I do not know the answer to.
Especially difficult problems are marked with an asterisk.

5. It is known that Cf+, -replacement implies ~ f - P I N D which in turn
implies Cf-replacement (relative to the base theory S i). Do either
of these implications reverse? Also, what connection is there between
Cf -1ND and C!+, -replacement? Does either one imply the other?

6. Does S; prove the A!+l -PIND axioms? Here A!+l means with respect
to s;.

*7. Redo the bootstrapping for S; , the theory without the # function.
Prove (or disprove) that S; can not prove its own bounded consistency.

Math 271 - Topics in Weak Formal Systems

Homework #5
Due May 6,1988

Instructor: Sam Buss
UC Berkeley

1. Show that the sequent A(b), (Vx)(A(x) > A(x + 1)) + A(b + 1) is
provable in LKB. For this problem and the problems below, you may
assume without proof that B+ B is LKB-provable for all formulas
B.

2. Prove that any formula provable in the sequent calculus version of Si
is provable in the theory Si as originally defined. (In other words show
that the PIND axioms imply the PIND rule.)

3. Show that (3x 5 t)A+ (3x)(x 5 t A A) is LKB-provable.

4. Show that (3x)(x 5 t A A)+ (3x 5 t)A is LKB-provable.

5. Prove Craig's interpolation theorem for LK by induction on the number
of inferences in a cut free proof. (You may assume that the first order
language contains only predicate symbols and no function symbols .)

