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I. Propositional Sequent Calculus 

A. Definitions 

Symbols such as po, pl, . . . , p, q, r represent propositional variables. (, ) 
and the comma are used as punctuation. The logical connectives all have 
their usual meanings. a typically stands for a truth assignment, that is, a 
function from the variables to a convenient two-element set such as {T,F). 
The natural extension of a to the set of formulas is denoted by b. Formulas 
are defined in the standard recursive fashion. 

Definition: A CEDENT is a finite, possibly empty, sequence of formulas. 

Definition: A SEQUENT is a string of the form I?+ A where I' and 
A are cedents. I? is the ANTECEDENT; A is the SUCCEDENT. 

Given a truth assignment a, we define the truth value of I?+ A by 

where the A; are the terms of I?, and the B; are the terms of A. We write 
I= I?+ A if a(r+ A) = T for all truth assignments a .  



B. Rules of Inference. 

In the following, A and B range over formulas; I? and A range over cedents. 
We assume for the nonce that the language for formulas comprises A, V, 
and 1. We write A , r  to stand for the sequent whose first term is A 
and whose succeding terms are those of I?. The notions of PRINCIPAL 
FORMULA and SUCCESSOR are defined by cases as the rules are listed. 

1. Structural Rule: If r* > r (as a set), and A* > A (as a set), then the 
following syllogism is a valid inference. 

If A is a term of (or of A), then the SUCCESSOR of A is the 
first occurrence of A in I?* (or in A*). There is no principal formula 
associated with the structural rule. 

2. (-right) Rule: 

The indicated occurrence of the formula 1 A  is the SUCCESSOR of 
the indicated occurrence of the formula A. It is also the PRINCIPAL 
FORMULA associated with the (1-right) Rule. If B is a term of r, 
then the SUCCESSOR of B is the first occurrence of B in l A ,  r. If B 
is a term of A, then the SUCCESSOR of B is the first occurrence of 
B in A. (The successors of these so-called side formulas are all defined 
similarly and are henceforth omitted.) 

3. (l-left) Rule: 

The indicated occurrence of the formula 1 A  is the SUCCESSOR of 
the indicated occurrence of the formula A. It is also the PRINCIPAL 
FORMULA assoiciated with the (l-left) Rule. 



4. (A-right) Rule: 

The indicated occurrence of the formula A A B is the SUCCESSOR 
of the indicated occurrences of the formulas A and B, It is also the 
PRINCIPAL FORMULA associated with the (A-right) Rule. 

5. (A-left) Rule: 

The indicated occurrence of the formula A A B is the SUCCESSOR of 
the indicated occurrence of the formula A. The indicated occurrence of 
the formula B A A is the SUCCESSOR of the indicated occurrence of 
the formula A. In both variations of the Rule, the indicated occurrence 
of A A B or B A A is the PRINCIPAL FORMULA. 

6. (V-right) Rule: 

The indicated occurrences of the formulas A V B and B V A are both 
SUCCESSORS of the indicated occurrences of the formula A, respec- 
tively. They are also the PRINCIPAL FORMULAS of their own vari- 
ations of the (V-right) Rule. 



7. (v-left) Rule: 

The indicated occurrence of the formula A V B is the SUCCESSOR 
of both the indicated occurrence of A and the indicated occurrence of 
B. It is also the PRINCIPAL FORMULA associated with the (v-left) 
Rule. 

8. Cut Rule: 

The notions of successor and principal formula are not defined for the 
Cut Rule. 

C. Metatheorems 

Definition: A sequent is an  AXIOM if it has the form A + A for some 
formula A. 

Definition: A sequent calculus PROOF is a finite tree with a unique root 
whose nodes are labelled with sequents in such a fashion that each leaf of 
the tree is labelled by an  axiom, and all other sequents are inferred from 
their (1 or 2) children by a rule of inference. The sequent labelling the 
root of the tree is the ENDSEQUENT and is the sequent PROVED. 

Definition: A CUT-FREE proof is a sequent calculus proof with no cut 
inferences. 

Definition: The LENGTH of a sequent A, written Al, is 
the number of characters it comprises. 

Lemma (0) In any rule of inference but the Cut Rule and the Struc- 
tural Rule, the length of the conclusion is greater than the length of any 
hypothesis. 



proof: Omitted. -I 

N.B. We will abuse terminology and say that the formula A is proved when 
in actuality the sequent + A is proved. 

Theorem (1) (Soundness) If I?+ A has a sequent calculus proof, then 
r+ A. 

proof: It is a simple matter to check that all the axioms of the sequent 
calculus are valid, and that all the rules of inference preserve validity. 
Hence any provable sequent is valid. Details are left to the interested 
reader. -I 

Theorem (2) (Completeness) If I?+ A, then there is a cut-free proof 
of I?+ A. 

proof: We construct a tree with unique root whose nodes are labelled 
with sequents. Label the root of the tree with I'+ A. Now suppose 
we have constructed the tree up to a certain height. Let II + A be 
any sequent on the periphery of the tree. Let A be the first non-atomic 
formula occuring in II+ A. We continue to construct the tree as 
described: 

Case 1: B is 1 C  and B E A 

where A = l C ,  A*. For notational convenience, we assume that that B 
is the first formula of A. In truth, l C ,  A* may abbreviate something of 
the form Al ,  4, A2. We make similar assumptions in the cases below. 

Case 2: B is C A D and B E A 

rI+ C,A* rI+ D,A* 

\ I 
rI+ c A D,A* 



where A = C  A D,  A*. 

Case 3: B is C  V D and B E A 

where A = C  V D,A*.  

Case 4: B is i C  and B E II 

where II = i C ,  II* .  

Case 5: B is C  V D and B E II 

where II = C  V D , n * .  

Case 6: B is C  A D and B E II 

where I I =  CA D,II*. 

We stop constructing the tree when every formula at a leaf is atomic. 
The process must come to an end because the number of logical connec- 
tives in the sequents decreases as the tree is constructed. 



Now assume there is a branch in the tree which ends at  a leaf labelled 
with such a sequent II + A that no variable p appears in both the an- 
tecedent and the succedent. Define a truth asignment a by the following 
rule: 

T i f p ~ I I  

otherwise anything 

Claim: If @ is any sequent on this branch, then a(@) =F. Inspection of 
the six cases above reveals that falsehood is preserved downwards, and a 
assigns the leaf of this branch the truth value F. Since I? + A is a t  the 
bottom of this branch, it too must be assigned falsehood. Fortunately, 
I?+ A is valid by hypothesis, so no such branch exists. We conclude 
that for every sequent II+ A at a leaf, the set II n A is non-empty. 

We now discuss how to convert the tree into a cut-free proof. First of 
all, for any sequent II+ A at a leaf, find a variable p E n A and 
tack above the leaf the sequent p+ p as axiom. 

Now observe that the tree-pieces in cases 1, 2, 4, and 5 are valid infer- 
ences as they stand provided we restructure the bottom sequent so that 
the interesting formula is the first term of its cedent. To convert the 
configuration of case 3 into a string of valid inferences, we doctor it as 
follows: 

The conversion of case 6 is similar; the only difference is the application 



of the (/\-left) Rule instead of the (v-right) Rule. There is also a con- 
siderable amount of restructuring as before. It is left to the doggedly 
dubious student to confirm that the converted tree (together with its 
labelling) is indeed a sequent calculus proof. -I 

Corollary (3) (Cut-Elimination) If I?+ A has a sequent calculus proof, 
then it has a cut-free proof. 

proof: This follows immediately from the Soundness and Completeness 
Theorems. -I 

Lemma (4) (Subformula Property) In any rule of inference other than the 
Cut Rule, each formula in the hypothesis is a subformula of some formula 
of the conclusion. In particular, in a cut-free proof of I?+ A, every 
formula appearing in the proof is a subformula of a formula in I?+ A. 

proof: By induction on the rules of inference. -I 

D. Results Concerning the Enormity of Sequent Calculus Proofs 

Definition: The SIZE of a proof is the number of occurrences of symbols 
in the sequents in the proof, i.e. the symbols inherent to the tree do not 
count. The size of a proof P is denoted [PI. 

We engage in a stream-of-consciousness estimate on the size of the proof 
generated in the completeness theorem. Let n = [I?+ Al. Then the 
length of any sequent in the unmodified tree is less than or equal to  n ,  
thanks to the Subformula Property. 

There are fewer than or equal to n subformulas in I?+ A. Given any 
subformula in I?+ A, it is possible to determine whether it will appear 
in the antecedent or the succedent of a previous formula. Observe that 
the only rules of inference in which the principal formula jumps across the 
arrow are the 1 Rules, so we only need to count the number of negation 
signs binding on the formula in question. So to specify a sequent in the 
tree, it suffices to say which subformulas of I?+ A occur in it (up to  their 
order). We have to distinguish among different occurrences of a subformula 



in r+ A. So there are fewer than or equal to 2" distinct sequents in 
the tree. So the unmodified tree has size less than or equal to n2". 

We must add the structural inferences which reshaped the tree into a 
proof, and the conversions for cases 3 and 6. The structural inferences can 
at most double the size of the tree. Each new sequent in the case-3-and-6 
conversions is at most twice the length of the original sequent, and there 
are three of them. Hence these coversions can introduce at most six extra 
tree-lengths. In total, muliplying by 8 gives an upper bound of 8n2" on 
the size of a cut-free proof of I?+ A. Note that this is just about on the 
same order as the size of a truth table. 

How good is our upper bound? It's difficult to say. It is not known whether 
there is a subexponential upperbound on the size of proofs with cuts. If 
there is a polynomial bound, then NP = co-NP (defined at the end of the 
second set of notes). 

To continue our investigation, we add the character > to the language, as 
well as the following new rules of inference: 

9. (>-right) Rule: 
A,r+B,  A 

10. (>-left) Rule: 
r + A , A  B , r + A  

The manic student can verify in detail that the Completeness Theorem 
and the Subformula Property remain valid in this expanded system. In 
particular, our calculated upper bound still works. 

Definition: A function f : N + N is O(g) for some g : N + N iff there 
exists a constant c > 0 such that for all n E N, f (n) I: c g(n). 



Definition: A function f : N -+ N is o(g) iff for every constant c > 0, 
there is some N E N such that for all n  > N ,  f ( n )  < c g(n) .  

Definition: A function f : N -+ N is O(g) iff there exists a constant c > 0 
such that for all n  E N ,  f ( n )  > c g(n). 

Definition: A function f : N -+ N is w(g) iff for all constants c > 0, there 
is some N E N such that for all n  > N ,  f ( n )  > c g(n) .  

Definition: A function f : N + N is 8 ( g )  iff f is both O(g) and O(g). 

Let's now define some notation. Let cl, d l ,  c2, d z ,  . . ., be propositional vari- 
ables. Keeping in mind that our convention for serial conjunction is asso- 
ciation from left to right, we define 

Let I',+ A, be Al V B1, .  . . , A ,  V B,+ c,,d,. It is fairly easy to 
verify that IFn+ A,( is O(n2).  

Lemma (5) I',+ A, has a proof of size O(n3). 

proof: The sequent 

Fi, Ai+1 V Bi+l ci+l, di+l 

has a proof with 13 sequents, and each sequent has O(i2) symbols. Hence 



has a cut-free proof of size O(i2). By putting these sequents together 
with cuts and structural inferences, one gets a proof (with cuts) of size 
O(n3) of I',+ A,. -1 





Math 271, Set #2 
Date: Jan,29-Feb,3 

Instructor: Sam Buss 
Notes by: Maria Bonet. 

Theorem A-1 : for arbitrary large m, there exists a valid sequent I? ---t A 
of size m such that: 

a) I? k A has a proof with cuts of size S(m1.5) 
b) Any cut-free proof of I? + A has > 2 6  sequents. 
References: 

R. Statman in Annals of Mathematical Logic no.15 (p.225-287), 1978. G. 
Takeuti: private communication, 1987. The proof presented below is a 
slightly simplified version of Takeuti's proof. 

Let's recall the following notation: 

i 

F; = A (c; V d;) we associate from left to right 
k= 1 

Al - Cl  

A;+i F; > C;+I 

B1 dl 

Bi+1 = Fi > di+l 

Let I?, + A, be: 

IF, + A,[ = S(n2)  
To prove Theorem A-1 it suffices to show: 

a)r,  + A, has a proof with cuts of size S(n3)  = S((n2)1-5) 
b) A cut-free proof of I?, + A, has 2 2" sequents 
Part a) was done in Lemma A-2( Fred Teti's Lemma 5) 

Before proving Theorem A-1 we'll prove the following lemmas: 

Lemma A-3: If P is a cut-free proof of A V B, r + A then there exists 
a cut-free proof Pl of A, I? + A with I PI I 5 I P 1 and the number of sequents 
in PI 5 number of sequents in P .  



Notation:# Seq.(P)= the number of sequents in P .  

proof: Find all the direct ancestors of the indicated A V B. Change them 
to A. The result is a tree PI of sequents which can be modified to be a proof 
by discarding some of the branches: 

It can fail to be a proof in a V-left inference. In P we have: 

In Pl it becomes: 

In this case we have to discard B,I'* + A and everything above, and 
optionally one of the A, I'* + A 

(This proof could also fail if we were to allow axioms with non atomic 
formulas. In that case we could have the sequent A V B + A V B as a leaf 
in P, but in PI we might get A + A V B. This is easily derived but at the 
cost of one extra inference.) 

In the case of the structural rule, if in P we have, for example, 

in Pl it could become either one of the following choices: 

both choices are valid inferences. QED (lemma A-3) 

Lemma A-4: if P is a cut-free proof of I' + A /\ B, A then there is a 
cut-free proof Pl of I' --, A, A with I Pl I I I PI and #seq(Pl)I #seq(P). 

Lemma A-5: if P is a cut-free proof of A > B, I' + A, then there are 
cut-free proofs Pl and P2 of B,I' + A and of I' + A,A with IP;I 5 [PI 
and #seq.(P;) I #seq. (P) .  

Lemma A-6: Any cut-free proof of I', + A, has 2 2" sequents. 



proof: the idea is to have to use many V-left rules and keep the two 
branches. Since there are n disjunctions in l?, this would lead to 2" distinct 
branches in the proof tree. However, in general just having n disjunctions in 
l7, won't lead to 2" branches, since if one of the two branches gets canceled 
all the time, the proof can become polynomial. Example: 

has polynomial size tree-like cut-free sequent calculus proofs. 
Let P be a cut-free proof of l?, - An with the fewest possible number 

of sequents. The last inference of P is either structural or a V-left operation 
with one of the A; V B; as principal formula. 

The final nonstructural inference of the proof is of the form: 

We are being imprecise in our notation: the E;'s can occur multiple times 
and in arbitrary order and, strictly speaking the A; V B; should be the first 
formula in the lower sequent. However, we assume without loss of generality 
that no other occurence of A; V B; is in the upper sequents. This is because 
P is the shortest possible proof, and by problem 4 (HW #I), a cut-free proof 
of A, A V B, l? - A can be shortened to a cut free proof of A, l? - A. 

It will suffice to show that any cut-free proof R1 (S1) of 

can be shortened to get a proof of l?,-l -+ An-l with fewer sequents in 
the proof. Then, 

#seq.(P) > #seq(R1) + #seq(S1) 
> 2.#seq(shortest proof of l?n-l -+ An-1) - 

#seq.(P) 2 2". 

Let's see how we can shorten PI to a proof l?,-I - An-l: 



case 1: i=n. 
Suppose R1 is a cut-free proof of El,. . . , En-1, A, -+ c,, d,. 
Since A, = Fn-l > c, by lemma 5, R1 can be shortened to a cut-free proof 
R2 of 

El,. . . , En-1 -+ Fn-~,cn,dn with #seq.(Rn) 5 #seq.(Rl). 

Since Fn-1 Fn-2  A ( ~ ~ - 1  V dn-1), by lemma 4 there is a cut-free proof R3 of 

The variables c,, d, occur only as indicated in the succedent. Hence c,, d, 
were introduced by weakening. So R3 can be shortened to a cut free proof 
R4 of 

E l , .  . ., En-1 -+ cn-1 v dn-1 

and this can be shortened to a cut-free proof of 

and #seq.(R1) 5 #seq.(the shortest proof of r,-1 -+ A,-1). 

Case 2: 1 5 i < n. 
Let R1 be a cut-free proof of El , .  . . ,Ai ,  . . . , E n  -+ c,, d, 
Idea: we are going to delete any occurrence of c; V d; from the proof. Let, 

The goal from now on is to shorten the proof Rl to a proof of: 



Since A; is Fjm1 > c; by lemma A-5, R1 can be shortened to a cut-free proof 
R2 of 

E1,..-,E;-l,ci,E;+l,.-.,En --+ cn,dn 

In R2 replace every occurence of the subformula F; by Fi-l to obtain a new 
tree of sequents R3. This changes evay Fj to F;, Aj to A:, Bj to B: (if 

j 
i = 1 replace each Fj by /\ ct V dt and replace E2 by c2 v d2). 

1=2 
The only case where this is not a valid proof tree is where Fi was a 

principal formula of in inference in R2. For instance 

This becomes after the substitution: 

To fix this modify R3 by discarding II --+ c; V d;, A and the tree above. Now 
it's again a valid inference. 

It's not possible to have F; as principal formula in the antecedent in R2, 
because it's preordained where the parts of F; > c;+l will go. Also, we will 
never have F; --+ F; as an axiom in R2 because of our convention about 
having only atomic formulas in the antecedent and succedent of the formula. 
Hence the above changes to Rg make it a valid proof. 

So c; occurs only in the antecedent of the endsequent of R3. So, it must 
have been introduced by weakening. So we delete c; everywhere in the proof 
to get a cut-free proof of: 

Now for all j > i we rename the variables cj, d j  to cj-1, dj-l. This gives a 
cut-free proof of --+ A,-1. QED(1emma A-6,Theorem A-1) 



Propositional Proof Systems 

Let C be any finite alphabet. 1x1 > 2. Let C* be the set of finite strings 
from C. We'll suppose that C contains: p, 1, 0, (, ), V ,  1, 3, and comma. 

Def: A propositional proof system is a function F computable in poly- 
nomial time with image the set of tautologies, and domain all C*. 

Example 1: 

if w is a valid cut-free proof of + A 
Fcut- ree(w) = p V l p  otherwise 

Example 2: 

if w codes a truth table proof of A 
V l p  otherwise 

Example 3: 

if w is a ZF-proof that A is a tautology 
v -p otherwise 

Def.: A decision problem is a subset of C*. 

Def.: A decision problem Q is in P iff there is a Turing Machine M such 
that for every x, a) x E Q iff M accepts x. 

b) for some polynomial p(n), M halts on input x 
within ~(1x1) steps. 

Examples: 
a) the set of palindromes is in P 
b) set of cut-free proofs is in P (encoded as as string of symbols). 

Feasible means doable on today's or next century's computers. P is the 
mathematical notion for the vague idea of 'feasible'. One might question 
whether they really coincide, since when the constants or exponents are very 
big in a polynomial function, the function doesn't seem very feasible. 



Def: a decision problem Q is in NP iff there is R( , ) in P and a 
polynomial p(x) such that, 

Vx(x E Q iff 3w(lw( I p(151) A R(5,w)). 

Def: Co-NP is the set of complements of members of NP . So, 
AECO-NP iff C*\A E NP . 

Def.: f E FP iff f : C* + C* and there is a polynomial time Turing 
Machine M which starting with x on its input tape halts with f (x)  on its 
output tape in 5 p(lx1) steps. 

Consider the set SAT ={A: A is satisfable). Cook showed that SAT is 
NP Complete. ie., for every Q E NP there is a many-one reduction f of Q 
to SAT , and f E FP . By a many-one reduction f of Q to SAT we mean 
a function f such that: Vx(x E Q H f (x) E SAT ). 

Proposition: Let TAUT be the set of all tautologies. Then: a) TAUT is 
in Co-NP . b) TAUT is Co-NP Complete. 

proof: 
a) TAUT E NP because: 
cp E TAUT iff cp 4 TAUT 

iff there is a truth assignment a s.t. a(cp)=F. 
iff 3w(wl =# of variables in cp,coding a truth 

assignment a s.t. a(cp) = F. 
Since TAUT E NP iff TAUT E Co-NP , TAUT E Co-NP . 
b) It suffices to show that TAUT is NP -complete ( A many-one reduc- 

tion of Q to TAUT is the same as a many-one reduction of Q to TAUT ). 
It suffices to give a many-one polynomial reduction of SAT to TAUT : 
cp E SAT e l c p  4 TAUT l c p  E TAUT So the reduction is 

f : cp H -9. QED 

Many-one reduction versus Turing reduction: In the many-one reduction 
you ask one question, and the answer you get from the oracle in one step is 
the total answer. In the Turing reductions you are allowed to ask the oracle 
as many times as you want, getting the answer in one step each time. 

Recall we defined a Propositional Proof System to be a function 
f E FP such that f : C* + C* and the image f(C*) is TAUT . 



Def: a propositional proof system f is Super iff there is a polynomial p( ) 
s.t. Vx E T A U T  3w Iwl < p(lxl)s.t. f(w) = x. 

Theorem:[Cook-Reckhow 19741 
There exists a super propositional proof system iff N P  =Co-NP . 

proof: 
(=J) Suppose that f is super. Let p j  be the polynomial bound on the 

length of the proofs. 
First note that TAUT E N P  since, 

Vx [x E T A U T  3wlwl < pj(lxl)s.t.f(w) = XI. 
Now, let's prove that N P  =Co-NP . Suppose that Q E Co-NP . Q is 

many-one reducible to TAUT . Since T A U T  E N P  , Q is many-one re- 
ducible to SAT by g € FP . So for all x, 
x E Q * g(x) E SAT @ 3w I w I  5 Ig(x)I, w is satisfying truth assignment of g(x). 

That shows that Co-NP C_ N P  . To see that N P  Co-NP , suppose 
Q E N P  .Then Q E  Co-NP . S O Q E  NP and Q E Co-NP . 

(+) Suppose that NP =Co-NP . So TAUT E N P  . So there is a poly- 
nomial p( ) and R( , ) EP s.t., Vx(x E TAUT iff 3wlwl < p(lxl)s.t.R(x.w)) 

Then the proof system is: 

if v =< x, w > and R(x, w) 
f (v )  = { 6 v -p otherwise 

QED. 

Note: P = N P  implies N P  =Co-NP (because P is closed under com- 
plement). So N P  # Co-NP implies P # N P  . Therefore, if there is no 
super propositional proof system then P # N P  . 

Def: A propositional proof system g simulates a propositional proof sys- 
tem f iff there exists a polynomial p such that for all x and w with f (w) = x, 
there exists a w' satisfying Iw'l 5 p(lw1) and g(w') = x. 
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Resolution Another Propositional Proof System. 

Reference: G. S. Tseitin, "On the complexity of derivation in propositional 
calculus." circa. 1966, appears, Automation of Reasoning 2 pp. 466 - 483 
Springer-Verlag 1983 

Definitions 

A propositional variable is denoted by p, q ,  r .  Each propositional variable 
has a conjugate (or negative) denoted jj . Also = p. 

A literal is a propositional variable p or a conjugate ji. 

A clause is a finite set of literals, where the meaning of the clause is the 
disjunction of the literals in the clause. For example {pl, &,p3) means 
Pl v a v P3. 

If a is a truth assignment, a(ji) = opposite of a(p) . For a clause C , a ( C )  = T 
iff a(x)  = T for some x E C .  

C is satisfiable if there is some truth assignment a such that a (C)  = T. Note 
that only 0 is not satisfiable as a clause. 

More importantly, if C is a set of clauses, C is satisfiable if there is a truth 
assignment a such that a (D)  = T for all D E C .  
We will never allow an empty set of clauses. 



Resolution Rule 

Cl u C2 
Resolution has no axioms. Instead, we take C to be a set of hypotheses to 
which we apply the resolution rule. 

Observation: If a(C1 u {x}) = T and a(C2 U {T}) = T then a(C1 U C2) = T. 

Theorem 1 If a ( C  ) = T and i f  D can be inferredfrom C by repeated use of 
the resolution rule, then a(D) = T .  

proofi repeated use of the above observation. 

Corollary 2 If there is a resolution derivation of 0 (the empty clause) from 
C ,  then C is not satisfiable. 

Resolution is a 'refutation' proof system; from a conjunctive normal form 
formula obtain a set of clauses, then derive the empty clause to refute the 
original formula. 

Theorem 3 (Completeness) If C is an unsatisfiable set of clauses, then 
there is a resolution derivation of the empty clause 0 from C . 

pro05 (Reference: Davis, Putnam "A Computing Procedure For Quantifica- 
tion Theory" JACM 1 (1960) pp. 201-215. They prove a stronger result .) 

Let the propositional variables in clauses in C be among pl . . . p, , p1 . . . p, 

Goal: Get rid of one variable, say p,, by deriving a nonempty set of clauses 
C* from C such that neither p, or IS ,  appears in any clause of C* and C* is 
unsatisfiable. 



C contains four types of clauses. 
(a) clauses that contain p, and not p,. 
(b) clauses that contain p, and not p,. 
(c) clauses that contain neither p, or p, . 
(d) clauses that contain both p, and p, . 

Directions for forming C* . 
(1) Put every clause of type (c) into C* . 
(2) Throw away all clauses of type (d). 
(3) For each clause C of type (a) and D of type (b), C* contains 

the result of resolving C and D with respect to p, . 

We claim that C* is not empty. We may assume that C is not empty since we 
don't allow the empty set of clauses. Then C* is empty just in case both: (1) 
C has no type (c) clauses, and (2) either C has no type (a) clauses or it has no 
type (b) clauses. In this case, C is satisfiable with a(p,) = T or a(pn) = T 
resp. 

The next claim is that if C* is satisfiable then C is also. Suppose a(C*) = T. 
We let a, and afin be the truth assignments extending a such that a, (p,) = 
T and up, (p,) = T. 

Consider the following cases: 

Case 1: C had no clauses of types (a) or (b). Then define a(p,) = (anything) 
and a satisfies C . 

Case 2: C had no clauses of type (a) [resp. type (b)] then up, [resp. a,, ] 
satisfies C . 

Case 3: C had clauses of both types (a) and (b). Suppose that neither a,, nor 
up, satisfies C . Then we must have clauses Dl of type (a) and D2 of type (b) 
such that apn(D2) = False and afi(D1) = False. Consider the resolution of 
Dl and D2 on the variable p, . It will yield D = Dl \{p,} U D2\{pn} where 
neither p, or p, occurs in D . By construction of C* we know that D E C* . 
So a(D) = T. Then for some x E D (either a propositional variable or its 



negative) a(x)  = T. And x E Dl or x E D2 . This is a CONTRADICTION 
since we forced a,, and ah to extend a .  Hence one of a,, , up, satisfies C .  
So C is satisfiable. 

We have now produced an unsatisfiable set C* of clauses with no occurrences 
of p,, p,. Completing the induction we will be able to produce a resolution 
derivation of the empty clause. 

So resolution is a proof sys tem for Disjunctive Normal Form (DNF) formulas. 
Given a formula A in DNF, write the negation of A (1A)  as a Conjunctive 
Normal Form (CNF) formula. Convert this to a set of clauses (each conjunct 
becomes a clause and each disjunct within a clause becomes a member of 
the clause). Refute 1 A  as in the completeness theorem to show that A is a 
tautology. 

It is desirable to have resolution be a proof system for arbitrary propostional 
formulas, not just DNF formulas. There are two methods for achieving 
this. The first method might be to convert our formulas to DNF first, then 
use resolution. The problem is that this may make the formula exponentially 
larger. So we discuss a second method called resolution with limited extension. 

Resolution with Limited Extension 

Resolution with limited extension will work as a proof system for general 
propositions. 

Idea: Introduce new variables for each subformula. For each subformula B of 
our formula A we will have the variable p~ with the following requirements. 
(1) If B is atomic, say B is p;, then pg = pi. (2) Otherwise the p~ are distinct 
for distinct subformulas of A. 

Definition For a formula A we define a set of clauses LE(A), (the limited 
extension of A) as follows. For each subformula B of A, 



Case 1: B is 1 C  then { p ~ , p c ) ,  { j j ~ , j j c )  E L E ( A ) .  It is not hard to see that 
truth assignment a will satisfy these two clauses iff a ( p B )  = a(jjc). 
Case2: B i s  CVD then { P B , F C ) ,  { P B , F D ) ,  { ~ ~ B , P C , ~ D )  E L E ( A ) .  Again 
a satisfies these three clauses iff a ( p B )  = a ( p c  v p D ) .  
Case3: B i s  CADthen { ~ B ~ P C ) ,  { p ~ , p o ) ,  { p B , j j C , j j D )  E L E ( A ) .  

Definition: The size of a clause is the cardinality of the clause. The size of a 
set of clauses is the sum of the sizes of its clauses. 

Remark: I L E ( A )  I is O ( J A  1 ) .  

Theorem 4 (a) A is satisfiable iff LE(A) U { { P A  ) ) is satisfiable. 
(b) A is valid iff LE(1 A) U { { j j ~  ) ) is not satisfiable iff there is a resolution 
derivation of 8 from LE(1 A)  U { { F A  ) ) . 

The proof proceeds by induction on the complexity of B, a subformula of A ,  
showing that a ( B )  = a ( p B )  for all a satisfying L E ( A ) .  

We will next examine sizes of resolution proofs of the pigeonhole principle. 

Pigeonhole principle: For each n, if f : ( 0 , .  . . , n )  + ( 0 , .  . . , n - 1 )  then f is 
not one-to-one. 

For each i and j with 0  5 i 5 n and 0 5 j 5 n - 1 we will have the 
variable pi ,  j which 'means' f ( i )  = j . 

PHP, A V ~ i , j ) +  V V Pi, j  A Pm,j  
O<i<n O<j<n-1 O<i<m<_n 0s jsn-1  

\ d \ * .- / 

f is total f is not one-to-one 

We've omitted the requirement that f be single-valued. 



This expresses i P H P n  in conjunctive normal form. 

C -pHpn contains { pi,,, . . . , pi,.-, } for each i = 0, . . . , n . And { pi,j, p m j  } 
f o r each i ,  j, m suchthat 0 < i < m < n  and O <  j < n - 1 .  

Theorem 5 (A. Haken) There exists a constant c > 1 such that any reso- 
lution derivation of 0 from CIPHPn has een clauses. 

Reference for proof: A. Haken, "The Intractibility of Resolution." TCS 39 
(1985) pp. 297-305. 
also S. Buss and Gy. Tur in  . . . to appear TCS. 

Recall: Resolution proofs are sequences not trees. There were earlier results 
for 'tree-like7 and 'regular7 resolutions. (e.g. see G. S. Tsietin - 1966) 

proof: Assume P is a derivation of 0. We want a lower bound on the size of P. 
A clause is pictured as an n x (n + 1) array of +'s, -'s and blanks. For 
example 

Initial clauses 
in i P H P n  
look like: 

Similarly a truth assignment a is pictured as an array of O's, and 1's where 
0 = False and 1 = True. 



Definition: A truth assignment is critical if it has exactly n 1's with 
no two in the same column. (i.e. it codes a partial one-to-one function 
f : (0,. . . , n) + (0,. . . , n - 1) with n values of f defined. One 'pigeon' is 
undetermined.) 

Definition: The O-column of a critical truth assignment is the index of the 
column with no 1 's in it. 

Each critical truth assignment will be assigned a clause in P. 

Lemma 6 Let a be a critical truth assignment. There is  a clause C in P such 
that: 
(a) a (C) = F 
(b) C has esactly I;] + 's in the 0-column of a .  

proofi Note that if, in a resolution inference Dz, we have a (D)  = F then 
a(D1) = F or a(Dz)  = F but not both. By tracing backwards through P we 
get a unique sequence of clauses C1, . . . , Ct such that: 

(1) Ct is the final clause 0. 
(2) C;+l is (resolution) inferred from C; and something else. 
(3) C1 is an initial clause. 
(4) a(C;) = F for all i 5 t .  

Since a is critical, C1 must be the clause with n +'s in the O-column of 
a.  Of course, Ct has no +'s in the O-column of a .  Let C be the first C; 
with 5 If] + 'S in the O-column of a .  Then C has exactly [f ] + 's in the 
O-column of a since the + 's disappear one a t  a time (by being resolved on). 

Lemma 7 Let a be critical. Suppose C is  a clause in P with < If] + 's in 
the O-column of a such that a ( C )  = F ,  then there i s  a clause D before C i n  
P such that a (D)  = F and D has ezactly I;] + 's in the O-column of a .  



proof: same as previous lemma except letting Ct  be D instead of 0. CI 

Definition: If a is a critical truth assignment, we define C, to be the first 
clause in P satisfying: 
(a) a(C,) = F 
(b) C, has exactly I:] + 's in the 0-column of a .  

Definition: An FS1 (fixed set of 1's) is a set S of la] 1's in distinct rows 
and columns of the array. 

Definition: a i s  compatible with S if a(pj j )  = T for all p;,j E S. 
We will take CS to be the first clause in P of the form C, for some a 
compatible with S . CS is called a complex clause. 

Lemma 8 Any complex clause has 2 ( I;] + 1) columns which either contain 

2 [B] +I s or contain a - . 

proot Let CS be a complex clause, and S an FS1. Then CS = C, for some 
a compatible with S. Here's an example: 

Note that - 's (resp. + 's) in C, can appear only where 1's (resp. 0's) appear 
in a. For pictorial convenience we showed a with 1's on the diagonal and 0's 
elsewhere but of course the rows and columns may be scrambled. 

To resume the proof of Lemma 8, assume CS has < la] columns with either 

I;] + I s  or a -. 



Goal: Find a truth assignment T such that T is compatible with S and C, 
precedes C, = CS in P. This will CONTRADICT the definition of CS . T is 
obtained by swapping a column i of o with column n + 1 of o where n + 1 
is the 0-column of o . 

Choose the column i such that T will satisfy the following: 
(1) T is compatible with S. 
(2) r(CS) = F .  
(3) CS has < I;] +' s in the column i (and hence in the 

0-column of T . 

To do this, pick i such that: 
(a) i is not a column containing a variable of S. 
(b) i is not a column with a 1 in a row where the column of CS 

corresponding to the 0-column of o has a +. 
(c) i is not a column in which CS has a minus sign. 
(d) i does not have > 1 a] +' s . 

By counting, we find that there must be at least one such column i . Condition 
(a) excludes exactly I f  ] possibilities for i (look at the size of S ) . Condition (b) 

excludes exactly [:I possibilities for i since the column of CS corresponding 

to the 0-column of o has in it exactly 151 +'s by the definition of CS = C,. 

By the assumption of our lemma, (c) and (d) exclude at most values for 
i . Since we have n + 1 columns there must be at  least one choice of column 
for i.  

Now our goal is achieved by Lemma 7. (Recall our requirements (2) and (3) 
for T .) This finishes the proof of Lemma 8. 

We now resume the proof of Haken's theorem. 



Put g(n) = maxc{l{S E FS1 : CS = C)I) and h(n) = IFS11. 
Then h(n)lg(n) is a lower bound to the length of a resolution proof, since 
it is clearly a lower bound on the number of distinct complex clauses in the 
resolution proof. Let k = 121 . To compute h(n) and g(n) suppose we have 
a particular complex clause C.  By Lemma 8 we can choose k + 1 columns 
which contain a - or at  least 151 + 's. To count the total number of 
S E FS1 we let the variable i denote the number of variables in S in the 
chosen k + 1 columns. Then we have: 

Similarly, to get the upper bound g(n) on the number of S E FS1 such 
that CS = C we let i be the number of variables of S in one of the 
k + 1 columns. In each of these k + 1 columns there are at  most 151 variables 
which can be in such an S; this is because a + in C excludes the correspond- 
ing variable from S and a - in C implies that if S has a variable from that 
column it must be the variable corresponding to the - . Thus, 

k + l  m - k - 1  (n - i)! 
g (n) 'x (  i=o i ) (  k - i  ) 1 (n-k)!  

. . . 

) [;l i  (n - i)! 
n ! 

2 
k + l  m - k - 1  ( i )(  k - i  

since for i 5 [a] , 
[;I (n - i)! i 
- 

n ! 



The ratio of the (i - 1) -th term over the i -th term in the summation in the 
denominator is 

i(m - 2k + i - 1) 
$(k - i + l)(k - i + 2 )  

It is easily verified that this is less than 1 for i 5 &, . $, and hence the terms 

in the denominator are increasing while i 5 8 $ . Thus we can give a weaker 
lower bound (with smaller numerator and larger denominator): 

Hence the number of distinct (complex) clauses in P is at  least exponential 
in n.0 
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This exponential lower bound (from the previous notes) for resolution is 
bad for automated theorem provers, since most theorem proving systems use 
resolution. 

Could it be that this exponential length occurs only in a "few" patholog- 
ical cases? No. Not "only" the pigeonhole principle needs these "long" 
proofs: Chvbtal and Szemerkdi ("Many hard examples for resolution") ex- 
tended Haken's work to show that in some sense "almost all" sets of clauses 
formulas (are unsatisfiable and) have a shortest proof of exponential length. 

We can still hope that in applications these "worst cases" don't happen. 
But even if we could somehow guarantee the existence of a polynomial-sized 
refutation, it might be hard (i.e. require exponential time) to find it. 

There are several strategies that try to avoid this: 

Strategy # 1: Use a restrictive form of resolution. This sounds paradoxical, 
since it may make proofs longer, but the proofs may be easier to find. 

Example: A linear resolution of a set A of clauses is a sequence of clauses 
C1, . . . , C,, where C1 E A, and C;+l is obtained by resolution from C; and 
a clause in A U {C1,. . . , C;-l). Why is this easier? When we want to do 
a resolution, we already know that we have to use C,, so we have (roughly) 
only O(llAll) options, instead of O(llA112) options. It can be shown that 



linear resolution is complete, i.e. if A is an unsatisfiable set of clauses, then 
there is a linear refutation of A. 

Strategy # 2: Restrict what sets of clauses A are allowed. The most common 
restriction is the restriction to Horn clauses. 

Definition: A Horn clause is a clause with at  most one unnegated proposi- 
tional variable. 
The Horn clause {po, pl, . . . , p,) corresponds to the formula pl A. . . Ap, + po, 
which is commonly written as 

Not every proposition is expressible as a set of Horn clauses, e.g. A + B V C. 

In "expert systems", one usually has a "database" A consisting of Horn 
clauses. One such clause might be ' 

To use this database, we input a set r of "observations", for example : r = 
{ {PFEVER) , {PRASH) , {PTEA)), and the "query" 7: Does he have measles?, i.e. 
7 = { ~ E A S L E ~ ) .  The answer will be "yes", iff A U r U is unsatisfiable. 
We use linear resolution to find an answer. The fact that r U A is satisfiable 
can help the search. In particular, C1 = in linear resolution. 

It is not hard to show that sequent calculus (with cuts) simulates resolution. 
The proof will be left as an exercise. Notice that modus ponens is a form of 
resolution, and vice versa. 

Definition: Let S and T be proof systems. Then we say that S p-simulates 
T ("polyn~rniall~ simulates T" ) , if there is a polynomial-time algorithm 
which, given a T-proof of a formula A, produces an S-proof of A. 

Note that the length of this S-proof is polynomially bounded by the length 
of the T-proof, since an algorithm that terminates after a "short" time can 

l A  few weeks ago a person with measles was at the math department's tea hour. The 
next day there was a note on the bulletin board, saying that anybody who had been to 
the tea, and developed a rash and fever during the next week probably got infected. 



only produce "short" output. Hence every p-simulation is a simulation. Is 
every simulation a p-simulation? If not, then P # NP. 

Frege Proof Systems 

A Frege (F) proof system consists of 

1. A language L, a finite complete set of propositional connectives. 

2. A finite set of axiom schemata 

3. A proof will be a sequence of propositions A1,. . . , A,, where each A; is 
either a substitution instance of an axiom, or inferred by MP (modus 
ponens) from some Aj and Ak, where j, k < i. 

4. The proof system must be complete (and, of course, consistent). 

What does MP mean? If -+ is in the language, then MP is the rule 

A , A - + B  

If -+ is not in the language, let cp(p, q) be a (fixed) formula equivalent to 
p -+ q, and use the rule MP,: 

The size of a Frege proof is the sum of the sizes of the formulas, where the 
size of a formula is the number of symbols in it. 

Remark: The sizes of formulas in a Frege proof has no polynomial bound 
in terms of the size of the formula to be proved. Hence counting only the 
number of lines in a proof would not give the same notion of "long" proofs. 



It does not really matter what particular Frege system we choose: 

Theorem: If Fl and F2 are Frege systems with the same language, then Fl 
simulates F2. 

Proof: Since Fl is complete, it has for each axiom B of F2 a proof of B .  Any 
instance B(pl/A1, . . . , pn/An) has an Fl-proof of size O(lAl 1 + . . + IAnl). 

Any F2-proof can be converted into an Fl-proof by adding, for each F2-axiom 
instance B, an Fl-proof of it. This makes a linear increase in the size of the 
proof. 

Here is an example of a Frege system: 

The logical connectives used are (1, V, A,  +} . "+" is associated 
from right to left, i.e. c p  + + + x is an abbreviation for c p  + 
(+ + X)  (which is equivalent to c p  A + + x). 
The axiom schemata are 



A substitution Frege (SF) proof system consists of 

1. A language L, a finite complete set of propositional connectives. 

2. A finite set of axiom schemata. 

3. Two rules: 

Modus Ponens 

The substitution rule: 
A 

(where A(p/B) means: replace every occurrence of the variable p 
by the formula B). 

4. The notion of "proof" is defined as usual. 

5. The proof system must be complete (and, of course, consistent). 

An extended Frege (e3) system consists of 

1. A language L, a finite complete set of propositional connectives. 

2. A finite set of axiom schemata 

3. Two rules of inference: 

Modus Ponens 

Extension rule 

4. An e 3  proof is a sequence Al, . . . , A,, where each A; is either an axiom, 
or inferred from some previous Aj's by MP, or is of the form 

(read: "p abbreviates B"), where B is as formula and p is a variable not 
appearing in Al, . . . , A,-1, A,, B. (If t, is not in the language, choose a 
formula cp, (p, q )  equivalent to p t, q, and let p t,B stand for cp,(~, B).) 
Notation: Whenever we talk about extension Frege systems, a t, binds 
stronger then any other propositional connective. 



5. The proof system must be complete (and, of course, consistent). 

(This is aimed a t  the way people do mathematics, e.g. we introduce the term 
"real numbers" by definition, and then don't refer to "cuts of rationals" every 
time.) 

Theorem: Any two e F  systems with the same language simulate each other. 

Theorem: Any two SF systems with the same language simulate each other. 

The proofs are exactly as for F sys tems. 

Remark: In the above three theorems, the restriction that the systems have 
the same language is unnecessary; but the proofs are harder. 

Theorem: Given a SF and an e F  system in the same language, then the 
SF system simulates the e F  system. 

Before we start the proof, we need this 

Lemma: There exists a polynomial p such that: 

For all formulas A, for any e F  proof P of A using only 
the extension rules pl -A1, . . . , pk + + A k ,  there exists a 
Frege proof Q of 

where IQI I p(lPI). 
k 

(Remember that the t+ in A p; ct A; binds stronger 
i=l  

9 
than the A. By definition, in this proof A associates 

r=p 
9 9 

from right to left, i.e. A 4; = 4, r\ ( A 4;)) 
r=p i=p+ 1 



Proof of the lemma: Let P = B1,. . . , B,, where B, = A. We 
define Q1, . . . , Q, (sequences of formulas), which together will 
give Q. 

Case 1: Bj is an axiom. Let 
k 

Q = B j  + a derivation of Bj t (A p; HA;) t Bj 
i=l 

k 

+ (A  pi *Ai) + Bj (inferred by MP). 
i= l  

k 
The formula B j  t ( A pi *Ai) t Bj is an instance of the 

i=l 
tautology cp t t,h t cp, which can be proved with a constant 
number of inferences (it is an axiom in the system given 
above). Hence lQjl = O(lP1). 

Case 2: B; is inferred by MP from B, and Bt = B, t Bj. In 
this case, let Q j  be a derivation of 

This is an instance of the tautology 

k 
Use MP twice to get ( A p; *Ai) t Bj. Again we have 

i= 1 

Case 3: B j  is inferred by extension, Bj = pm *Am. Q j  will 
be the concatenation of 

1. a derivation of 

(Note: This is an instance of cp A $ t cp, and this is 
derivable with a constant number of inferences.) 



2. a derivation of 

(This is an instance of (cp t $) + ( X  A cp t $).) 
3. By MP, 

4. repeat 2. and 3. until you get 

In this case, lQjl = O(IPI2). 

The lemma is now proved by concatenating Q1,. . . , Q, to give Q, 
where IQI = O(JPI3). 

Now we can start the proof of the theorem: 
Let P be an e F  proof of A using only extension rules pl * A1, . . . , pk H Ak. 
The SF proof begins with Q. W.1.o.g. the p; *A;'s are numbered in reverse 
order of how they appear in the proof, so p; does not appear in Aj, for j 2 i. 
By the above lemma, there is a F proof Q which ends with 

which is the same as 

Append a substitution inference to the end of Q to  get 



Now append a derivation of 

(this is an instance of ((cp * cp) A 1C) + X)  + (1C) + x)). Use MP to get 

Do this k times, until you get A. Hence we have a proof of size O(I PI 3).  

Remark: It is an open problem, whether F systems simulate e F  (or equiv- 
alently, SF systems). Of course we can transform every e F  proof into an 
F proof, by replacing p; everywhere with A;, but that can make the proof 
exponentially large, for example if each p; contains 2 occurrences of P, -~.  

Theorem: Given a SF and an e F  system in the same language, then the 
e F  system simulates the SF system. 

Remarks: This was an open problem for some time. The first solution ap- 
peared in Dowd, "Model-theoretic aspects of P # NP" , not yet published. 
The proof we will give is from KrajiEek-Pudlak, "Propositional proof systems, 
the consistency of first order theories and the complexity of computations", 
1987, preprint. There is a more general, "high-level" proof than the one 
presented below. 

Proof: Let P be an SF proof, P = Al, . . . , Ak, using variables pl, . . . ,p,. Let 
p'= ( p l , .  . . ,pn). Let q;j (for i = 1,. . . , k, j = 1, .  . . ,n)  be distinct variables. 
Let = (qil,. . . and assume all the q;j are new, except that q'k = p'. 
Write A; = Ai(p'), and let B; = A;(p'/G) = A;(g). We will construct a e F  
proof that proves the B;'s. This suffices since Bk = Ak. 

+ 
Define vectors pi = (Pil, . . . , Pin) as follows: 

Case 1: If A; is an axiom or inferred by MP, then pi = q7. 



Case 2: A; is inferred by substitution from A,, say A; = A,(p,/a). Then 
p..  - r3 - qij for j # S, and Pis = (~(g/z).  

The e F  proof is as follows: 
First we introduce the qij7s by the extension rule: 

qij * (Ci A lBi+1 A P;+l,j) V (Ci+l A lBi+2 A Pi+2, j) v . . . 
V V (Ck-1 A l B k  pkj), 

where C, is an abbreviation for B1 A . . A B;. It is easy to see that there is 
a polynomial-size proof of 

whenever r > i. 
Secondly: The e F  proof derives Bl, C1,. . . , Bk, Ck. (Since Ak = Bk,  this 
suffices.) Suppose B1, C1, . . . , C,-l, B, are already derived, r > 0. From B, 
and C,-l it is trivial to derive C,. Now derive B,+l from C, according to the 
following cases: 

Case ( i )  If A,+l is an axiom, then so is B,+l. 

Case (ii) (This is the hardest case) If A,+1 is inferred from A, and A, by 
MP, where A, = A, + A,+1, then: From (*) and C,, get (using a 
constant number of lines) 

and 

lBr+l + (qvj * Pr+l,j). 

From this we get 

and 
-.Br+l + ( B v  * ~v(@/Br+l))  



(by induction on the length of A,, A,). These imply 

By tautological implication (again using a constant number of lines), 
essentially MP (remember that A, = Au t we get 

-r+1 + ~ r + l  ($/Br+l), 

and since Ar+l (13/Br+l) is B,+I, this is 

lB r+ l  + Br+1, 

from which we can get Br+l with a constant number of lines. 

Case (iii) = Au(p8/a). By (*), 

But clearly 

Again, from this we get 1Br+1 + Br+l and consequently, Br+l. 

This finishes the construction of the p-simulation of SF systems by e F  sys- 
tems. 



In the following picture, x + y means "x simulates (in fact, p-simulates) y". 

extended t----$ substitution 
Frege Sys tems Frege Systems 

1 
Frege S ys tems t----$ sequent calculus 

1 with cuts 
resolution with 

limited extension 

J \ 
cut-free resolution 

sequent calculus 

It is known that resolution with limited extension does not simulate Frege 
systems. The following questions are open: Does resolution simulate cut-free 
sequent calculus? Or vice versa? Are Frege systems super? 

Theorem: (Cook-Reckhow, JSL 1979) : The formulas P HP, have polyno- 
mial-sized e F  proofs. 

Theorem: (Buss, JSL 1988) PHP, also have polynomial-sized F proofs. 

(The proofs of these theorems are not included in the scribe notes. See the 
references for proofs.) 

This takes PHPn off the list of potential candidates for "separating" F and 
e F  , leaving no "nice" sequence of formulas on it. However, there is a set of 
formulas cp, (related to "self-consistency" assertions), such that: 

If F and e F  can be separated, then the cp, separate them. 
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Circuits and Circuit Complexity 

Instructor: Sam Buss 
Notes By: Chrystopher Nehaniv 

A circuit is a finite labelled directed acyclic graph. By "labelled" we 
mean that each vertex has a label. In particular, we allow disconnected 
circuits. 

We define the indegree of a vertex to be the number of edges whose 
target is that vertex. Similarly, the outdegree of a vertex is defined 
to be the number of edges whose source is that vertex. For example, in 
the portion of a graph shown below, the vertex has indegree three and 
outdegree two. 

There are three kinds of vertices: 

input vertices: These have indegree zero and are labelled with a 
Boolean input variable x (or a conjugate T) or with one of the constants 
from {T,F). Note that isolated vertices will thus be "unused inputs". 

internal vertices: These have indegree and outdegree both strictly 
greater than zero, and are labelled with elements of (1, V, A)  and pos- 
sibly with other names. Internal vertices are also called gates. 

output vertices: These have outdegree zero and indegree equal to 
one. As a matter of convention, an output vertex will be labelled with 
an output name in the case that there is more than one output vertex. 

For example, in the circuit show below, the vertex labelled "V" has 
indegree three and outdegree two. 



We think of things flowing in the direction of the arrows of a graph. 
That is, Boolean values travel in the direction of the arrows. At a 
gate, the function designated on the label of that gate is applied to the 
arriving Boolean values, and the result is the value that then travels 
away from the gate in the direction of the outgoing arrows. 

Further, we define the fanin of a gate to be its indegree. The fanout 
of a gate is defined to be its outdegree. In our circuits, we shall allow 
that a vertex labelled with "A" or "V" have arbitrary fanin and fanout; 
but we require that a vertex labelled "1" have indegree equal to one, 
although it may have arbitrary fanout. The fanin of a circuit is the 
maximum of the fanin of its gates. The fanout of a circuit is defined 
similarly to be the maximum fanout of its gates. 

A circuit with k inputs and n outputs computes a Boolean function 

f : {T, F ) ~  + {T, F)" 

and, conversely, every Boolean function can be realized as a circuit 
(because it can be realized as a formula). 

The size of a circuit C is ICI = the number of edges in C. (Since 
we shall be interested only in polynomial size circuits, an alternative 
definition for size of a circuit would be the number of vertices. Note 
that the ( # ~ e r t i c e s ) ~  2 #edges). 

Let S be a predicate, S C (0, I)*, the set of finite words from the 
alphabet {0,1). C is a family of circuits recognizing S iff C = 
{Co, C1, C2, C3,. . .), where each C; has inputs among XI, z1,. . . ,xi, T; 



and C; is a circuit which determines whether words of length i are in 
S. That is, for w = w1 w; E (0, I)', C; with inputs 

outputs T iff w E S. 

Definition: S has polynomial size circuits iff 3 C a family of 
circuits for S and there exists a polynomial p s. t. Vi 1 C;I 5 p(i). 
Example: Parity is the set S of strings from the alphabet { O , 1 )  with 
an odd number of ones: 

S = {w E C* : w has an odd number of 1's) 

Polynomial Size Circuits for Parity 

For these circuits: for i > 0, we have IC;+l I = IC;I + 7. Hence, we see 
this set of circuits to be bounded in size by p(i) = 7i + 1. 



A formula is basically a circuit with fanout 1. More precisely, 3 poly- 
nomial p s.t for every formula A, there exists an equivalent circuit C A  
with fanout 1 and with lCAl 5 p(lA1). Conversely, for every circuit C 
with fanout 1 and with one output there exists an equivalent formula 
Ac with Ac 5 p( 1 C I ) .  0 bviously p can be taken to be a linear function. 

There is a natural correspondence between formulas and circuits with 
fanout 1 with one output. The obvious translation works. (NB: A 
circuit with fanout 1 could have arbitrary fanout at  an input node, 
because fanout of a circuit is defined over gates). 

The depth of a circuit is the maximal length over all paths through 
the circuit from an input to an output. 

If we try duplicating subcircuits to make the above circuits for Parity 
have fanout 1, then we get into exponential size formulas. This is 
because we must have two copies of C; to construct C;+l. 

However, there do exist polynomial circuits for parity with fanout 1. 
The following is a circuit for input of length 8. Use this type of circuit 
for input of any length n padding with F inputs to get 2r1°g nl inputs. 

Where each box 
of the form 

is 

replaced by 

(This has fanout 2, but it can be converted to a circuit of fanout 1 with 
only a polynomial increase in size. The crucial point is that the circuit 
has logdepth and bounded fanin - every gate has fanin 1 or 2.) 

One might expect that having polynomial circuits corresponds to ease 



of computation; but consider that following: 

Example: Polynomial Circuits for a Non-Recursive Set 

Pick your favorite non-recursive set AC N. Let S = {w : Iwl E A). 
Clearly S is non-recursive because A is. S has circuits of size 1. Namely, 
let C; be 

Thus we see that circuit complexity is a non-uniform notion of com- 
plexity, because we have separate circuits for each possible length of 
input. 

2. Turing Machines and Circuits 

To code circuits for input to a Turing Machine or another circuit, we 
shall code the circuit as a string of zeroes and ones, using two lists: 
{(vertex#j, label on that vertex)) and {( f rom-vertex, touertex)). 
This is done in a finite alphabet { O , l ,  A, V,T, x,",",(,)); and we can 
represent each letter of this alphabet as a string of four zeroes and 
ones. 

The size of the coding of a circuit and the size of the circuit are poly- 
nomially related. 

As before, P denotes polynomial time computable predicates and FP 
denotes polynomial time computable functions. 

We defined our Turing Machines to be multitape TM's. Actually for 
polynomial time, we get the same results by using single-tape TM's. 
Indeed, if f (x) is a function computable in time t(x) on a multitape 



Turing Machine, then f (x) is computable in time O(t(x) 2, on a single- 
tape TM. 

A logspace TM has a read-only input tape and multiple (or a single) 
work tapes, and there 3c constant, s.t. on input of length n, at most 
c log n + c work tape cells are used. 

A predicate is in Logspace iff it is recognized by a logspace TM. Sim- 
ilarly, a function is in Logspace iff it is computed by a logspace TM. 

Theorem 1 Logspace is a subclass of P (or FP, respectively). 

pfi There are only co(l0g n, instantaneous descriptions of a logspace 
machine on a given fixed input x of length n. In this context, an 
instantaneous description includes the TM's work tape contents, state, 
and input head position at  some time i - but does not include input or 
output tape contents. So the TM either halts in polynomial time no(c) 
or goes into a loop (and never halts) .O (Theorem 1) 

Definition: If A, B C* then a many-one reduction of A t o  B is 
a mapping f : C* + C* s.t Vx E A ($ f(x)  E B. So computing f(x)  
allows the question x E A? to be reduced to the question f (x) E B? 

This type of reduction is more restrictive than a Turing reduction, 
which allows us to use B as an oracle asked many times. 

Definition: A decision problem A is P-complete with respect t o  
logspace many-one reductions iff A E P and V B  E P, 3 a many-one 
reduction of A to B computable in Logspace. 

So if you know how to solve A, then with logspace reductions, you can 
solve every B in P. 

Important: The many-one reduction here is from a lower level of com- 
plexity (namely, Logspace). m: Any A # 0, A # C *, A E P is 
P-complete with respect to many-one polynomial time reductions. 

Definition: T h e  Circuit Value Problem (CVP)  is the question, 
Given a fanin 2 circuit with no input variables (just fixed T,F1s as 
inputs) is its output T? (Strictly speaking CVP is the set of codes of 
such circuits with output T). 

Theorem 2 CVP is P-complete with respect to logspace reductions. 



Proof: CVPEP. This is easy. Think of the natural algorithm to eval- 
uate the output of a circuit. Just cycle through assigning values to 
gates. 

Given B E P, we want a logspace many-one reduction fB of B to CVP. 
So given a the Turing Machine M accepting B in time p(n) for p some 
polynomial and n = 1x1, we want fB s.t. 

f ~ ( x )  E CVP M accepts x 

Given an input x to M, f B  creates a circuit. The circuit will emulate 
the computation of M on input x. Without loss of generality, M is a 
single tape Turing Machine. A tape cell of M will be represented by 
a pair (q, r), where 7 is the symbol in the cell and q is either a state 
if the tapehead is at that cell or is some other symbol #, to indicate 
that the tapehead is not at that cell. 

There is a constant upper bound on how many (q, 7)'s are possible. So 
(q, 7)'s can be represented by k binary signals. Represent the configu- 
ration of M at  time i by k . p(n) signals: 

p(n) arcs each carrying k signals coding a single (q, 7) 

The circuit will be constructed to put the right values on these signals. 

time (outgoing arcs carry signals coding configuration a t  time i+i) 

(incoming arcs carry signals coding configuration a t  time i) 

5- 7 



Each of the ~ ( n ) ~  circuits labelled D takes 3k inputs coding the prior 
state of the tape cell and the prior states of its two neighboring tape 
cells. D is a fixed circuit depending on M, such a D exists because 
circuits are complete. 

The whole circuit fB(x) is as follows: 

( These outputs are ignored 

initial configuration of M on input x 1,x2, . . . , x, 

Some state q, is a halting accepting state. W.1.o.g. M always halts 
at its starting position and never moves left of its starting position. 

By our constraints, this circuit has output T iff M(x) accepts. 

Furthermore, the circuit f B(X) can be computed in Logspace: D is just 
a fixed circuit. Run through all times i = 0,. . . ,p(n) - 1 and take 



positions j = 0,. . . , p(n) - 1, outputing the corresponding piece of the 
above circuit. Basically, we need to save i and j in the workspace, 
resulting in a use of O(log(p(n))) work cells, i.e. O(1og n)  work cells. 
O(Theorem 2) 

Corollary 1 Any predicate B in P has polynomial size circuits. 

Proof: (Immediate from the previous proof) f B(X) produces a circuit 
for determining if x is in B. Recall f E FP. The circuit fB(x) depended 
only on the length of x, although its inputs depended on x. This fB(x) 
gives a set of polysize circuits for B. O(Corollary 1) 

Corollary 2 CVP E Logspace iff P=Logspace. [This is the whole 
point of "P-completeness". CVP is a hardest problem in PI. 

Lemma: If f and g are logspace computable functions then so is 

9 o f .  

Proof: The problem here is that we can't just compute f (x) and 
then g(f (x)) because there's not enough room to write out f (x) on 
a logspace work tape. The solution to this dilemma is to repeatedly 
re-compute f (x) as we need it. Details: f and g are computable by 
M and M, which are logspace machines. These have kf and kg work 
tapes respectively. Define Mgof to be a machine having kf + kg + 2 
work tapes. 

kf of these tapes will be used in simulating M f .  One tape will hold 
a counter giving location of M f's output head. kg tapes are used to 
simulate the actions of M ,'s work tape contents. The last tape holds 
the location of Mgls  input tape head. 

Mgof acts as follows on input x: Repeatedly simulate a single step of 
M, on input f (x)  by doing the following: Run Mf on input x, but 
instead of writing f (x) on the output we just keep track of the output 
tapehead location. Run Mf on input x until it halts. Note the final 
symbol which would have been written to the location that M,'s input 
tapehead is at. That gives the symbol M, should be reading on its 
input tape. So we can now simulate a single step of M,. When M, 
would write on its output tape, Mgof does write on the output tape. 

Claim: Mgof is a logspace TM. 



kf tapes use only logspace (since M does). M, and M only run for 
polynomial time so 110 tapeheads only move polynomially many cells. 
So logspace suffices to specify their location. Finally I f  (x)] is less than 
or equal to p(lxl), p a polynomial. M,(f(x)) uses O(1og ~(1x1) space, 
which is O(log(lx 1)) space. q (Lemma) 

Proof of Corollary 2 

-+=: Trivial 

*: Given A E P, 3logspace many-one reduction f from A to CVP. 
Thus XA is XCyp o f and is in Logspace. (Notation: Xz is the charac- 
teristic function of 2.) O(Corollary 2) 

3. Extended Frege Systems as Logics on Circuits 

Recall that Extended Frege Systems allowed us to introduce abbrevia- 
tions. In effect, this allows "circuits" to be handled. In fact, e 3  could 
have been defined as a logic on circuits just as Frege Systems are a 
logic on formulas. To see this: What can be expressed in a formula 
in an e3-proof (as a function of the Boolean variables in the formula 
being proved)? Polysize e3-prooh can express what can be defined 
by polysize circuits. Any formula in the e3-proof can be expressed 
directly as a circuit. The symbols introduced by abbreviation (i.e. by 
the extension rule) correspond to gates with fanout > 1 being allowed. 

Conversely, a circuit value can be defined by a polynomial size formula 
using symbols defined with extension: just introduce a new variable for 
each internal node of the circuit. 

e 3  is essentially a logic on circuits. Since CVP is P-complete, we 
might expect a relationship between e3-proof systems and polynomial 
size computations. There is indeed such a relationship [due to Cook]. 

4. Alternating Turing Machines 

An alternating Turning machine M is defined to be a multitape 
machine with 

- k tapes, of which kl are readable and k2 writable. 

- finite alphabet I? 

- finite set of states Q 



- transition "function" S : Ckl x Q Q Ck2 x Q x {+1,0, -l)k (where 
S is partial and possibly multivalued, i.e. a relation) 

- states are designated as (exactly one of) universal, existential, deter- 
ministic, accepting and rejecting. 

- S is single-valued on deterministic states. 

Without loss of generality, we assume S is two-valued in every configu- 
ration involving a universal or existential state. When S has no value, 
the machine halts; we shall require that this happens exactly when the 
machine is in an accepting or a rejecting state. 

A nondeterministic TM is an alternating TM with no universal 
states. A co-nondeterministic TM is one with no existential states. 

Then execution t ree  of M is a (possibly infinite) tree of degree 5 2 at 
all nodes. Each node node is labelled with an instantaneous descrip- 
tion(ID), i.e. M's  tapes' contents, tape head positions, and internal 
state. The root of the tree is labelled with the initial configuration of 
M on input x. If a node is labelled with configuration a, then there is 
exactly one child for each of successor configuration of and there are 
no other children. 

Inductive Definition: The configuration of M leads to  accep- 
tance(resp. rejection) iff: 

(a) if is a halting configuration, then leads to acceptance (resp. 
rejection) if is an accepting (resp. rejecting) state. 

(b) if is deterministic and Q follows in one step, then leads to 
acceptance (resp. rejection) if Q does. 

(c) if is an existential state, then leads to acceptance (resp. re- 
jection) iff at  least one (resp. all) of its successors does. 

(d) if is a universal state, then leads to acceptance (resp. rejec- 
tion) iff all (resp. at least one) of its successors does. 
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Reference: Chandra-Kozen-Stockmeyer "Alternation" JACM 1981. 

Definition: Run Time of an Alternating Turing Machine (the stan- 
dard one) An alternating Turing Machine accepts in time t on input x iff 
when the execution tree is truncated at depth t + 1, the truncated tree also 
accepts x (according to the above definition of acceptance). 

Note: A leaf of a truncated tree need not be either accepting or rejecting. 
This may occur in an accepting truncated execution tree if the leaf is a 
descendant of an existential node. 

Definition: M accepts input x if the initial configuration of M with input 
x leads to acceptance. 

Definition: An alternating Turing machine (ATM) runs in time t(n) iff 
for all x which M accepts, M accepts z within time t(lx1). 

Definition: An ATM M accepts x in space s iff the following subtree of 
the execution tree of M also accepts x. For each node of the tree whose ID 
has space > s, define that node to be not accepting and discard all of its 
children and their respective subtrees. 



Definition: An ATM M runs in space s(n) iff for all x which M accepts, 
M accepts x in space s(lxl). 

Definition: t(n) is time constructible iff there exists a deterministic T M  
which on an input of length n runs for exactly t(n) steps. 

Definition: s(n) is space constructible iff there exists a deterministic T M  
which on an input of length n visits exactly s(n) work tape cells. 

Generally we have t(n) 2 n and s(n) 2 logn. For t(n) time constructible 
and s(n) space constructible, the above definitions of time bounds and space 
bounds can be equivalently stated as follows. 

Definition: (alternate) An ATM M runs in time t(n) iff we can add a clock 
to M and require that for every n and for every branch of the execution 
tree, M halts before time t(n) on the internal clock. 

Definition: (alternate) An ATM M runs in space s(n) iff we can add end- 
markers to each tape of M at distance s(n) from each starting position and 
require that for every n and on every branch of the execution tree, the tape 
heads of M do not pass over the given markers. 

Fact: Polynomials are both space and time constructible. 

Let us recall the definition of NP.  

Definition: N P  Let Q be a decision problem, i.e. Q C*. Then Q E N P  
iff (3R E P) (3  polynomial P(-))VX [x E Q * (3w, Iwl 2 p(lzl))R(x, w)]. 

Definition: N P  (alternate) Let Q be a decision problem. Then Q E N P  
iff there is a polynomial time non-deterministic (i.e. no universal states) 
T M  which recognizes Q. 

Definition: Polynomial Time Hierarchy (original) Let Q be a decision 
problem. Then Q E C: iff (3 polynomials pl, . . . , pk)(3R E P)Vx [x E Q * 
( 3 ~ 1 ,  l ~ l l  I pl(Ix1)) ( V Y ~ ,  1921 L ~ 2 ( 1 2 1 ) )  --• ( Q Y ~ ,  l ~ k l  I ~k(lxI))R(x,C)l. 
Since the pairing function is in P, we could also allow blocks of similar 



quantifiers in place of single quantifiers. 

Definition: Let Q be as above. Q E II: iff C* \ Q E c:. 

Open Question: II:. 

Proposition: If (3ko 2 1) Cr0 = IIE, then (Vs > ko) CF0 = Cy = II:. 
Proof: Left to  reader. 

References: Stockmeyer, TCS vol3 (1977). Wrathall, TCS 3. 

Definition: Ck- and IIk-Alternating Turing Machine M is a Ck ATM 
if on all inputs x, on each branch of M, M makes some existential moves 
(where some can be zero), some universal moves, and so on, with at most 
k - 1 alternations bet ween existential and universal moves. II I, ATM's are 
defined similarly. 

Definition: Polynomial Time Hierarchy (alternate 1) Let Q be as 
above. Then Q E Cf iff Q is accepted by a polynomial time Ck ATM. 
Also, Q E IIF iff Q is accepted by a polynomial time I tk  ATM. 

Theorem: The original and first alternate definitions of C r and II; are 
equivalent. 

Proof: 
A. cp  it-1-C: 

Let Q be defined by (3~1,  lyil 5 P i ( l ~ l ) ) . . .  (Qyk,(ykl 5 pk(lxl))R(~,y'). 
Then Q is accepted by a Ck ATM which first existentially guesses yl , the 
universally chooses y2, . . . guesses/chooses yk, and finally checks whether 
R(x, c) holds and either accepts or rejects accordingly. The total runtime 
is c:., p;(Ix 1 )  plus the runtime of R. 

Suppose M runs in time p(n) and is a Ck machine. Then M accepts x 

iff ( 3 ~ 1 ,  IwiI 5 P ( ~ x ~ ) ) ( V W ~ ,  1 ~ 2 1  ~(1x1)) -.. (Qwk, lwkl 5 P ( ~ x ~ ) ) A ( x , ~ ) ,  
where A(x,G) says that when each w encodes quantified (i.e. 3 or V ) 



choices, wl encodes the first block of 3 moves of M(x), w2 encodes the 
second block of V moves, . . . , wk encodes the last block of 3 or V moves, 
then M accepts x on that branch of the execution tree of M(x). Here each 
w; is a string of L's and R's which identify a branch of the execution tree. 
Finally, A is computed in polynomial time by simulating M(x) according 
to the w;'s. 

Definition: Oracle Turing Machine An Oracle Turing Machine is a 
set of strings from C*, called the oracle, and a deterministic TM with the 
following features added to it. It has three special states: query, query 
accepting, and query rejecting, called q,q,, and q, respectively. It has a 
query tape for writing out input to the oracle. We make requirements on 
the transition function. If the OTM is in the state q at time t, then at  time 
t + 1 it is in either the state q, or in the state q,, corresponding to whether 
or not the string on the oracle tape is in the oracle. If, at time t, the OTM 
is in the state q, then none of the tape heads change position from time t 
to time t + 1. 

Definition: Let X be a class of oracles. Then PX is the class of predicates 
which are recognized by a polynomial time TM using some oracle from 
X. 

Notation: If !2 is an oracle, then Pn = ptn). 

Example: pNP = PSAT, where SAT = {q5 : q5 is a satisfiable propositional 
formula ), because SAT is NP-complete. 

Definition: Polynomial Hierarchy (2nd alternate) 

A? d" p 

cp d"' N P  

A t l  kf pxf , p n r  

+ ef {predicates Q : (3 polynomial p)(3R E A f'+,) 
(vx>[x E Q tt (3w, Iwl I p(lxl))R(x, 41 

IIKl d" - co-c&, = {Q : c* \ Q E c*Ptl} 



We now have three definitions of the polynomial hierarchy. The first def- 
inition was in terms of polynomial time, C k-ATM's. The "first alternate" 
definition characterized CF as the class of predicates definable with k poly- 
nomially bounded quantifiers in front of a polynomial time predicate. The 
"second alternate" definition intersperses polynomial computations with al- 
ternating quantifiers. We have already proved that the first two definitions 
are equivalent and we prove below that the second alternative definition is 
also equivalent. 

Example: Given a propositional formula 4(pl,. . . , pk), order the satisfy- 
ing truth assignments lexicographically. Question: In the least satisfying 
assignment a for this 4, what is ~ ( p k )  ? 

Claim: The set of 4 such that a(pk) = T in the least satisfying assignment 
is a predicate in PSAT. Indeed, the least satisfying assignment a can be 
found by a polynomial time OTM with the oracle SAT. 

Proof: To find this assignment, do a binary search on the truth table. First 
evaluate the predicate (3a) [a(pl) = F A a(4) = TI. If so, set up, = F, 
otherwise set it to T. Next evaluate (3a)[a(p2) = F A a(+(pl Ivpl)) = TI. 
Set v, accordingly, and so on for the rest of the variables. 

This technique works for many problems. 

Example: Travelling Salesman Problem Given a graph with edges 
labelled with distances and a given total distance. Question: Does there 
exist a way to traverse the graph with total distance travelled less than 
the given distance? This problem is NP-complete. Finding a journey with 
minimum possible distance is a problem in F P  SAT. 

It is important to have an efficient Godel numbering for sequences. For 
the purposes of this discussion, let the alphabet C = {0,1). Supose each 
w; E C* and zo' = w1, ..., WL. We shall define the Godel number of zo', 
denoted (wl,. . . , wk), and this value will be E C*. 

Construction: First write out the string "wl, w2,. . . , wk,", which is in the 
set {0, l ,  comma)'. Note the extra comma at the end of the string. Then 



apply the following map: 

0 H 10 

1 H 11 

comma H 01 

This yields (wl , . . . , wk) E C*. Note that nothing maps to 00; this precludes 
problems with leading zeroes. 

Example: (> = the empty word = 0. 
(0) 

- bb 7, - - , - 01. 
0 111, 1 0 1  = 1001110111110111101101. 

Note: I$\ = 2Cf=,(l + 1w;l). Thus Iw'l 5 2( number of elements in G)(l + 
max{lw:I))- 

Notation: $ = wl,. . . , wk 
length($) = k 
P(i,G) = wj 
(G)  * Wk+l = ( ~ 1 , .  , Wk, ~ k + l )  

Definition: (Polynomially bounded quantifiers) Here p is a polynomial. 

Definition: (Logarithmically bounded quantifiers) Again, p is a polyno- 
mial. 

(3i  I p(lxl)),(Vi L p(lxl)) 

Lemma: Quantifier Exchange Property Let A(v, w, x) be a predicate. 
Let p, q be polynomials. Then the formula 



is equivalent to the following formula. Note that j* is the Godel number of 
a sequence. 

Pj*, lj*l 5 2(q(lxl) + l ) (p( l~I )  + 1)) 

(Vi 5 p(lxl))(A(i,B(i + l , j * ) ,x )  A IBG + l , j*)I  5 ~(1x1)) 

Proof: + Easy. 

There are only polynomially many values of i for which a corresponding 
j exists. We concatenate these values into a sequence j*. The size bound on 
the Godel-number of sequences gives the polynomial bound on the length 
of j*. 

Corollary: Each of c:, It:, and A: are closed under logarithmically 
bounded quantification. 

Proof: To show that Ck and Itk are closed under logarithmically bounded 
quantification, we use induction on k and at  each step use the quantifier 
exchange property to push the outer, logarithmically bounded quantifier 
one level inward and use the fact that Itk-l and Ck-1, respectively, are 
closed under this operation. For the base case, we note that if A(v, w, x) is 
polynomial time (optionally, relative to an oracle O), then so is the following 
predicate which appears in the statement of the above lemma, namely 

This is because there are only polynomially many values of i 5 p(x). 

Theorem: The original definitions and the second alternate definitions of 
C: and It: are equivalent. 

Proof: Let 2nd-alt-C: be the class given in the second alternate definition. 
By induction on k, it is clear that since It:-'_, A:, then C: 22nd-alt-~:. 

For the converse, let Q E 2nd-alt-Cf'. Then there is a predicate R E Af' 
and a polynomial p such that 

Q = : ( 3 ~ 9  I w I  5 ~(1x1)) R(x,w)) 



To show that Q E ~ f ,  we need to show the existence of a predicate R' E 
IIf-)_, and a polynomial q such that 

We proceed by induction on k. 

Case k = 1. A: = P and X: = N P  are the same for both definitions. 

Case k > 1. By the definition of R, there is a polynomial time OTM 
M which runs in time ~ ( n )  on all inputs of length n and uses an oracle 
fl E IIf- and M accepts (x, w) iff R(x, w) is true. 

x E Q H (3w, lwl 5 p(lx I))"M(x, w) accepts" 

X E Q *  
(3w, lwl 5 p(1x1))(3v' = vl, . . . ,  the v;'s code an accepting com- 

putation of M(x, w)" 

At this point we note that each v; uses 5 ~(1x1) space on each tape. We 
also know that the "v;'s code . . ." iff vl is initial, vr(l,l) is final, and each 
v; + 1 follows from v; by one step of the OTM. For notational convenience, 
let QTC(v;) be the query tape contents in the configuration coded by v;; 



note that QTC(v;) E C*. 

X E Q H  

(3% IwI 5 p(Ixl>> 
(3v = ( ~ 1 ,  - , ~ r ( l x l ) ) ,  IvI 5 0 ( 2 ( ~ ( 1 ~ 1 )  + 1)2)) 
(Vi I ~(1x1)) 

(i = 1 + "v; codes the initial configuration of M on 
input (x, w)" ) 

~ ( i  = ~(1x1) + ' 'v~(~,~) is an accepting configuration" ) 
~ ( 1  5 i < ~(1x1) + ( 

( "v; is not in the query state" + "v;+l follows 
from v; by one deterministic step" ) 
A (("v; is in the query state" A QTC(v;) E R) + 

(6 v;+l is the same as v; except that v;+l is in state 

9," 
A (( "v; is in the query state" A QTC(v;) $? R) + 

"v;+l is the same as v; except that v;+l is in state 

~ n "  

1 1 
Everything in quotes is polynomial time, as well as is QTC. In fact, the only 
thing that is not is R. But R E 2nd-alt-II;"_,, which is equal to by the 
induction hypothesis. So QTC(v;) E R can be expressed as k polynomially 
bounded quantifiers, which begins with a universal quantifier, in front of a 
P predicate. 

Next we use prenex operations to pull out quantifiers alternately from the 
predicates QTC(v;) E R and QTC(v;) $? R. Represent these predicates by 
formulas 0, and 0, which are in zE1 and II;-l respectively. We first pull 
out an existential quantifier from O,, then a universal quantifier from On, 
then a universal quantifier from O,, then an existential quantifier from On, 
an so on until we have an expression of the following form: 

X E Q H  

(3w, IwI I P ( I x I > > ( ~ v ,  lvl 5 r*(Ixl))(Vi I r(Ix1)) 
(3V El . . . QQ) "something polynomial time" 

We then collapse the adjacent quantifiers using pairing and the ,B function. 
By k applications of the quantifier exchange property, we move the quan- 
tifier (Vi 5 r(lxl)) to the end of the expression, where it is absorbed into 



the P predicate. We now collapse the first three quantifiers ( two originally 
and one pulled from 0,) to express Q as follows: 

where Q* E P.  Thus Q is in CE. 

First Order Theories of Number Theory and Fragments of Peano 
Arithmetic. 

We will no longer work with strings from an alphabet, but will work with 
integers, i.e. we will move from C* to N. An integer n E N can be rep- 
resented as a string from O , 1 *  by binary representation and some fudging 
over leading zeroes. 

Language: Logical: A V 1 -+ V 3 = 
Non-logical: 0 S + 5 1x1 Liz] # 

1x1 will represent [log2(x + 1)1, which is the length of the binary represen- 
tation of x. We define 101 = 0. 1x1 and Lf x] are not crucial to the theories, 
but it makes the axioms easier to state. 

x#y = 21xl.l~l. # is pronounced 'smash' and was introduced by E. Nelson. 
It is an important symbol, since it is what allows polynomial growth rate 
for functions. 

1x#yl = 12'"1.1~ll = 1x1 . Iyl + 1 

which is a polynomial in the lengths of x and y. 

Claim: Any function 2p(IXl), where p is a polynomial, can be expressed by a 
term in the language { 0, S, ., #, x ). 

Proof: For multiplication, x#y = 2121'1~l. For addition, we note that (11 = 1 
and thus that 

(x#l) . (y#1) = 21x1 . 214 = 214+lyl 

Furthermore, any term t ( Z )  in the language can be bounded by a function 



2~(l.'I), where p is a polynomial. 

This is easy to prove by induction on the complexity of terms. 

In particular, polynomially and logarithmically bounded quantifiers will 
be expressible in the language. Our terms have the right growth rate for 
polynomial time computable functions. Without #, the lengths of terms 
would have linear growth rate rather than polynomial. 

Definition: Let F be a class of functions. Then f has growth rate of class 
F iff 

(31, E F) (Vx) (If (211 L ~(1x1)) 
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Language for a Fragment of Arithmetic 

We have the language of PA plus some other symbols: 

Where the nonobvious intended interpretations are: 

1x1 = [log,(x + 1)l = the number of digits in the binary representation of x 

x#Y = 2lzl.lvl 

We have three kinds of quantifiers: 

Regular unbounded quantifiers Vx and 3s. 

Bounded quantifiers Vx 5 t and 3s 5 t for t  any term. 

Sharply bounded quantifiers Vx < Is1 and 3s 5 Is1 for s any term. 

We might have taken (Vx 5 t ) ( - .  -) to be an abbreviation of Vx(x < t -+ . a )  

but we didn't. Instead we enlarged the syntax of first-order logic to include 
bounded quantification as a distinct syntactic construction. We assume there 
are sufficient logical axioms to make bounded quantifier formulas logically 
equivalent to what they would have been were they not simply themselves. 



Sharply bounded quantification is just a special case of bounded quanti- 
fication. 

We will show that there is a natural correspondence between bounded quan- 
tification and polynomially bounded quantification on one hand and between 
sharply bounded quantification and logarithmically bounded quantification 
on the other hand. 

Consider the polynomially bounded quantification (Vx, 1x1 5 p(lz1)). Let t 
be a term such that t(z) = 2p(IZI) (Such terms always exist). Then (Vx, 1x1 < 
p(Izl))(. . .) is equivalent to (Vx 5 t(z))(x # t(z) + .). For the other 
direction, consider (Vx 5 s(z))(-..) where s is a term. Then there exists 
a polynomial p such that Is(z)l < p(lz1) for all z. So (Vx 5 s(z))(. a )  is 
equivalent to (Vx, 1x1 5 p(lzl))(x < s(z) + . .). 

Similar transformations are obtainable between sharply bounded quantifica- 
tion and logarithmically bounded quantification. 

Another Definition of the Polynomial Hierarchy 

This definition will be syntactic in the sense that we will define classes of 
formulas. For every class of formulas there is the corresponding class of the 
predicates defined by those formulas. All the classes of predicates about to 
be indirectly defined will together be the same old polynomial hierarchy. 

Definitions: A bounded f o m l a  is a formula in which only bounded quan- 
tification occurs. A sharply bounded formula is a bounded formula in which 
only sharply bounded quantification occurs. 

Definition: Let At  be the class of sharply bounded formulas. The classes 
Ct, IIP are defined inductively on i as the smallest classes satisfying: 

1. Ct = II; = At 

2. For i 2 1, Ct > IIt-l. 



If A, B E Cf then A A B, A V B E Cf. 

I f A ~ C f a n d  B ~ l J p t h e n l B ~ C f a n d  B > A E E ~ .  

If A E Cf then 3x 5 A, Vx 5 IslA arein Cf. 

3. This is the dual to (2) obtained from simultaneously transposing all V 
with 3 and all C with II. 

The bounded hierarchy counts alternations of bounded quantifiers but ig- 
nores sharply bounded quantifiers; this is analogous to the arithmetic hier- 
archy which counts alternation of regular quantifiers but ignores bounded 
quantifiers. Because of the equivalence of term-bounds with polynomial and 
logarithmic bounds, we have already verified that the analogous quantifier 
exchange properties do hold. 

Open Question: The bounded hierarchy can be denoted by A,(#) which 
is the class of bounded formulas in the usual arithmetic language expanded 
by including #. Is A,(#) = A,? 

Axioms of Bounded Arithmetic 

We examine several forms of restricted induction. We are interested in 
theories much weaker than PA. 

Definition: Let Q be a class of formulas. 

8-IND is the axiom scheme: For A E 8: 

A(0) A Vx(A(x) + A(Sx)) + VxA(x) 

Definition: 8-PIND is the axiom scheme: For A E 8 :  

A(0) A Vx(A(1f XI ) + A(x)) + VxA(x) 

(In the above two definitions A = A(x, 3 is allowed to have parameters z'.) 



This is essentially induction on the length of x.  Suppose we know A(0) and 
Vx(A(L;xj) + A(x)).  We can simulate PIND to deduce A(100) in seven 
steps, as follows: 

4 0 )  
hence A(1) 
hence A(3) 
hence A(6) 
hence A(12) 
hence A(25) 
hence A(50) 
hence A(100) 

Our intuition should be that PIND is more 'feasible' than IND because when 
we have the power of the PIND hypothesis we can convert an induction proof 
to a brute-force proof (simulating the induction by hand for a particular 
value) with fewer steps. Simulating an IND proof of A(n) takes n steps, 
whereas simulating a PIND proof of A(n) takes only In1 steps. Since PIND 
is more 'feasible' than IND we might expect that the Q-IND axioms imply 
the Q-PIND axioms; we shall prove such results below. 

Definition: Q-LIND is the axiom scheme: For A E Q: 

We notice that Q-IND + Q-LIND. We will later see that Q-LIND e~ 
Q-PIND for reasonable Q over some simple base theories. 

In the theories we are considering Vy3x(lxl = y) is not a theorem. In words, 
exponentiation is not total. In such theories \E-LIND is not necessarily equiv- 
alent to Q-IND. 

In addition to induction axioms we must have a base theory. The base theory 



is called BASIC and consists of the universal closures of: 

(Bl )  y l x > y L S x  
(B2) x # Sx 
(B3) O < x  
(B4) x < y A x # y * S x L y  
(B5) x # 0 > 2 . x # 0  
(B6) Y I x V X ~ Y  
(B7) x < y A y < x > x = y  
(B8) x < y A y < z > x < z  
(B9) 1 0 ( = 0  

(B10) x # 0 > (2 . X I  = S((X()  A (S(2 x) (  = S((X()  
(B11) IS01 = SO 
(B12) x < Y 3 1x1 l l ~ l  
(B13) Ix#yl = SOxl . lyl) 
(B14) O#y = SO 

(B15) x # 0 > 1#(2 X )  = 2 ( 1 # ~ )  A 1#(S(2. x)) = 2 ( 1 # ~ )  

(BIG) X#Y = Y#X 

(B17) 1x1 = Iy( 3 x#z = y#z 
(Bl8) 1x1 = (21) + lvl 3 X#Y = (u#Y) (v#Y) 
(B19) x L x + y  
(B20) x <  y ~ x # y > S ( 2 . x ) < 2 . y ~ S ( 2 . x ) # 2 . y  
(B21) x + y =  y + x  
(B22) x + 0 = x 
(B23) x + Sy = S ( x +  y) 
(B24) (x + y) + z = x + (y + 2) 
(B25) x + y l x + z + + y l z  
(B26) x .  0 = 0 

(B27) x (Sy) = (x . y) + x 
(B28) x - y = y . x  
(B29) x (y + z) = (x y) + (x z) 
(B30) x ~ S O > ( x . y < x . z * y < z )  

(B31) x # O  1 1x1 = s(lL+xJI) 
(B32) x =  L f Y ]  * ( 2 - x = y V S ( 2 . x ) = y )  

With stronger induction axioms such as C!-IND we could prove the associa- 
tive law: 

( x + y ) + z = x + ( y + z )  



with a much weaker base theory. The BASIC axioms are so numerous because 
PIND is so weak and because there are so many functions to define. 

Definitions: Let Si = BASIC + Ct-PIND. Let Tj = BASIC + Ct-IND. Let 

Later we will prove that S2 = T2. 

Theorem: For i 2 0, Si I- Cq-LIND 

proof: Let A(x) E Ct. Argue in Si. We want to show 

Let B(x)  be the formula A(lx1). B is also Ct. 101 = 0 is in BASIC so 
Si I- A(0) + B(0).  By this and axiom 31, 

Since VxB(x) is VxA(1x1) we have proved LIND for A(x) and are done. 

The converse of this holds for i 2 1 .  Precisely: 

Theorem: For i 2 1 ,  Si + Cq-LIND I- Ct-PIND. Equivalently: Si = 
BASIC + Cq-PIND E Si + Ct-LIND. 

Introducing Function and Predicate Symbols 

We will see that we can extend the language with new function and predicate 
symbols in such a way that the new symbols can be used in induction axioms. 



Definition: A formula A said to be A: with respect to a theory R if there 
exist formulas B, C E C: such that 

Definition: A function f : N k  + N is CP-defined by R if and only if there is 
a Cf-formula A(y , XI ,  . . . , x k) and a term t such that 

(i) R I- VZ(3y 5 t)A(y, Z) 
(ii) R I- VZVyVyf(A(y,Z) A A(yf,Z) + y = yf) 
(iii) For all n' E Nk, N N A(f(ii),ii) 

By a theorem of Parikh, the condition that a term t bounds y is superfluous 
for theories R which have only universal closures of bounded formulas as 
axioms. Si, Ti, S2, T2 are such theories because induction axioms on bounded 
formulas can be re-expressed in bounded form. For example 

is stronger than IND(A) but can be proven from IND(y 5 x + A(y)) 

Theorem: Let R be one of Si or Ti. Let A(y, Z) be a C!-function definition 
in R, and let R* R + VZ(A(f (Z), 2 ) ) .  Let Cf(f)  be the class of formulas 
defined as the CP-formulas were defined, except that the new symbol f is 
allowed in open formulas and in bounding terms. Then for B(Z) any Cf( f )- 
formula there exists a formula B*(Z) E CP such that: 

proof: By the definition of C!-definable there is a term t that R*-provably 
bounds f .  

For every occurrence of f in the bounding term of a quantifier, such as Vz 5 
s(f(i;?)(.-.) replace that term so that we haveVz 5 s(t(T))(z 5 s ( f ( 3 )  + 
. . -). This uses the fact that since all the the original functions of Si are 
nondecreasing in each argument, every term built from such functions is also 
nondecreasing in each argument. 

If f occurs more than once in the same bounding term the transformations 
that remove occurrences of f can proceed in arbitrary order. 



By this procedure we have obtained B1 in which f does not occur in any 
quantifier bounds. Now use prenex operations to obtain B2 E C! in prenex- 
normal form. B2 has the form: 

(ax1 5 t l)  . . . ( Q x ~  I: tk) C(f(7)) 

C(  f (7)) is P-equivalent to both 

Replace C(  f (7)) by whichever one of these does not increase the number of 
quantifier alternations. Do this for every occurrence of f in the matrix of B2. 

Corollary: Fix i 2 1. Let R be Si (or resp. Ti). Let f be C!-defined in 
R. Then the theory R + Vc'A(f ( Z ) ,  2 )  + C!( f)-PIND (resp. C!( f)-IND) is 
conservative over R. 

So Ci-defined function symbols can be introduced and used freely in induc- 
tion axioms. We actually only showed this for one function symbol but it 
is easy to extend this argument to the case of many function symbols. A 
similar proof shows that A!-defined predicates can be introduced and used 
freely in induction axioms. A formula analagous to B2 is obtained in the 
same way. A!-predicates have both C! and II! formulas to express them, so 
an appropriate formula can always be found that won't increase the number 
of alternations of quantifiers. 

Ct-definable functions for S,' 

Theorem: Si can C!-define the predecessor function: 

P is defined by b = P(a)  % M(a, b) where M (a, b) is the formula 



proof: First we note four simple theorems in S,'. 

S i I - x s x  (from B6) 
S,l I- x 5 Sx  (fiom previous statement plus B1) 
Sit- ~ S X  < x (from previous statement plus B2, B7) 
Sit- 1 S x  = 0 (from previous statement plus B3) 

We need to prove both 

(uniqueness) S,l I- VxVyVy'(M(x, y) A M(x, y') -+ y = y') 
(existence) S; I- Vx(3y < x)M(x,y) 

(uniqueness:) First S,' + M(0,y) + M(0, y') I- y = y' obviously, since S; 
knows that 0 is the successor of no element. It suffices to show 

s; + (Sy = x) + (Sy' = x) I- y = y' 

Argue in the so-extended theory: 

I- Sy = Sy' = x 
I - y < y ' - i y = y ' v S y < y '  (by B4) 
I - y < y ' - + y = y ' V S y l < y '  (by Sy = x = Sy') 
I - y L y ' - i y = y '  (because 1Sy'  < y') 

Similarly I- y' < y -+ y = y'. We conclude I- y = y' using (B6). 

(existence:) S,' I- (3y 5 O)M(O, y) obviously. So by C!-PIND it suffices to 
show: 

s: I- ( 3 ~  5 LfxJ)M(Ltx l ,~)  -+ ( 3 ~  < ~ ) M ( x , Y )  
This is proved by division into cases: 

First case: 
Si I-x=S(2. [+x])-+ M ( x , ~ .  LfxJ) 
S i t  x = S ( 2 -  L ixJ ) -+2 .  LkxJ < x  

Second case: 



In (*), S ( 2 .  y) works because: 

SS(2 y) = S ( 2 .  Y)  + SO 
= 2 . y + s s o  
= 2 - y + 2 . s 0  
= 2 (y + SO) 
= 2 . S y  
= 2 [ix] = x 

This uses the deep result that 2 SO = SSO. Thus is the proof completed. 

That was a demonstration. Such details will be omrnitted in the future. Be 
assured that somebody else has checked them and they work. Instead of 
treating such details for every function and predicate that we want to use 
we just exhibit their Ct and At-definitions and emphatically assert without 
proof that S; proves existence and uniqueness. 

Facts: The following are C!-defined functions and At-defined predicates in 
Si and all larger theories. 

By similar methods define > , >, #. 

Define min similarly. 

df Power2 (a) "a is a power of 2" u S(IP(a) 1) = la1 

df df c = Exp ( a ,  b) = 2m'n(a*lbl) u Power2(c) A lcl = 1 + min(a, lbl) 

For the next two definitions, 2b means 2m'n(b*lal). The most significant part 
is defined: 



The least significant part is defined: 

c = Bit (b, a) Mod2(MSP (a, b)) 

Bit (b, a) is the bth bit in the binary representation of a. By the way, S,' 
proves that a number is completely determined by its binary representation: 

S,' I- 1.1 = lbl A (Vi < lal)(Bit (i, a) = Bit (i, b) + a = b) 

Now subtraction is definable: 

The definability of this function is mentioned so late because the machinery 
of bit-functions is needed to prove existence. 

bla Rem(a, b) = 0 A b # 0 

df Even (a) t-t Mod2(a) = 0 

Odd(a) t% Mod2(a) = 1 

Protosequences 

We won't try to rely on traditional Godel numbers in S2 because exponenti- 
ation is not total. Instead we code a sequence of numbers as follows: Write 
each number in binary representation, with the least significant figures on 
the right, as is traditional. Prepend each number with a comma, and con- 
catenate them from right to left. Translate this three-symboled string into a 



unique string of zeros and ones by translating each of 0 ,  1, and comma into 
a couple of bits. 

0 H 10 
1 H 11 
, H 01 

Such codes will be sequences. Because of technical difficulties with the 
formalization of sequences, we will formalize protosequences first. Proto- 
sequences are sequences which use equal-length binary representations for 
each of their elements. 

Comma(b, a)  % Even (b)  A Bit (b  + 1, a )  = 0 A Bit (b, a )  = 1 

Comma (b, a )  means that the bth bit of a is the first (from the right) of a pair 
of bits that denote a comma. 

c = Digit(b,a) % ( c  = Bit(b,a)  h Even(b) A Bi t (b+ 1 ,a)  = 1) 
V ( C  = 2 A (Odd ( b )  v Bit (b  + 1, a )  = 0 ) )  

Digit (b, a )  returns 0 or 1 respectively if the bth bit is the first of a pair of bits 
which denote 0 or 1 respectively. Otherwise, Digit (b, a )  returns the value 2. 

df ProtosqSL (a ,  b, c )  t-, la1 + 2 = 2 . c . Sb 

A(VY < IaI>[( ( 2 .  b + ~ ) I ( Y  + 2 )  + Comma(y ,  a ) )  
A ( l ( 2  b + 2)l(y + 2 )  + Digit ( 2  y, a )  < 2)]  

ProtosqSL (a ,  b, c )  says that a is a sequence of c numbers each represented by 
b pairs of bits. 

b = Protosize ( a )  % (Comma ( 2  b, a )  A (Vi < b) (1 Comma (2  . i ,  b))  
~ ( b  = O A (Vi < l a J ) ( ~ C o m m a ( 2  - i ,  b))  

Protosize ( a )  is the position of the first comma in a as measured by counting 
pairs of bits. If there is no comma in a then Protosize ( a )  = 0. If a is 
a protosequence then b is the number of pairs of bits used to code each 
element of the sequence. 

Protolength ( a )  = lal + 1 
12 Protosize ( a )  + 2 J 



If a is a protosequence then Protolength(a) will be the number of elements 

Protoseq ( a )  % ProtosqSL ( a ,  Protosize ( a ) ,  Protolength ( a ) )  

Protoseq(a) says that a is a protosequence. 

b = Protop 1 ( a )  % I b( 5 Protosize ( a )  
~ ( v i  < a )  ( i  < Protosize ( c )  -+ Bit ( i ,  b) = Bit ( 2  i ,  a ) )  

Protop1 ( a )  is the first element of the protosequence a.  

Protop (b, a )  " I m t o p l  ( M S P ( a ,  (2  . Protosize ( a )  + 2)  (b-1) )  

Protop (b, a )  is the bth element of the protosequence a .  

So far we haven't used the # function in the definitions of extra functions 
or in the proofs of their existence and uniqueness. The # function will be 
important for proving the existence of codes for sequences under reasonable 
conditions. 
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Earlier we showed: Q-PIND -+ Q -LIND for Q a class C f . 

Theorem: Let i 2 1. 
(a) S,' + CP-LIND t CP-PIND 
(b) T; + CP-LIND t CP-PIND 

Corollary: 
(a) S,' + cP-LIND E Si (i > 1) 
(b) Ti 2 Sl (i 2 1) 

Proof: (a) Si - S,' + CP-PIND. 
(b) Cq-LIND CP-LIND is obvious. 

Proof of the Theorem: We prove (a). The proof of (b) is identical. 
We need MSP(x ,  2) = lx -2-'J and - to be C! -definable. Let A(x) be any 
Cf -formula. We want to show: 

Let B(x, u) be A(MSP(z, 1x1 - u)). We will use LIND on B with respect 
to u .  Note that B is in Cf. We have S,' t A(0) > B(0) since Si t 
MSP(x ,  1x1) = 0. Also 

where c is a new variable symbol, since [$MSP(x, u + l ) J  = MSP(x,  u). 
So, using CP-LIND, 



But S,1 + cP-LIND I- B(c, Icl) > A(c) since MSP(c, 0) = c. So, 

and use V-introduction. q.e.d. 

Theorem: 
(a) S,l + cP-PIND = S,l + IIP-PIND 
(b) S,1 + Cf-IND G S,1+ IIP-IND 
(c) Si + CP-LIND S,1 + IIP-LIND 

Proof  of (a) >: Let A(x) be in II;. We want to show that S,1+ cP-PIND 
proves induction on A. Let B(x, u) be the formula A(MSP(x, u)) . So, 
S,1 I- A(0) > B(c, Icl), where c is a new variable. Also, 

S,' I- Vx(A( L$x] ) > A(x)) > Vu(B(c, u + 1) > B(c, u)) 

Equivalently: 

Note that 1 B  is in Ep. So, 

s,' + c;-PIND I- -B(c, 0) A VU(TB(C, U) 3 TB(C, + 1)) 3 TB(C, 1~1). 

(Since PIND 5 LIND). And S,1 I- B(c,O) > A(c). So, 

and we are done by V-introduction. The other direction: (a)C is similar. 
(b) and (c) are proved similarly. Idea: to do induction on A(x) you instead 
do induction on B(c, x) E -A(c - 2). 

Theorem: 1 5 i. Let A(x) be a A!-formula with respect to Si. (For 
i = 1 A is a A! -defined predicate of Si ). Then, S,1 proves regular induction 
for A, i.e. 

S; I- A(0) A Vx(A(x) > A(x + 1)) > VxA(x) 

Corollary: Si I- CP-,-IND. So, Si > T;-' 



Proof: Let AE(x) E C! , Au(x) E II! and Si I- A(x) = AE(x) and 
Si t A(x) - &(x) (from the definition of A being At). 

Let B(x, z) (Vy < z + l)(A(x I. y) > A(x)). Note that B(x, z )  is 
(equivalent to) a formula in II; . Let c and d be new variables. 

Claim: Sh t (Vx 5 c)B(x, Lid]) > (Vx < c)B(x,d) 

Proof: We argue informally inside Si . Assume that (Vx < c)B(x, Lid]) 
holds. Let x 5 c,y 5 d + 1 and suppose A(x y) holds. We want to show 
A(z) , We have that A(x y) > A(x - Lf Y] ) since (x - y) - (x Lf y] ) < 
Lid] + 1 And A(x - Lf y] ) > A(x) since [i y] < [id] + 1 and so the claim 
is proved. 

By the Claim and by II! - P I N D  on (Vx 5 c) B(x, d) with eigenvariable d 
we have that Si proves 

(VX < c)B(x,O) > (Vx < c)B(x,c) 

Now, 
Sf I- Vx(A(x) > A(x + 1)) > VxB(x, 0). 

Also, 
Sh I- B(c, C) > (A(0) > A(c)). 

so, 
S: t A(0) A Vx(A(x) > A(x + 1)) > A(c). 

Theorem: 
(a) Vi 2 1 , Ti > Si > T;-'. 
(b) Sz = T2 

Proof: Si > T;-' is the previous corollary. And Ti proves C! - L I N D  
which implies Ct - P I N D  by the first theorem above. 

Remark: It is open whether S,2 and Ti are actually distinct. Takeuti 
has shown that Si # Ti by showing that the predecessor function is not 
definable in S,O . 



It 
CP-LMIN u strong CP-replacement a (CP+l n II:+l)-PIND 

Relationships among axiomatizations for Bounded Arithmetic 
relative to the base theory S,1 with i > 1 

The following are C! -definable functions and A! -definable predicates of S,1. 

b = Numones(a) w "Number of ones in a's binary represent ation". i.e. 

b = Numones(a) w 3w, Iwl < 2(I(lal)l + l ) ( lal+ 2) such that 

[PSqSL(w, I(lal)l, lal + 1) and 

Protop(1, w )  = 0 and 

Vi  < la((Protop(i + 2, w )  = Protop(i + 1,w) + Bit ( i ,w))  and 

b = Protop(la( + 1, w)]  

Notice that this is a C! formula.Also notice that the first bounded quantifier 
in this formula can be expressed as 3w 5 ((4(a + 1))#(2(lal + This 



is the first place we needed the # function (although even here it can be 
eliminated). 

A proto - sequence has fixed length entries. Adding an extra element 
to the sequence,when the new element is larger than the sizes of the old 
elements, would require all entries to be "stretched". This is a problem with 
protosequences. So, instead we define a more general notion of sequences 
which have variable length entries. 

Like protosequences, sequences will be a string of 0's and 1's and commas 
represented as a binary number by writing 11 in place of 1, 10 in place of 0 
and 01 in place of ,(comma). 

Notice: If A(x, Z) is a A! -defined predicate, then f (x, Z) = (number of i 5 
Ix 1 )  A(i, Z) is a C! -defined function of S;. (Translate to: If A E P , then 
f E FP). 

[Proof: Let g(x,.Z) = b H Ibl 5 1x1+1 and (Vi 5 Ibl)[Bit(i, b) = 1 = A(i,Z)] 
So, g is C!-defined. But f (x, Z) = Numones(g(x,Z)). q.e.d.1 

Also Notice: If A(x, Z) is a At -defined predicate, then 

if no such i exists 

This is a C! -defined function. 

[Proof: f (x,Z) = (number of i 5 Ixl)Vj 5 Ixl(j 5 i > iA(j,Z)). q.e.d.1 

0 t her Ct -definable functions and A! -definable predicates of Sl are: 

Seq(w): w is a sequence. 

Len(w): length of w. 

P(i, W) : the ith element of w. 

w * a: adds a as a new element to w. 



v * *w : concat enat es v and w. 

For example, the first can be defined by: 

Len(w) = (number of i 5 Jw l)Comma(i, w) 

And the second by: 

Seq(w) e (Vi < Iwl)(Even(i) > Comma(i, w) V Digit(i, w) # 2) 

and (w = 0 V Comma(0, w)) 

We leave the definitions of P , * and ** as an exercise. 

Theorem: If f : Nk 4 N is in FP, then St can C;-define f .  

Proof: Let M be a deterministic Turing Machine which on input Z runs in 
time p(IZ1) and outputs f (Z). 

WLOG, M has a single tape which extends in one direction only. An ID 
of M is coded by ((ql, al), (q2, az),  .....) where a; is the ith symbol on the 
tape and q; = a state if tape head is at position i (=blank, otherwise). 
f (Z) = z e 3w, (wl 5 2(p(lZl + [w = (wl, ..., w , ( ~ ~ ) )  and wl codes 
initial ID of M(Z), w;+l follows w; by one step and w,(l.q) has z written on 
the tape]. 

All the conditions above are expressible by A:-predicates. Use C: - LIND 
to prove that w = (wl, ..., w;) exists, by induction on i up to i=~(IZ[).q.e.d. 

Aside: We have two definitions of " f is an NP-function": 

(1) the graph off is in N P  n co - N P  

( l b )  the graph of f is in N P  

Note that (1) =+ ( l b )  . Also, ( l b )  =+ (1) since f (x) f y can be expressed as 

34s  # Y A f (x )  = 4 
(2) the predicate f (x) 2 y is in N P  



Another possible definition gives the class 17;: 

(3) f can be computed in polynomial time with an oracle from N P  

Note that (1) + (2) + (3). However it is not known whether the converses 
hold. 

Aside: 

Definition: 0: = pCLl the set of functions computable in polynomial time 
with an oracle from C:-'_, . 

Theorem: If f E ~ ? ( i  2 1), then Si can C!-define f.  

This theorem was stated and proved above for i = 1. The general case with 
i > 1 is proved in a similar manner. Recasting this theorem in terms of 
predicate symbols gives the following Corollary. (The proof is an exercise.) 

Corollary: 
(a) If A E P , then S,1 can A! -define A. 
(b) If A E Ar,then Sa can A!-define A. 

Every A E P can be expressed as C!-formula which is provably equivalent 
to a II! -formula in S,1. 

Later we shall show that the converse to the above Corollary holds; namely, 



if A(x) is At with respect to S,1 then A(x) E P. We show on the next page 
that a predicate is definable in N by a Ci (or 11; respectively) formula iff 
it is N P  (or co- N  P  respectively) .It follows that any predicate S,1 -provably 
in N P  n co - N P  is actually polynomial time. 

Recall: It is open whether N P  n co - N P  = P. 

Remark: Defining a polynomial time function in S; by the above theorem 
may not give an intensional definition.Example: 

0 if x is a Godel number of an Si proof of 0 = 1 
1 otherwise 

For this function, S,1 does not prove Vx( f (x) # 0) 

Theorem: A predicate Q C N is in N P  iff there exists a C!-formula 
A(x) such that Vz(x E Q * N + A(x)) 

Proof: Recall that Q E N P  iff there is R E P  and a polynomial q such 
that 

Vx(x E Q * 3w, I w I  I q(IxI)R(x,w)) 

To prove the theorem: +- : Since R E P ,  it is A! -definable in Si , in 
particular, there is a Ct formula A(x, w) such that 

(Notice that the existential quantifier is polynomially bounded.It can be 
reexpressed as (3w 5 t(x))[lwl 5 p(lx1) A A(x,w)] which is a Ct formula.) 
+ : If A(x) is a C: formula, put A in prenex normal form,say: 

All universal quantifiers are sharply bounded and B(x, y', z") is quantifier free. 
Reexpress bounded (respectively sharply bounded) quantifiers as polynorni- 
ally (respectively logarithmically) bounded quantifiers and use quantifier 



exchange property to get a formula which shows that A(x) expresses an 
N P  predicate.q.e.d. 

Theorem: More generally, 

Q E Cf e 3A E C4 such that Vx[x E Q e N A(x)] 

(These theorems are due essentially to Stockmeyer and Wrathall. Kent and 
Hodgson have stronger versions than what I stated here.) 

So, Sh uses length induction on N P  predicates. 

Cook(1975) introduced a theory P V  having function symbols for each poly- 
nomial time-function and length induction on polynomial-time predicates. 
It turns out that Sh is conservative over PV. 

Goals: To prove that: 

*Every C!-definable function of Si is in 0: . SO, every C!-definable function 
of Si is a polynomial-time function. 

**Any polynomial predicate A such that Sh k VxA(x) has a polynomial 
size extended Frege proofs.[Cook] More precisely, given A A!-defined by 
S,1 (and hence expressing a property in P) there are propositional formulas 
llAlln n = 1,2,3,.. where ((All, says (Vx, 1x1 = n) A(x) and llAlln will 
have polynomial size eF proofs (as a function of n). 

To prove this we need some proof theory for first-order logic. 

Sequent calculus for First-Order Logic 

Language: A, V, >,i, V, 3, V 5, = 

Variables: Free: a,b,c ,... Bound: x,y,z ,... 

In formulas, only free variables can occur free and only bound variables can 
occur bound. Terms have only free variables. Semiterms are like terms 



except that they contain both free and bound variables. 

Non-logical symbols: 0 ,S,+, . ,5 ,1~1,  Liz],# 

The sequent s have the following rules: 

v :left, V :right, :left, A :right, >:left, >:right, 1 :left, 1 :right, cut rule 
and structural rule are identical to the propositional calculus rules. 

where t is a term 

where the eigenvariable 
b does not occur in the 
lower sequent 

where b does not appear 
in the lower sequent 

V 5 :right 
b I ~ , r +  ~ ( b ) ,  A 

where b does not appear r+ (VZ I S)A(X),A in the lower sequent 

b < s, A(b),I'+ A 
3 5: left where b does not occur in 

(32 5 s)A(x), I?+ A the lower sequent 



3 5:  right 
r+ A ( ~ ) , A  

t  5 ~ , r +  (32 5 S)A(X),A 

Exercise: Show that + (32 5 s)A = 3x(x 5 s A A) is provable with the 
above rules. 

Gentzen defined LK (Logische Kalkul) as the system above without 
bounded quantifiers. Let L K B  be LK + bounded quantifiers. 

Logical axioms: A+ A for A atomic. 

Equality axioms: 

Sl  = tl+ S(s1) = S(t1) 

and similarly for each unary function symbol. 

and similarly for each binary function symbol. 
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Sequent Calculus for First-order Logic (con't) 

In addition to the logical and equality axioms, we add non-logical axioms 
which are sequents based on the BASIC axioms for bounded arithmetic. The 
only formulas occurring in these axioms should be atomic. For example, we 
have.. . 

(1') y  5 x+ y  5 S x  
(2') x  = Sx+ 
(3') + 0  2 x  
(4') x < y + x = y , S x L  y ,  and S x < y + x L y ,  

and S x  5 y,x = y+ 
(5') s s o - x = o +  x = o  

(6') + Y  L 2, x  I Y  
(7') x  < y,y < x +  x  = y  
(8') x <  y , y L z + x < z  
etc. 

In addition to the logical inferences, we add the following induction rules, 
where is a class of formulas. . . 

-PIND Rule: 

where A E a ,  t is a term, and b is an eigenvariable which does not occur in 
the lower sequent. Note that this is sound in that if the upper sequent is valid, 
then the lower sequent is, too. 



@ -1ND Rule: 

where A E @, t is a term, and b is an eigenvariable which does not occur in 
the lower sequent. 

Fact: The @-IND rule is  equivalent to  the @-IND axiom (i.e., 
+ (A(O)A Vx (A(x) > A(Sx))) > Vx A(x) ) and similarly for PIND. 

Proof:  (e) This is clear. 
( + ) First we derive without the induction rule the sequent 

Then letting c be a new variable, @-IND gives 

Applying V:right, we have 

and finally after two A :lefts, a structural inference, and a > :right we derive 

A similar proof works for PIND. 

Note that in general (e.g. in a Hilbert-style calculus), the induction axioms 
and rules are not equivalent. The difference here is that we have the side 
fonnulas r and A in our induction rules. 

Definition: 

(a) Si is the sequent calculus system LKB + BASIC axioms + C!-PIND 
rule. 

(b) Tj is the sequent calculus system LKB + BASIC axioms + c!-IND rule. 

These are equivalent to the previous definitions by the above fact. 



Definition: The following notions are defined just as with the sequent cal- 
culus for propositional logic: successor of an occurrence of a given formula, 
descendant (chain of successors), ancestor (opposite of descendant), di- 
rec t descendant  (descendant in which given occurrence of formula remains 
unchanged), d i rect  ancestor (opposite of direct descendant), principal 
formula of an inference, and side formula of an inference. 
Note that in an induction inference there are two principal formulas-namely 
A(0) and A ( t )  . 

Definition (Takeuti): A cut inference in a proof P is free unless one of 
the cut formulas is a direct descendant either of a principal formula of an 
induction inference or of a formula in an equality or non-logical axiom. 

Our goal is to prove the following cut-elimination theorem.. . 

* * * Theorem (Gentzen): Suppose P is an Si - (or Tj-)  proof of I? 4 A.  Then 
there is a bee-cut b e e  Si - (or Ti-) proof, P*, of I?+ A such that eve? 
induction formula in P* is a substitution instance of an induction fomula in 
P. 

Reference: Takeuti, Proof Theory. Our proof follows Takeuti's proof almost 
directly. 

We will say that A is a subformula of B in  t h e  wide sense iff A is a 
substitution instance of a subformula of B where we substitute for both free 
and bound variables. If P* is a free-cut free proof of I?+ A ,  then every 
formula in P* is either: (a) a subformula in the wide sense of I?+ A ,  or 
(b) a substitution instance of a principal formula of an induction inference in 
P*, or (c) it is used in an equality or non-logical axiom. So the next three 
corollaries follow directly from the main theorem. 

Corollary: If I? + A has an LKB-proof, then I?+ A has an LKB-proof 
in which every cut formula is atomic (i.e., is the direct descendant of a formula 
used in an equality axiom). 

Corollary: If l? 4 A has an LKB-proof not involving any equality axioms, 
then I?+ A has a cut-free proof. 



Corollary: If every formula in r+ A is in C! U II! and if Si I-r+ A ,  
then there is an Si -proof of r+ A in which every formula is in Cf U IIf 

In order to simplify the proof of Gentzen's theorem, weintroduce the following 
new rule of inference. . . 

Mix Rule: 

where A occurs in both II and A ,  and II* and A* are obtained by deleting 
every occurrence of A from II and A ,  respectively. 

By use of structural rules, it is fairly easy to see that the mix and cut rules 
are equivalent. 

Proo~? For cut =+ mix we have 

r,n* + A,A*,A A,r , I I*  +A*,A 
(cut on A) r,n*+ A*,A 

and for mix=+cut we have 

F + A , A  A , r + A  
(mix on A). 

r ,  r*+A*, A 

We say that a mix inference in a proof, P, is free unless one of the occurrences 
of A in II or A is the direct descendant of a principal formula of an induction 
inference or of a formula in an equality or non-logical axiom. Note that the 
property of "free-ness" is not altered when we switch from mixes to cuts and 
vice-versa. 

Using this equivalence between cuts and mixes, it is clear that the following 
lemma suffices to prove Gentzen's theorem by working our way down a proof 
of r+ A from the "leaves", eliminating free cuts/mixes as we go. 



Lemma: If P is an Si - (or Tj -) proof of + A that has only one bee mix 
inference which occurs as its final inference, then there Cs a bee-mix bee ,$ - 
(or Tj-) proof, P*, of I?+ A such that eveq induction formula in P* Cs a 
substitution instance of an induction formula in P.  

Before we begin the proof of the lemma, a few definitions.. . 

Definition: Suppose P is as in the lemma and that the final inference of P is 

Then we define 

(a) for any formula, B, Grade (B) is the number of logical symbols in B. 
(b) Grade(P) = Grade(A). 

(c) the right-age of P is the maximum length of a path beginning with 
ll+ A and going up toward the axioms such that a direct ancestor of 
A in n is in the antecedent of each sequent on the path. 

(d) the left-age of P is defined similarly for r+ A (looking a t  direct 
ancestors of A in A).  

(e) Age (P) = right-age (P) + left-age (P). 

Since right-age(P) and left-age(P) are always 2 1, we have that Age(P) 2 2. 
Also note that Takeuti uses the term "rank" instead of "age" in his proof of 
the lemma. 

P roo f  of Lemma (by double induction on Age(P) and Grade(P)): We 
will give a purely syntactical, constructive approach, manipulating proofs 
instead of looking at  models. 

Case 1: Age(P) = 2 

1.1 
A+ A n- A 

- (A) is the final inference of P. 
A , n *  + A 

Obtain P* by changing this inference to 
n- A 

by a structural 
A ,n*  + A  

rule. 



1.2 Dualwhere ll+ A is A+ A. - 
1.3 Aisintroducedinto A byastructuralrule ... - 

I',ll*+ A*, A ( A ) ,  

where rl l-' as sets and A1c  A as sets with A not occuring in A1. 

Change this to the structural rule l-'l +A1 to obtain P*. 
l-', ll*+ A*, A 

1.4 Dual where A is introduced into ll by a structural rule. - 

1.5 A is introduced into A and into ll by a logical inference. The type of - 
logical inference is determined by the outermost connective of A. . . 

1.5(i) Ais B V C  
Then P ends with 

I?+ B,A1 A C , l l l + A  
I?+ B V C , A 1  B V  C,Ul + A 

( B  v C).  
l-',Ul+ A1,A 

Note that this is indeed a free mix. From this form a proof, PI, which 
ends 

where U; and A; are obtained from ill and A1, resp., by deleting all 
occurrences of B. 
If this is a free mix, since Grade(P1) < Grade(P), we use the induction 
hypothesis to get a free-mix free proof, P,* , of l-' , ll; + A;, A.  If it is not 
a free mix, set P;=Pl. Then since P is  free-mix free LLabove" l-' + B, A1 
and B, lIl + A ,  we have that P; is free-mix free in either case. Form 



1.5 ( i - ( i v )  A is 1 B, B A C, and B > C are all handled similarly. 

1.5(v) A is 3x 5 t B(x) 
Then P ends with 

where b is an eigenvariable which doesn't occur in the lower sequent and 
w.1.o.g. no variable in the term s is used as an eigenvariable in any 
inference of P (if so, simply change variable names). 
So by substitution of s for b,  we get a free-mix free proof of 

s 5 t, B(s ) ,n ,  -+ A .  
Now form PI, which ends 

where ll; and A; are obtained by deleting occurrences of B(s) (and 
w.1.o.g. B(s) # s 5 t) .  
If this is a free mix, since Grade(P1) < Grade(P), we may use the 
induction hypothesis to get a free-mix free proof, P,' , with the same 
endsequent. If it is not a free mix, set P;=Pl , which again gives a 
free-mix free proof. 
A structural inference gives us P* . . . 

... 
1.5 (vi)-(wii) A is Vx 5 t B(x), Vx B(x), and 32 B(x) are all handled 

similarly. 

Case 2: Age(P) > 2 
2.1 right-age(P) > 1 - 



r + A  n+A 
If A occurs in r ,  then change (A) to the struc- r,n*+ A*,A 

tural inference "- A to obtain P*. r, n*+ A*, A 
Similarly if A occurs in A .  

2.1.2 Suppose n+ A is inferred from @ + Q and A is not the 
principal formula of this inference. Then P ends with 

r+ A ++ 'I' 
Form Pl which ends with the mix (A), where +* r, +*+A*, 'I' 
is obtained by deleting all occurrences of A from +. Since right-age(P1 ) 
= right-age(P)-1 and since this must be a free mix, by the induction 
hypothesis there is a free-mix free P; which has the same endsequent as 

Pl 
Now form P* as 

p; 
a*, r+ Q, A1 

Here the first and third inferences are structural rules while the second 
is obtained from the original inference of a+ Q to II+ A (this is 
possible since A is not the principal formula of this inference). 

2.1.2' Suppose II+ A is inferred from two sequents and A is not the 
principal formula of this inference. Then P ends with 



This case is handled similarly to the previous one. 

2.1.3 r doesn't contain A and A is the principal formula of the infer- 
ence producing II + A. Then since right-age (P) > 1, there are other 
occurrences of A in II. 

21.3() A is B V C 
Then P ends with 

\u " V,. 

r,II;+ A*,A 

Form PI and Pz which end respectively with the free mixes 

and 

r+ A C,IIl + A  
r, C, II; +A*, A 

( B  v C).  

Since the right-age of both of these inferences equals right-age(P) -1, by 
the induction hypothesis there are free-mix free proofs, Pi and P,' with 
the same endsequents. Form P3 as 

p; pz' 
B, r, II; +A*, A C,F, II; +A*, A 

l?+ A 
B V C, l?, II; +A*, A 

r , r , n ;  +A*,A*,A ( B  v C) 

Now right-age(P3) = 1 and left-age(P3) = left-age(P). So Age(P3) < 
Age(P) and we use the induction hypothesis to get free-mix free P,' with 
the same endsequent as P3. 
Finally, by a structural inference, form P as 



213( i i ) ( iv )  A is 1 B, B A C, and B > C are all handled similarly. 

2.1.3(v) A i s  3x 5 t B(x) 
Then P ends with 

where b is an eigenvariable and w.1.o.g. b doesn't occur in r+ A 
(otherwise replace b everywhere on the right side of P with a new vari- 
able). 
Form PI ending with the free mix 

As before, we use the induction hypothesis to get a free-mix free P,' with 
the same endsequent. Now, using the fact that b is not in I? or A ,  form 
P2 as 

b t, ~ ( b ) ,  r, n; +A*, A r+ A 
3~ 5 t B(x), r, n; +A*, A 

r, r, n; +A*, A*, A 
(3x 5 t B(x)). 

Once again, since right-age(P2) = 1, we can use the induction hypothesis 
to get a free-mix free P,' with the same endsequent and a final structural 
inference gives us P* . . . 

... 
2.1 3 ( v ) - ( v )  A is Vx < t B(x), Vx B(x), and 3x B(x) are all handled 

similarly. 



2.2 left-age(P) > 1 - 
This is the exact dual of case 2.1. 

Notice that throughout the proof, we have left out the statement "every 
induction formula in P* is a substitution instance of an induction formula 
in Pn. It is easy to check that this is indeed the case, since the induction 
hypothesis always includes this statement for P,', P,', etc. and the "worst" 
we changed any individual formula was possibly to substitute one variable for 
another. 

This completes the proof of the lemma. 

Note again that the proof actually gives a constructive method for eliminating 
free mixes from a given proof. Of course, even a non-constructive proof would 
give an algorithm, although it would not be very feasible, being of the form 
"enumerate all proofs until you find a free-mix free one." 

Carefully watching the sizes of the proofs formed in each step of the lemma 
shows that we have 

9 IPI 

J 

although Buss is fairly sure that we actually have 

where q is the maximum number of quantifiers in a formula of P . 

Compare this with the propositional sequent calculus, where we had IP*I 5 
2°(lpl). I P I . In fact, this could beextended to IP*I 5 2°(lr-'AI)- I r + A I, 
where r+ A is the sequent being proved, and this was more-or-less optimal 
for tree-like proofs. 

Statman [Annals of Mathematical Logic 15 (1978)] first showed that the 
upper bound given above is fairly good for tree-like free-mix free LKB-proofs, 
while Pudlik ["Cuts, Consistency Statements, and Interpretations," JSL 50 



(1985)l gave another, high-level, proof that super-exponentiation is necessary. 
Although Pudldk discussed Herbrand consistency, his results apply to free-cut 
free proofs as well. 
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References: The main theorem proved in these notes is essentially due to 
S .Cook, 'Feasibly constructive prrofs and the propositional calculus', 7 th 
ACM Symp. on Theory of Computing, 1975. An extension of Cook's work 
is due to J. ~ r a i i c ~ t k  and Pudlak, 'quantified propositional calculus and frag- 
ments of bounded arithmetic', preprint, Jan. 88. 

Goal: We will translate arguments formalizable in Si into arguments that 
can be formalized by polynomial-size extended Frege proofs. 

Example: As an intuitive motivating example we consider counting. We 
know that in a Frege system we can count the number of true x's among 
xo, xl , . . . , x,-~ by using carry save addition (as in the T- proof of P HP ). In 
S,1 we can count by using the function Numones(x) which gives the number 
of 1's in the binary representation of x. There is no known way of directly 
mimicing the Si construction in a Frege system, hovever this can be done in 
an extended Frege system as follows: we will introduce new variables p;,j by 
the extension rule in such a way that 6 will code an integer a; giving the 
number of true xk 'S among xo, XI ,  . . . , x,-1 with k I 2 .  So & will code either 
0 or 1 according to whether xo is true or false and is defined by: 



p;fl will either add 1 or 0 according to whether x;+l is true or false: 

The second clause expresses the fact that there is a carry in position j when 1 
is added. Now pnZl will code the number of true xk's among XI,  5 2 , .  . . xn-1 

and moreover there are polynomial-size eT-proofs that this definition is 
equivalent to the carry save addition definition. 

To carry out our goal we will define a map which translates a It;-formula into 
a family of propositional formulas (which have polynomial size with respect 
to the length of the integers being substituted for the free variables of the 
formula). We need some preliminary definitions. 

Definition: Let t be a term of Si. The bounding polynomial qt(n) of t is 
defined inductively by: 

1. qo(n) = 1 

2. q,(n) = n for any variable a. 

3. q,(,)(n) = qt(n) + 1 where s is the successor function. 

4. q,+t(n) = q,(n) + qt(n) 

5. q,.t(n) = q,(n) + qt (n) 

6. q,#t(n) = q,(n) -qt(n) + 1 
7. qltl(n) = qLtt,(n) = qt(n) 



Proposition: If t(al, . . . , ak)  is a term and XI , .  . . , xk are natural numbers of 
length < n , then It(Z)c')l 5 qt(n) (here It(?) ')l denotes the length of the binary 
representation of the value of t(Z) ) . 

Proof: By construction. 

Definition: Let A be a bounded formula of Si . The bounding polynomial 
q~ of A is inductively defined by: 

Proposition: The formula A(xl,. . . , xk) where [xi[ < n ,  only refers to 
numbers of length 5 qA (n) . 

Proof: By construction. 

Note that there are fan-out 1 boolean circuits for computing the function 
symbols of the language of Si . For example there is a circuit [+I, which takes 
2 -m inputs (the code of two integers in binary) and outputs m binary symbols 
(their sum; any overflow is lost ). Similarly we define the polynomial-size (in 
m ) family of circuits Cob, I s l ,  CL+I I,, O IL , [#b, C.L - For C-b we 
use carry-save addition. It is important that these circuits have fan-out 1 
because we want to translate them into boolean formulas. 

We are now ready to define, for each term t ,  a vector of m propositional 
formulas [tK giving the first m bits of the value of t when its free variables 
are assigned values of length < n (in general we will assume that m 2 qt(n)). 



For each free variable a in t ,  the formulas [ t E  will have a sequence of n 
propositional variables vE-, , . . . , v," representing the value of a (an integer 
< 2"). If m is bigger than the length of the value of t we expand the value of 
t with a sequence of leading 0's (represented by the truth-value false). 

Definition: 

1. [OX is a sequence of m false formulas (for eample p h ip)  

2. If a is a variable, [ a E  is a sequence of rn - n false formulas followed 
by vR1,. . . ,v,".  

3. [s + t E  is [+]m([sE, [t]:) (the formulas corresponding to the circuit 
for addition applied to the output of [ s x  and [ t c  ). 

4. Similar definitions work for the remaining cases. 

Remark: Since a formula is essentially a circuit with fan-out 1, for each bit 
of s + t we need to compute the values of s and t again. Also note that for 
fixed t ,  the size of [t]: is polynomial in m. 

The next goal is to define, given a XI:-formula A, a propositional formula 
CAR, (where rn 2 qA(n) ). To do this we proceed as follows: 

Definiti0n:Given a formula B we assign to B special 'existential' proposi- 
tional variables e t ,  e;, ef ,  . . . , and special 'universal' propositional variables 
,$, ,vf, ,$, . . . (all new and distinct), with the convention that we will assign 
different sequences of existential variables to distinct occurrences of B but all 
occurrences of B use the same universal variables. From the context it will 
be clear which occurrences we are referring to. 

Definition: A first order formula is in negation-implication normal form 
( NINF) if every negation is applied to an atomic subformula and there are 



no implications. For A E II; in N I N F  and m 2 qA(n) , we define the 
propositional formula [AX inductively as follows: 

1. [S = t c  is E Q - - ~ ( ~ % ,  [ t c )  (EQm-l($, 9 has been defined in a 
m-1 

previous lecture as /\ (pk o qk )). 
k=O 

2- E < tl: is ~~m-l([sK,[ t$)  

3. EAK is -.LAC for A atomic. 

4. [A A BE is [AE A [BK 
5. [A v B e  is [ A 6  v [BK 
6. [(3x < t)A(x)K is [b < t A A ( b ) K ( { ~ b / v ~ ) ~ ~ ~ )  where t is not of the 

form Is1 and b is a new free variable not appearing in A(x) . 
7. [(VX < t )A(x)C is [-.b 5 t v A(~)~({~"v!}:;~) where t is not of the 

form 1s 1 and b is a new free variable not appearing in A(x) . 

8. [(Vx < <tI)A(x)K is "/~l[-k < It1 V A(kJK where k is a term with 
k=O 

value k and length cx log k (use binary representations, for example 1 
is 1 + 2 (0 + 2)). Note that It1 < m (by our assumption on m). 

Proposition: For fixed A E II; the propositional formula [AK is 
polynomial-size in m (hence in m, n since m 2 qA(n) ). Moreover [A]: 
expresses 'A is true' in the sense that if A is true for every assignment of its 
free variables to numbers of length < n ,  then for any assignment of truth 
values to the universal variables and to the v!'s, there is a truth assignment 
to the existential variables that makes [AK true. 

Definition We extend the map sending A to [AX to every formula in II; 
by first putting A in N I N F  and then applying the previously defined map. 



Definition: Given a propositional formula $J with universal and existential 
variables, an e3-proof of $J is similar to an ordinary e3-proof of $J (as 
defined in a previous lecture ), except that we allow the existential variables 
of 1C, (but not its other variables) to be defined by an extension inference. 
More precisely a valid extension inference is of the form p t, cp where: (a) p 
does not occur in cp and p has not occurred earlier in the proof; and (b) p 
does not occur in 1C, or p is an existential variable in 1C,. 

Theorem: If A(Z) E II; and S,' I- VZA(Z), then there are polynomial-size 
(in n ) e3-proofs of [AX(,) where q(n) is any polynomial 2 q ~ ( n ) .  

Remark: The degree of the polynomial bounding the size of the e3-proof 
can be superexponential as a function of the size of the Si -proof. 

proof: We can assume without loss of generality that A is in N I N F .  Since 
Si I- A(Z) there is an S,' -proof of A(Z) in which every induction formula 
is in N I N F  and in C!. By the free cut free elimination theorem, there is 
a proof P in which every sequent has the form Al,. . . , Ak+ B1,. . . , Bl 
with A; E C! , B, E II; and each A;, Bj in N I N F .  We will show by 
induction on the number of lines of P that for each sequent as above there 
are polynomial-size e3-proofs of [-.A~ v . v - .A~ v BI . . . v w]:(,) 

Base case: 

Logical axioms: The translation of a logical axiom B + B (B atomic) 
is the propositional formula [-B] V [B] which clearly has polynomial-size 
e3-proofs (we omit superscripts and subscripts). 

Equality axioms: Easy. For example [ l a  = b v l c  = d V a + c = b + d] 
has short e3-proofs. 

Basic axioms of Si : Consider for example [(x + y) + z = x + (y + r)&,). 
We already claimed in a previous lecture that this formula has polynomial-size 
3-proofs when we gave 3-proofs of PHP . The other cases are similar. 



Induction step: 

Case 1: (V - right). Suppose P ends with 

F+ B , A  

For notational convenience we will assume in the rest of the proof that r and 
A are single formulas. 

1) > 2) has a simple 3-proof. Now the thesis follows easily from theinduction 
hypothesis. 

Case 2: ( A  - right) .Similar. 

Case 3: (Structural rule). A structural rule can be either a weakening 
inference or an exhange inference or a contraction: 

3.1 : (Weakening). 

3.2: (Exchange). 
r+ Al, B, c, A2 
r+ Al, c, B ,  A2 

3.3: (Contraction). 
F+ B , B , A  

F+ B , A  

Weakening and exchange are easily handled by the methods of cases 1 and 2. 
The problem with the contraction rule is that different occurrences of B have 



different existential variables (but recall that all B's have the same universal 
variables). Suppose that the first B has existential variables el, e,, . . . , the 
second B has existential variables ei, E;, . . . , and the B in the lower sequent 
has ey, e;, . . . . By induction hypothesis there are polynomial-size eF-proofs 
P, of [-I' v B v B v A];,). We form eF-proofs Q, by concatenating the 
following: 

1. The proof P, , followed by: 

2. The definition of ey by the following extension rule: 

3. A proof of [-I?] v [B](G) v [A] from [lr] v [B](5) v [B](E?) V [A]. 

C a s e  4: (A-right). P ends with 

A r + c , a  
r+ B A C , A  

We separate this inference into two steps: 

r + B , A  r + C , A  

The first inference is not included in our original definition of the sequent 
calculus but it is a valid derived rule and is easily handled by the method 
of cases 1 and 2. The second inference is a structural rule and is already 
handled by case 3. Note that we do not need two copies of r since [-I?] has 
no existential variables so the two [-r]'s are identical. 

C a s e  5: ( V-left). Similar to case 4. 

C a s e  6: (Cut). P ends with 



Note that B must be C! .  By induction hypothesis there are polynomial-size 
proofs P, and Rn of [-I' v B v A](,) and of [-I' v - B  v A]:(,). Now suppose 
that 

[B]  has existential variables e l ,  e2, . . . 

B ]  has universal variables p1 , p2, . . . 
The first [A]  has existential variables ei , ea, . . . 
The second uses ey, ey, . . . 

We construct a proof Q, of [I'+ A&,) by combining the following: 

1. The proof P, of [-I'] v [ B ] ( q  v [A] (G)  

2. The proof R, with each pi in R, changed to e; . This gives a proof of 
C-rl v bB](E' /F)  V [ ~ 1 ( & " )  

3. A proof of [-I?] V [A] (F)  v [A](?'), obtained from the previous two 
proofs and tautological inference. 

4. A proof of [-I? v A] obtained using the method of case 3 for the 
structural rule. 

Case 7 :  ( C i  - P I N D ) .  P ends with 

A(libJ),r'--+ A(b), A where b is the eigenvariable. 
A(O), I'+ A(t ) ,  A 

Let [tlb;,) be {(pili < q ( n ) }  , that is (p: is the formula giving the ith bit of t . 
Let U P  be variables specifying the value of b. Let Pn,k be the proof of 



obtained by substituting the formulas cpf-k for the variables v;b where cpf-k is 
p A -p if k > i .  Now put all the proofs Pn ,k  together, for k = q(n), . . . , l,O, 
using the method of case 6 for the cut inference. The resulting proof will be a 
proof of the translation of the lower sequent whose size is still polynomial in 
n . Note that this case depends heavily on the extension rule. 

Case 8: (3  <-right). 

Case 8.a: (sharply bounded). P ends with 

r + B(s), A 
I ~t l ,  r + 3s I I ~ ~ B ( X ) ,  A 

By induction hypothesis there are polynornial-size proofs Pn of [-I' V B(s) v 
9(n)-1 

A]:(,) . Recall that [(3x < Itl)B(x)&,) is V [k I A ~(k)];((,). Now 
k=O 

there are simple e3-proofs of [s 5 It1 > s = & V  s = I v  . . . v s = q(n) - 11 
and for each k 5 q(n) - 1 there are e3-proofs P n , k  of 

where the Z, ji are the existential and universal variables of B(s) and the 9, iik 
are the existential and universal variables of B ( Q .  Now we use tautological 
implication to combine the proofs P n , k  to get a proof of 

Finally we use the method of case 3 (structural rule) to get a polynomial-size 
e3-proof of 

[-s 5 ~ t l  v -r v ( 3 ~  5 I ~ ~ ) B ( x )  v A] 



Case 8.b: (not sharply bounded). P ends with 

By induction hypothesis there are polynomial-size eF-proofs Pn of 

Let E ~ , E ; ,  . . . be the existential variables for the outer quantifier in (3x 5 
t )  B(x) . Let q: be the formula giving the ith-bit of s . We form the desired 
eF-proof Qn by combining the following: 

1. The definition of E; o qq via extension. 

2. The proof Pn 

3. A derivation of [is < t V -r V (S < t A B(s)) v A] 

4. A derivation of ks 5 t V -r V (32 5 t)B(x) V A] obtained by changing 
some of the qq to E ; .  

Case 9: ( V  <-left). Similar to case 8. 

Case 10: ( V  <-right) 

Case 10a: ( Sharply bounded). Suppose P ends with the inference 

The free variable a is the eigenvariable and appears only as indicated. The 
induction h~pthesis states that there are polynomial size eF-proofs Pn of 
[a < It1 A r > B(a) V A]:(,). Recall that v l  is the propositional variable 

giving the i-th bit of the value of a .  For k E N, let 4; be the formula 



specifying the i-th bit of the integer k ;  4: is the formula given in the 
definition of [k]. For each k 5 n ,  let Pn,k be the eF-proof obtained from 
Pn by replacing each v,D with the formula &. So Pntk is an eF-proof of 
[k 5 It/ > B(kJ v A]. Use tautological implication to combine the Pn,k 'S to 
get an eF-proof of 

and as usual, use the method of Case 3, structural inference, to contract the 
multiple A's and thereby get an eF-proof of [TI' V (Vx 5 Itl)B(x) V A]). 

Case lob: (Nonsharply bounded). Suppose P ends with the inference 

a < t ,I '+ B(a),A 
I' + (Vx 5 t)B(x), A 

where now t is not of the form Is1 for any term s .  The induction hypothesis 
gives polynomial size, eF-proofs Pn of [a 5 t A r > B(a) V Recall 
that pB are the universal variables used to represent the value of x in 
[(Vx < t)  ~ ( x ) ] .  We can transform Pn by replacing the propositional variables 
vq with the universal variables p; and using a simple tautological implication 
to get an eF-proof of [lr V (Vx 5 t)B(x) V A]. 

Case 11: (3 5: left). This case is dual to Case (10) and is proved in 
exactly the same manner. 

Q.E.D. 



Math 271 - Topics in Weak Formal Systems 

Lecture Notes, Set #11 
May 6-9,1988 

Instructor: Sam Buss 
Notes By: Sam Buss 

As an application of the theorem on page 6 of the previous set of notes, we 
will prove a theorem of S. Cook which shows that the extended Frege proof 
systems are the strongest proof systems which can be proved consistent by Si . 

For the rest of the notes, let eFo be an fixed extended Frege proof system with 
language (7, V,  A ) .  Earlier in the course we showed that any two extended 
Frege proof sys tems in the same language p-simulate each other, so the choice 
of axiom schemas for eFo is not important. Every formula [A] is a formula in 
the language of eFo and the theorem from the previous lecture notes applies 
to eFO. 

Theorem 2 below states that if B is a propositional proof system such that 
S,1 proves that every consequence of B is a tautology, then eFO p-simulates 
8. Before we can state and prove this precisely, we need to see that S; 
can define metamathematical concepts such as "propositional formula" and 
"truth assignment'' : 

Definition: We assume there is some natural way to assign Godel numbers 
to propositional formulas and to truth assignments. We write 'q5' to denote 
the Godel number of 4. For example: assign small Godel numbers to logical 
symbols 1, V and A and to parentheses and assign 100 + i to the variable 
pi . If A is a1 an then the Godel number 'A1 = ('al ', . . . , 'a ,') . 

Truth assignments T will be coded in an unusual but compact way. If T is a 
truth assignment and A is a formula then the Godel number of T for evaluation 



of A is the integer 'rl such that the i-th bit of its binary representation is 
equal to 1 if and only if the i- th propositional variable appearing in A is 
assigned "True" by T .  Note that the Godel number of T depends on the 
formula being evaluated; or conversely, a given integer can represent more 
than one truth assignment, depending in the formula being evaluated. 

The formula True('A1, '7') is a A! formula of Si which asserts "'A1 is a 
Godel number of a propositional formula, 'T' is the Godel number of a truth 
assignment and T(A) = T." (We use T and I as symbols for truth and 
absurdity, respectively.) 

The property of m being the Godel number of a propositional tautology is 
defined in S: by the following formula: 

Note that because of our efficient way of coding truth assignments, the Godel 
number of a truth assignment for A is always less than the Godel number of 
A. Thus, since True is a A! formula, Taut is a II! formula. 

Lemma 1 There is a polynomial p ( n )  such that the following holds. If A 
i s  a propositional formula with variables pi,, . . . ,pi,  ( in  increasing order of 
subscript), then  there is  a n  eFo proof of 

of size less than  p(lA() where q i s  a n  appropriate bounding polynomial. The  
substitution (vj/xij) substitutes the t ruth  value r(xij) which is given by the 
j - t h  bit of T for the variable xij in A (this i s  done for each j ) .  

The import of Lemma 1 is that e F o  can give polynomial size proofs of the 
fact that (the translation of) the A! formula True correctly defines the truth 
value of a given propositional formula. We shall not prove this lemma here; 
however, the essential idea is similar to the proof of the theorem on page 
6 of the previous set of notes. Namely, the S,' definition of True when 
translated into propositional form  r rue] can be effectively reasoned with 



by the extended Frege proof system. To properly prove Lemma 1, we would 
introduce a new A! formula TrSbFmla('A1, 'T', i )  which asserts that if T is a 
truth assignment to the variables of the propositional formula A and if B is 
the subformula of A whose principle logical connective is the i-th symbol in A 
then T(B)  = T .  The extended Frege system eFo can prove, successively for 
larger and larger subformulas B with principle connective the iB-th symbol 
of A, that 

[ ~ r ~ b ~ m l a ( ~ ~ ' ,  'rl,  i B ) ]  r B ( v l / x i j )  

Theorem 2 (Essentially due to Cook [STOC 19751.) Let G be a propositional 
proof system with language (1, V, A )  and let G be a -definition of G . If S,1 
proves 

VmVw(G(w)  = m -+ T a u t ( m ) )  

then eFo p-simulates G .  

Theorem 2 is a consequence of the next two lemmas: 

Lemma 3 If A(b)  is a C! -formula with only b as free variable, then there 
is a polynomial q ( n )  such that whenever k E N and N + A ( k )  there is an 

e ~ o - p r o o f  of [ ~ ( k ) ] & ~  of size 5 a(lk I )  . 

Proof This is very straightforward. The eFo-proof defines the existential 
variables of [A@] equal to the values that make A ( k )  true and then for 
each subformula B of [A(&] either proves or disproves B (in order of the 
complexity of B ) .  

Lemma 4 There is a polynomial p such that if G(w)  = 'A1 then there is an 
eFo-proof of A of length 5 ~ ( 1 x 1 ) .  

Lemma 4, of course, immediately implies Theorem 2. 



Proof of Lemma 4 and Theorem 2. By the main theorem of the previous set 
of lecture notes, there is a polynomial pl such that eFo has proofs of 

of size 5 pl (n) , where q is a suitable bounding polynomial. Also, by Lemma 3, 
there is a polynomial p2 such that eFo has a proof of 

of size 5 p2(lxl). This is because E is polynomial time computable and hence 
I'A1/ 5 pt(lxI) for some polynomial pt . Thus there exists a polynomial p3 
such that there is an eFo-proof of 

of size 5 p3(lxl). Note that pl , pz and are all independent of A. Now by 
Lemma 1 there is a polynomial p (again independent of A) such that there is 
an e& -proof of A of size 5 ~ ( l x  1). 

Corollary 5 If eFl  is  an extended Frege system whose language includes 
(1, V, A )  then e& can p-simulate eFl in the following sense: There is  a 
polynomial p such that for every tautology A in the language (1, V ,  A )  i f  eFl 
has a proof of A of size n then eFo has a proof of A of size 5 p(n).  

Proof I t  is straightforward to show that Si proves that every consequence 
of the extended Frege proof system eFl  is a tautology. This is done by using 
LIND to  show, for i 5 n that the i- th formula in the proof is a tautology. 
Since Taut is a IT! -formula and Si implies IT!-LIND; this is possible to carry 
out. The corollary now follows from Theorem 2. 

R. Reckhow [Toronto Ph.D. dissertation, 1975, "On the lengths of proofs in 
the propositional calculus"] defined a more general notion of p-simulate and 
simulate than we have used in this course. He also showed that any two 
extended Frege systems (with no restrictions on their languages) p-simulate 
each other. We shall not give the general definition of p-simulation here; 



instead we note that Corollary 5 shows that there is no extended Frege proof 
system which is stronger than eFO in terms of proving tautologies in the 
language (1, V, A).  The next theorem proves another piece of Reckhow's 
theorem by showing that eFO is also the weakest possible extended Frege 
proof system. 

Theorem 6 (Reckhow). Let e31  be a n  extended Frege proof sys tem with 
language Ll .  Then  there is  a translation a of formulas in the language 
(1, V, A )  into L1 -formulas such that 

(a) For all formulas A, a(A) is  tautologically equivalent to  A; and la(A)I is 

O( 14) . 
(b) There is  a constant c such that if A has a n  e30-proof of size n then a(A) 

has a n  e 3 ;  -pro0 f of size 5 c n . 

Proof We begin by describing the translation a. Since e 3 ;  is an extended 
Frege proof system, its language L1 is complete. In particular there are 
L1 -formulas &(p), +A(p, q) and &(p, q) such that &(p) is tautologically 
equivalent to i p  and q5v (p, q) is tautologically equivalent to pV q and similarly 
for We claim that there further exists formulas $,(p), $A(p, q) and 
$,,(p, q )  which satisfy all of the above and additionally p (resp., p and q) 
appear exactly once in $, (resp., in Gv and in $^). 

It should be noted that other variables besides p (and q) may occur in the 
formulas. In this case, the other variables will be reassigned to be new 
variables that are used only as placeholders. (If the symbols T or I are in 
L1 then either of them may be used as replacements for the extra placeholder 
variables. 

An example of what is happening is as follows: suppose L1 contains only 
the "nand" symbol I .  Then 4, might be p I p. However this would not be 
acceptable as for $, since p occurs twice. If T were in the language we could 
take p I T as $, . But in this case we have to use a new variable x and take 
$, to be p ( (x I (x 1 x)) . It is now easy to give formulas $v and $,, . 



So, if T is not LC1 we will instead let T denote an LC1-tautology which 
uses only the new variable x .  Similarly, I will denote some unsatisfiable 
LC1 formula involving only the variable x . 

Suppose 4, contains n occurrences of the variable p (the only other variable 
in $, is w.1.o.g. x . Let 4: denote the formula from 4, obtained by replacing 
every x by T ; note that 4: still is tautologically equivalent to ~ p .  Now 
let $!, be the formula obtained by replacing the first i occurrences of p in 
Fl by T and the remaining n - i occurrences by I. Note that each $!, 
is either a tautology or is unsatisfiable. Since 4: is a tautology and $I: is 
unsatisfiable there must exist a k such that 4: is a tautology and is 
unsatisfiable. Now let $, be the formula obtained from 4: by changing the 
first k occurrences of p to T ,  changing the last n - k - 1 occurrences of p 
to I and leaving the k + 1-st p untouched. It is easy to see that $, satisfies 
the desired properties. 

A similar but more complicated construction yields the formula $,, . First let 
4: be obtained by replacing each x in $,, by T .  Now let $? be obtained 
from 4: by replacing the first i occurrences of p and the first j occurrences 
of q be T and changing the rest of the p7s and q 's to I. Let contain r 
occurrences of p and s occurrences of q. We claim that there are values k 
and m such that the formulas $:", $:"+I , $ k f  ,, lpm and $i+l'm+' satisfy the 
following condition: 

(*) either (a) exactly three of them are tautologies and the other 
is unsatisfiable or (b) exactly one of them is a tautology and the 
other three are unsatisfiable 

This is proved by noting that $?O, $?", $2' and $2" satisfy condition (*) 
since is equivalent to p A q. We can now do a "binary search" to find 
k by noting that if kl < k2 < k3 and ml < m2 and if $ 2 ~ ~ ' ~  $f;'*m2, 
$ p , m l  and $ppm2 satisfy condition *) then either $ 3 ; ' ~ ~ '  , $F7"", $Fyml 

m &,m2,  &,"I and $Fvm2 satisfy condition (*) or $,, , and $2'm2 satisfy 
condition (*) . Similarly a binary search yields a value for m. Let ~ ( p ,  q) be 
the formula obtained from 4: by replacing the first k occurrences of p and 
the first m occurrences of q by T and replacing the last r - k - 1 occurrences 



of p and the last s - m - 1 occurrences by I. Then ~ ( p ,  q )  contains exactly 
one occurrence of each of p and q and as a Boolean function of p and q 
assumes the value T exactly three times and I once or vice-versa. Now $, 
can be defined as 

$- (x ($ - (P) ,  + - ( q ) )  

where the $,'s may be omitted as necessary to make $, tautologically 
equivalent to p A q . 

The formula qV can easily be defined similarly or in terms of $, and $,, . 

Now we are ready to describe the translation a .  We define a ( A )  inductively 
on the complexity of A by: 

(a) a  ( p i )  is p i ,  

(b) 4 - B )  is $ , ( a ( B ) ) ,  

( c )  a ( B  A C )  is $ A ( ~ ( B ) ,  a ( C ) ) ,  

(d) a ( B  V C )  is $v(a(B) ,  a ( C ) ) ,  

Since each p and q  occurs at most once in $,(p)  , +,(p, q) and $,(p,  q) it is 
easy to verify that the size of a(A)  is linear in the size of A. 

The above completes the proof of part (a) of Theorem 6. The proof of 
part (b) is relatively straightforward; if an eFo proof consists of the formu- 
las Al , A2, . . . A,, then eFl can emulate the proof by proving successively 
a ( A l ) ,  a (A2) ,  . . . , a(A,)  . The size of the resulting eF1 proof can be made 
linear in the size of the eFo-proof. 

It should be noted that no reverse translation may exist of the type given in 
Theorem 6. For example, the formula p ++ q  can not be expressed in the 
language (1, V ,  A )  by a formula which contains only one occurrence each of 
p and q .  





Math 271 - Topics in Weak Formal Systems 

Homework #1 
Due February 12,1988 

Instructor: Sam Buss 
UC Berkeley 

1. Give cut-free sequent proofs of: 

(a) A A B + A v B .  

(b) +AV 1A.  
Can this be proved without the use of a structural inference? 

(c) A v ( B v C ) + ( A V B ) V C  

(d) (1A) A ( i B ) +  i ( A  V B) 

2. Suppose the propositional sequent calculus has been defined so that 
initial sequents A + A must have A atomic. Let B be a formula of 
size n;  give a polynomial upper bound on the length of the shortest cut 
free proof of B + B . 

3. Expand the sequent calculus to allow the symbol t, (logical equiva- 
lence) in the language. You should give additional rule(s) of inference 
and show that the soundness theorem, the completeness theorem, the 
cut elimination theorem and the subformula property all still hold. 

4. Suppose P is a cut free proof of A, A V B ,  r+ A .  Show there is a 
cut free proof P* of A , r +  A with IP*l < IPI and with the number 
of sequents in P* less than or equal to the number in P . Use the 
convention that only atomic formulas are allowed in the initial sequents. 



5. Cut free proofs may also be represented as sequences of formulas rather 
than as trees. (In a tree-like proof it may be necessary to rederive an in- 
termediate sequent many times.) Prove that there exists a cut free proof 
sequence of the sequent I?,+ A, (from the proof of Theorem A-1) 
with size polynomal in n . 

Research Problems. These are questions I do not know the answer to. 
Especially difficult problems are marked with an asterisk. 

*6.  Give either a non-polynomial lower bound or a sub-exponential upper 
bound on the length of sequent calculus proofs (with cuts) of valid 
sequents. 

7. Try to give a 0(n3) lower bound on the size of such proofs. A quadratic 
lower bound is not too difficult to achieve. 

8. When cut free proofs are coded as sequences instead of trees, is there an 
infinite family of valid formulas which require exponential size cut free 
proof sequences? 



Math 271 - Topics in Weak Formal Systems 

Homework #2 
Due February 26,1988 

Instructor: Sam Buss 
UC Berkeley 

1. A set A of clauses contains x as a pure literal if x appears in some 
clause in A but T does not. Let A' be obtained by discarding every 
clause in A containing the pure literal x . Show that A' is satisfiable iff 
A is. 

2. Suppose there is a resolution refutation of A with n inferences. Further 
suppose C c D E A .  Prove that there is a resolution refutation of 
(A \ {D)) U {C) with 5 n inferences. This justifies the subsumption 
principle; namely, you may discard any clause which is a proper superset 
of any other derived or initial clause. 

3. (Elimination of Tautologies) Suppose there is a resolution refutation of 
the set A U { p , ~ )  which is n inferences long. Prove that there is a 
resolution refutation of A with 5 n inferences. 

4. Show that resolution with limited extension (polynomially) simulates 
the cut-free sequent calculus. 

5. A (tree-like) resolution derivation is regular if each variable is resolved 
on at  most once along each branch of the proof. Suppose there is a 
tree-like resolution derivation of C from A with n inferences. Prove 
that there is a regular, tree-like, resolution derivation of a subset of C 
from A with 5 n inferences. 

6.  A Horn clause is a clause containing at  most one unnegated propo- 
sitional variable. Show that the result of applying resolution to Horn 
clauses is itself a Horn clause. 



7. A unit resolution inference is one in which one of the resolvands (i.e., 
parent clauses) is a singleton. Suppose A is an unsatisfiable set of Horn 
clauses. 

(a) Show A contains a singleton or the empty clause. 

(b) Show that the empty clause can be derived from A by unit resolu- 
tions. 

(c) Give an example of an unsatisfiable set of clauses (not all Horn) 
from which there is no unit resolution derivation of the empty 
clause. 

8. An input resolution derivation from A is a derivation in which every 
resolution inference has one its resolvands a clause in A.  

(a) Show that if there is an input derivation of the empty set from A 
then A contains a singleton clause or the empty clause. 

(b) Show that there is an input derivation of the empty clause from A 
if and only if there is a unit derivation of the empty clause from A .  

(c) In this case, is there always a derivation of the empty clause from 
A which is both a unit derivation and an input derivation? 

Research Problems. These are questions I do not know the answer to. 
Especially difficult problems are marked with an asterisk. 

9. Let P H ~ ~  express the pigeonhole principle that there is no one-to-one 
function mapping a set of cardinality n2 into a set of cardinality n .  
How many inferences long are the shortest resolution proofs of these 
propositional formulas? 

10. Does resolution simulate cut-free Gentzen systems (with respect to 
disjunctive normal form formulas)? 

11. Does a cut-free Gentzen system simulate resolution (with respect to 
disjunctive normal form formulas)? 

H - J  



Math 271 - Topics in Weak Formal Systems 

Homework #3 
Due April 15,1988 

Instructor: Sam Buss 
UC Berkeley 

1. The TF-substition rule allows you to infer either 4(p/T) or 4 ( p / l )  
from 4 where p is a propositional variable and all of the occurences of 
p in 4 must be replaced. T and I represent some fixed tautology and 
unsatisfiable formula, respectively. Show that a Frege system plus the 
TF-substitution rule simulates a substitution Frege system in the same 
language. 

2. The renaming rule allows you to infer $(p/q) for any propositional 
variables p and q. Show that a Frege system plus the renaming rule 
simulates a substitution Frege system in the same language. 

3. Let 1\41 Ie3 (resp., 1 lq511fph) represent the minimum number of symbols 
(resp., formulas) in an extended Frege proof of a tautology 4. Show 

fmla that there is a polynomial p such that I1411e3 5 ~(141, llq511e3 ) .  

4. DTIME(t(n))  is the class of predicates recognized by some deter- 
ministic multitape Turing machine that runs in time t(n) for all in- 
puts of length n .  Prove that DTIME(n2)  is a proper superset of 
DTIME(2n) .  In the proof that you give, to what extent can the run 
time bounds n2 and 2n be replaced by arbitrary bounds tl(n) and t2(n) 
with tl(n) > t2(n)? 

5. Show that DTIME(t(n))  = DTIME(c . t(n)) for c 2 1 a constant 
and t time-constructible with t(n) 2 2n for all n .  



6. DSPACE(s(n)) is the class of predicates recognized by some deter- 
ministic multitape Turing machine that uses work space s(n) for all 
inputs of length n .  Prove that DSPACE(n2) is a proper superset of 
DSPACE(n)  . In the proof that you give, to what extent can the space 
bounds n2 and n be replaced by arbitrary bounds tl(n) and t2(n) with 
t~ (n) > t2(n) ? 

7. Show that DSPACE(t(n)) = DSPACE(c. t (n))  for c > 0 a constant 
and t space-cons tructible. 

8. Let ATIME(t(n)) be the class of predicates recognized by an al- 
ternating Turing machine that runs in time t(n).  Show that 
ATIME(t(n) ) c DSPACE(t(n)) for t a time-constructible function. 
Hint: first show that ATIME(t(n)) DSPACE((t(n))2).  

*9. NSPACE(s(n)) is the class of predicates recognized by some non- 
deterministic Turing machine that runs in space s(n) for all inputs 
of length n .  Show that NSPACE(t(n)) C ATIME((t(n))2) for t 
a time-constructible function. Hint: try recursively computing the 
predicate EM($, @, 9, m) which states that there is a nondeterministic 
execution of M using space t(lxl), of 5 m steps, begining with the 
configuration @ and ending with the configuration a.  

10. Use theaboveresults to show that NSPACE(t(n)) C_ DSPACE((t(n))2) 
for t time-constructible. (Actually the assumption on t can be greatly 
weakened .) 

You will probably wish to use the following theorem to prove 4 and 6: 

Theorem. If a predicate is accepted by a time t(n) bounded (resp, space 
s(n) bounded) Turing machine with k work tapes, then it is accepted by a 
time t(n) log t(n) (resp, space s (n) )  bounded Turing machine with two (resp, 
one) work tapes. 

Research Problems. These are questions I do not know the answer to. 
Especially difficult problems are marked with an asterisk. 



*ll. Does a Frege system simulate an extended Frege sys tern? 

*12. Is DSPACE(t(n)) equal to ATIME(t(n))? 



Math 271 - Topics in Weak Formal Systems 

Homework #4 (Extra Credit) 
Due April 15,1988 

Instructor: Sam Buss 
UC Berkeley 

1. Fill in the details of paragraph (a) on page 36 of chapter 2 of Bounded 
Arithmetic. Specifically, prove the existence and uniqueness conditions 
for the max and min functions in Sl . 

2. Prove that Si can A!-define every predicate in P using the fact that 
Si can Ci -define every polynomial time computable function. 

3. Show that the Numones function can be C!-defined without the use of 
the # function. You may omit proving the uniqueness and existence 
conditions in Si . 

4. The Q-MIN axioms are 

for A a formula in 9. Show that relative to the base theory Si  , Cf-MIN 
is equivalent to Cf-IND. 

Research Problems. These are questions I do not know the answer to. 
Especially difficult problems are marked with an asterisk. 

5. It is known that Cf+, -replacement implies ~ f - P I N D  which in turn 
implies Cf-replacement (relative to the base theory S i  ). Do either 
of these implications reverse? Also, what connection is there between 
Cf -1ND and C!+, -replacement? Does either one imply the other? 



6. Does S; prove the A!+l -PIND axioms? Here A!+l means with respect 
to s;. 

*7. Redo the bootstrapping for S; , the theory without the # function. 
Prove (or disprove) that S; can not prove its own bounded consistency. 



Math 271 - Topics in Weak Formal Systems 

Homework #5  
Due May 6,1988 

Instructor: Sam Buss 
UC Berkeley 

1. Show that the sequent A(b), (Vx)(A(x) > A(x + 1)) + A(b + 1) is 
provable in LKB. For this problem and the problems below, you may 
assume without proof that B+ B is LKB-provable for all formulas 
B. 

2. Prove that any formula provable in the sequent calculus version of Si 
is provable in the theory Si as originally defined. (In other words show 
that the PIND axioms imply the PIND rule.) 

3. Show that (3x 5 t)A+ (3x)(x 5 t A A) is LKB-provable. 

4. Show that (3x)(x 5 t A A)+ (3x 5 t)A is LKB-provable. 

5. Prove Craig's interpolation theorem for LK by induction on the number 
of inferences in a cut free proof. (You may assume that the first order 
language contains only predicate symbols and no function symbols .) 


