Fixed points and 2-cycles of $x \mapsto x^x \mod n$

Joshua Holden

Forging a (variant) ElGamal Digital Signature

Frank the Forger wants to solve for r and s in:

(1)
$$g^{H(m)} \equiv y^s r^r \pmod{p}.$$

He knows m, g, y, and p but not the discrete log of y mod p base g. He could:

- calculate the discrete log of y,
- ▶ or he could solve $r^r \equiv g^{H(m)}y^{-s} \pmod{p}$ for r.

We wish to shed light on the difficulty of the second attack by studying the *self-power map*, $x \mapsto x^x \mod n$, and the *self-power multimap*, $x \mod n \mapsto x^x \mod n$.

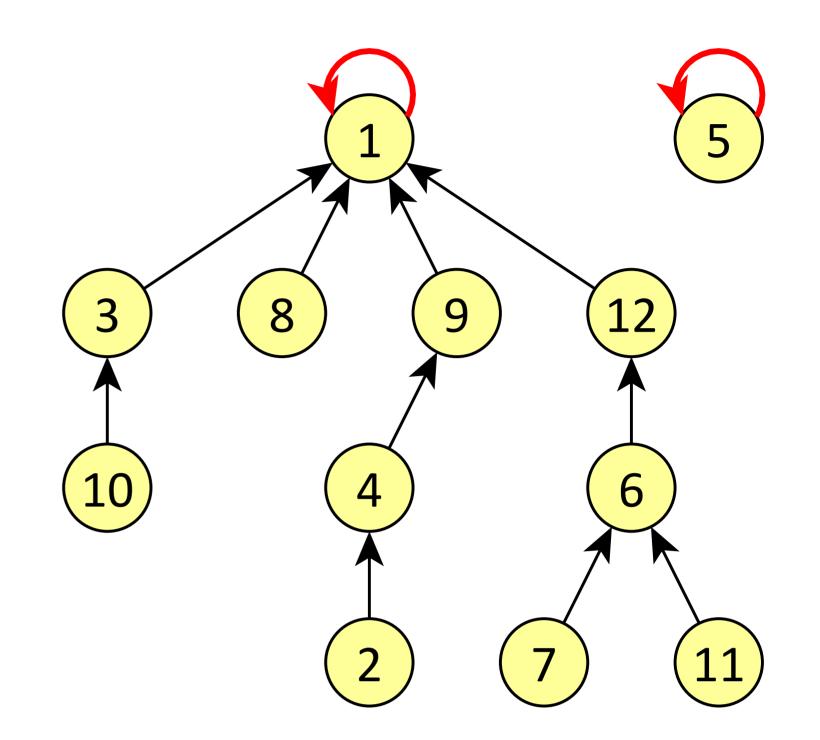


Figure 1: The self-power map modulo 13.

Counting the fixed points and two-cycles

This work investigates:

▶ the number of *fixed points* of the self-power map, i.e., solutions to

$$(2) x^x \equiv x \pmod{p},$$

▶ the number of *two-cycles*, or solutions to

(3)
$$h^h \equiv a \pmod{p} \text{ and } a^a \equiv h \pmod{p},$$

▶ and the corresponding problems modulo prime powers.

1. Solving the prime modulus congruence between 1 and p-1

Let F(p) be the number of solutions to (2) such that $1 \le x \le p-1$. We reduce the equation to $x^{x-1} \equiv 1 \pmod{p}$. Then we consider the order of x and of x^{x-1} modulo p. We proceed as in [4] or [1] to prove:

Theorem 1.

$$\left|F(p)-\sum_{n|p-1}\frac{\phi(n)}{n}\right|\leq d(p-1)^2\sqrt{p}(1+\ln p),$$

where d(p-1) is the number of divisors of p-1.

2. Solving the prime modulus congruence between 1 and (p-1)p

Let G(p) be the number of solutions to (2) with $1 \le x \le (p-1)p$ and $p \nmid x$. Similarly, let T(p) be the number of solutions to (3) with $1 \le h, a \le p(p-1), p \nmid h$, and $p \nmid a$. Using Chinese Remainder Theorem techniques we have:

Theorem 2.

$$G(p) = (p-1)\sum_{n|p-1} \frac{\phi(n)}{n}$$

Theorem 3.

$$T(p) = (p-1)^2 \sum_{n|p-1} \left(\frac{\phi(n)}{n}\right)^2$$

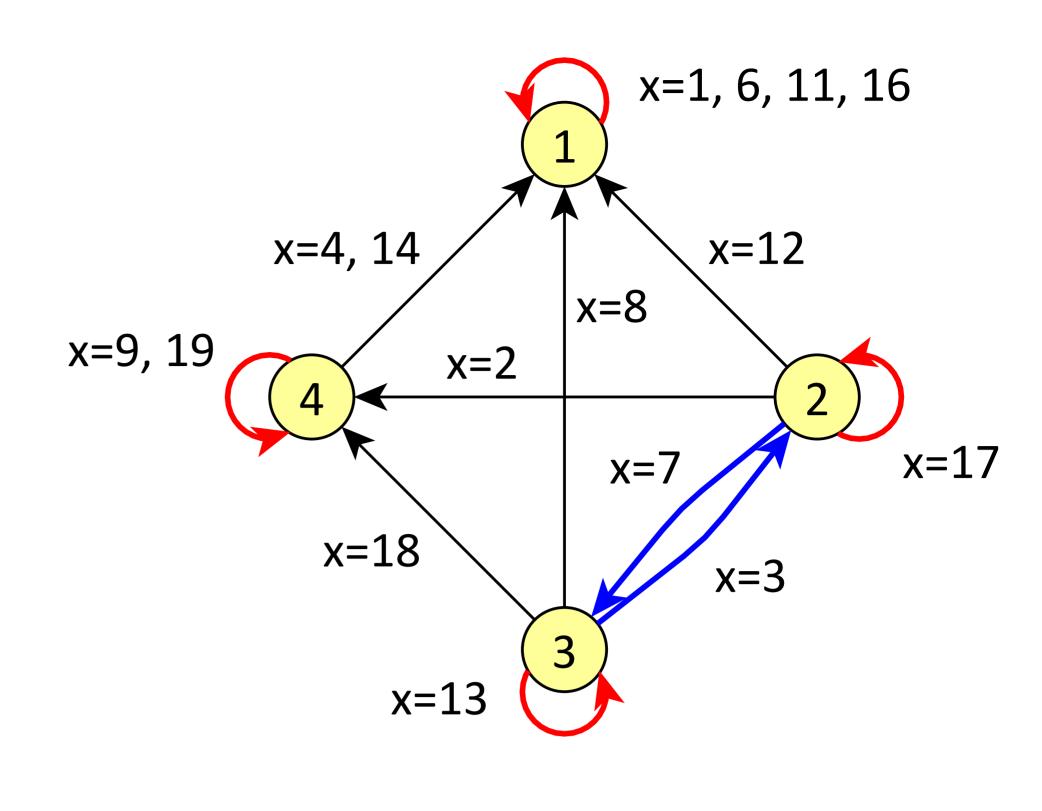


Figure 2: The self-power multimap modulo 5.

3. Solving the prime power congruence between 1 and $(p-1)p^e$

Using the p-adic techniques of [2], we can classify solutions as nonsingular or singular. Each nonsingular solution lifts by Hensel's Lemma to a unique solution modulo p^e . Each singular solution could lift to more than one or none at all.

Theorem 4. The singular solutions of (2) are those with $x \equiv 1$ modulo p. Each one lifts to $p^{\lfloor e/2 \rfloor}$ solutions modulo p^e . (This leads to a complete count of solutions modulo p^e .)

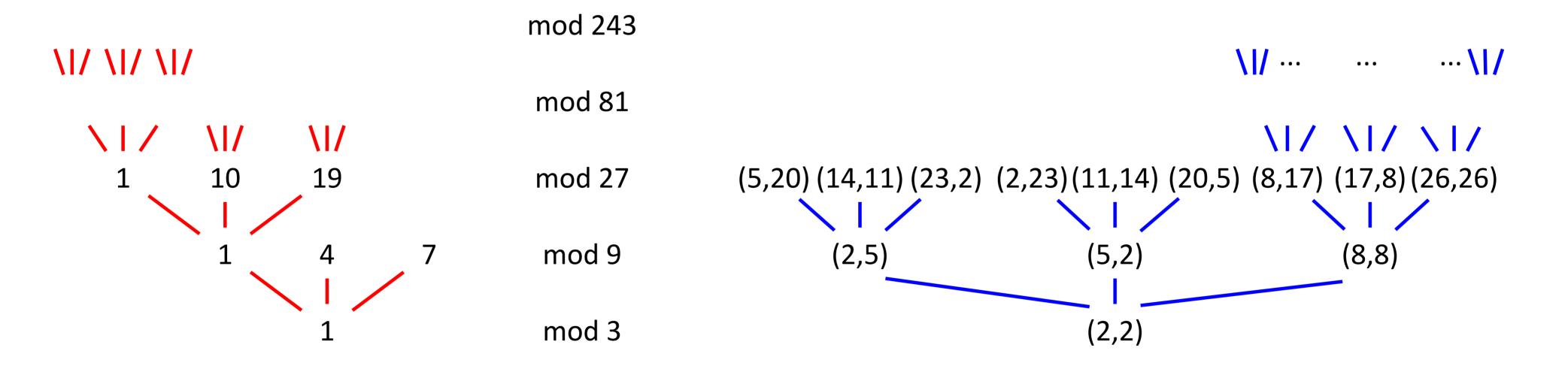


Figure 3: Left: Lifts of a singular fixed point modulo 3^e . Right: Lifts of a singular two-cycle modulo 3^e .

Theorem 5. The singular solutions of (3) are those with $ha \equiv 1 \mod p$. Each one lifts to $p^{\lfloor e/2 \rfloor}$ solutions modulo p^e if $h \not\equiv -1 \mod p$ and $p^{\lfloor e/3 \rfloor + \lfloor (e+1)/3 \rfloor}$ solutions otherwise.

The proof uses the Stationary Phase Formula from [3]. Again, this leads to a complete count.

References

- [1] Cristian Cobeli and Alexandru Zaharescu, An Exponential Congruence with Solutions in Primitive Roots, Rev. Roumaine Math. Pures Appl. 44 (1999), no. 1, 15–22.
- [2] Joshua Holden and Margaret M. Robinson, Counting Fixed Points, Two-Cycles, and Collisions of the Discrete Exponential Function using p-adic Methods, Journal of the Australian Mathematical Society. Special issue dedicated to Alf van der Poorten, to appear.
- [3] J. Igusa, A Stationary Phase Formula for p-adic Integrals and its Applications, Algebraic Geometry and its Applications: Collections of Papers from Shreeram S. Abhyankar's 60th Birthday Conference, 1994, pp. 175.
- [4] Wen Peng Zhang, On a Problem of Brizolis, Pure Appl. Math. 11 (1995), no. suppl., 1–3.