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Forging a (variant) ElGamal Digital Signature

Frank the Forger wants to solve for r and s in:

(1) g H(m) ≡ y sr r (mod p).

He knows m, g , y , and p but not the discrete log of y
mod p base g . He could:

I calculate the discrete log of y ,
I or he could solve r r ≡ g H(m)y−s (mod p) for r .

We wish to shed light on the difficulty of the second
attack by studying the self-power map, x 7→ xx mod n,
and the self-power multimap, x mod n 7→ xx mod n.

Figure 1: The self-power map modulo 13.

Counting the fixed points and two-cycles
This work investigates:

I the number of fixed points of the self-power map, i.e., solutions to

(2) xx ≡ x (mod p),

I the number of two-cycles, or solutions to

(3) hh ≡ a (mod p) and aa ≡ h (mod p),

I and the corresponding problems modulo prime powers.

1. Solving the prime modulus congruence between 1 and p − 1
Let F (p) be the number of solutions to (2) such that 1 ≤ x ≤ p − 1. We reduce the equation to
xx−1 ≡ 1 (mod p). Then we consider the order of x and of xx−1 modulo p. We proceed as in [4]
or [1] to prove:

Theorem 1. ∣∣∣∣∣∣F (p)−
∑

n|p−1

φ(n)

n

∣∣∣∣∣∣ ≤ d(p − 1)2√p(1 + ln p),

where d(p − 1) is the number of divisors of p − 1.



2. Solving the prime modulus congruence between 1 and (p − 1)p
Let G (p) be the number of solutions to (2) with
1 ≤ x ≤ (p − 1)p and p - x . Similarly, let T (p)
be the number of solutions to (3) with
1 ≤ h, a ≤ p(p − 1), p - h, and p - a. Using
Chinese Remainder Theorem techniques we have:
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Figure 2: The self-power multimap modulo 5.

3. Solving the prime power congruence between 1 and (p − 1)pe

Using the p-adic techniques of [2], we can classify solutions as nonsingular or singular. Each
nonsingular solution lifts by Hensel’s Lemma to a unique solution modulo pe. Each singular
solution could lift to more than one or none at all.

Theorem 4.The singular solutions of (2) are those with x ≡ 1 modulo p. Each one lifts to
pbe/2c solutions modulo pe. (This leads to a complete count of solutions modulo pe.)

Figure 3: Left: Lifts of a singular fixed point modulo 3e. Right: Lifts of a singular two-cycle modulo 3e.

Theorem 5.The singular solutions of (3) are those with ha ≡ 1 modulo p. Each one lifts to
pbe/2c solutions modulo pe if h 6≡ −1 modulo p and pbe/3c+b(e+1)/3c solutions otherwise.

The proof uses the Stationary Phase Formula from [3]. Again, this leads to a complete count.
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