
CDC99 - REG0098

Computer algebra in the control of singularly perturbed dynamical

systems

J.W. Helton� F. Dell Kronewitter y

March 3, 1999

Abstract

Commutative Groebner basis methods have proven to be a useful tool in the manipulation of sets of

polynomial equations. The algorithms which fall in this category make up the engines in symbolic algebra

packages' Solve[] commands. Most algebraic calculations which one sees in linear systems theory, for

example IEEE TAC, involve block matrices so are highly noncommutative. Thus the more conventional

commutative computer algebra does not address them.

The noncommutative Groebner theory is more recent, [Mor86], but many of the symbolic computational

algorithms have been implemented, [HWS98], [KFG98]. The noncommutative versions, though not nearly as

well understood as their commutative counterparts, have also been shown to be useful in the manipulation of

some noncommutative sets of polynomial equations arising in control theory, [HS97a] and [HWS98].

Here we investigate the usefulness of noncommutative computer algebra in a particular area of control

theory, singularly perturbed dynamic systems, where the noncommutative polynomials involved are especially

tedious. Our conclusion is that they have considerable potential for helping practitioners with such compu-

tations. For example, the methods introduced here take the most standard textbook singular perturbation

calculation out one step further than has been done previously. This represents the �rst step in the production

of noncommutative computer algebra tools to assist with singular perturbation calculations.

Contents

1 Introduction 2

1.1 The idea behind Groebner computer algebra . 2

2 The Standard State Feedback Singular Perturbation Problem 3

2.1 The System . 3

2.2 The Near-Optimal LQR Problem . 3

2.3 Decomposing the Problem . 4

2.3.1 The Slow System . 4

2.3.2 The Fast System . 4

2.4 Decomposing the Output . 4

3 Computer algebra vs. the standard singular perturbation problem 5

3.1 The zero-th order term of the Riccati equation (coe�cients of �0) 5

3.1.1 Computer algebra jargon . 5

3.1.2 Computer algebra �nds the basic equation . 5

3.1.3 The output and it's analysis . 6

3.1.4 Other algebraic identities which are known to hold . 7

3.1.5 The output . 7

3.1.6 The zero-th order term of the controller . 8

3.2 The order � term of the Riccati equation . 8

3.2.1 Extracting the coe�cients of �1 . 8

3.2.2 Solving for the unknowns . 9

3.3 The order �2 term of the Riccati equation . 10

�University of California, San Diego, Math Dept., 9500 Gilman Dr., San Diego, CA 92093-0112, E-mail:helton@math.ucsd.edu,

Partially supported by the AFOSR and the NSF
yUniversity of California, San Diego, Math Dept., 9500 Gilman Dr., San Diego, CA 92093-0112, E-mail:dell@ieee.org, Partially

supported by the AFOSR and the NSF

1

4 Perturbing singular solutions of the Information State Equation 11

4.1 The General Problem . 11

4.2 The linear case . 11

4.3 Computer algebra works . 12

1 Introduction

Singular perturbation is a commonly used technique in the analysis of systems whose dynamics consist of two

pieces. One piece might be slow, the other fast, or one might be known where the other is somewhat uncertain.

Extensive analysis has been done of this type of plant for the LQR and H1 control problems, for example

[KKO86], [PB93], [PB94].

Typically one has an equation with some coe�cients depending on a parameter 1
"
. One postulates an expansion

for the solutions x" to the equation,

(a) substitutes x" into the equation,

(b) sorts by powers of " and

(c) solves for successive terms of the expansion x".

The sorting in (b) can be tedious and the business of solving (c) can be very involved. Indeed our method carries

out the expansion one step further than has previously been done, see Section 3.3. This article concerns methods

we are developing for doing both of these steps automatically. The software runs under NCAlgebra, [HMS96], the

most widely distributed Mathematica package for general noncommuting computations. As we shall illustrate

NCAlgebra constructions and commands easily handle steps (a) and (b), thereby producing the (long) list of

equations which must be solved. This is straightforward and can save one engaged in singular perturbation

calculations considerable time. Solving complicated systems of equations is always tricky business; thus there

is no way of knowing in advance if noncommutative Groebner basis methods will be e�ective for (reducing to

simple form) equations found in large classes of singular perturbation problems. This is the focus of experiments

we have been conducting and on which we report in this paper.

Most of the paper shows how one can treat the most classic of all singular perturbation problems using

computer algebra. Ultimately we see that Mora's Groebner basis algorithms are very e�ective on the equations

which result. Then we sketch another newer H1 estimation problem called the \cheap sensor" problem (see

[HJM98]). On this our computer techniques proved e�ective and a longer will report these results.

1.1 The idea behind Groebner computer algebra

The Groebner basis algorithm (GBA), due to F. Mora [Mor86], can be used to systematically eliminate variables

from a collection (e.g., fpj(x1; : : : ; xn) = 0 : 1 � j � k1g) of polynomial equations so as to put it in triangular

form. One speci�es an order on the variables (x1 < x2 < x3 < : : : < xn) 1 which corresponds to ones priorities

in eliminating them. Here a GBA will try hardest to eliminate xn and try the least to eliminate x1. The output

from it is a list of equations in a \canonical form" which is triangular: 2

q1(x1) = 0 (1)

q2(x1; x2) = 0 (2)

q3(x1; x2) = 0 (3)

q4(x1; x2; x3) = 0 (4)

...

qk2(x1; : : : ; xn) = 0 : (5)

Here, the set of solutions to the collection of polynomial equations fqj = 0 : 1 � j � k2g equals the set

of solutions to the collection of polynomial equations fpj = 0 : 1 � j � k1g. This canonical form greatly

1From this ordering on variables one induces an order on monomials in those variables which is referred to as lexicographic order.
2There need not be � n equations in this list and there need not be any equation in just one variable.

2

simpli�es the task of solving the collection of polynomial equations by facilitating back-solving for xj in terms

of x1; : : : ; xj�1. The e�ect of the ordering is to specify that variables high in the order will be eliminated while

variables low in the order will not be eliminated.

If the variables commute, the Groebner basis is always �nite and can be generated by Buchberger's algorithm

if one waits long enough. In the noncommutative case, which is the subject of this paper, the Groebner basis is

usually in�nite and the GBA could fail to halt given in�nite computational resources. Nevertheless, the solution

set of the output of a terminated (say k iteration) GBA, fqjg, is always equivalent to the solution set of the

input, fpig, and this partial GBA often proves to be useful in computations as will be shown below. Groebner

basis computer runs can be notoriously memory and time consuming. Thus their e�ectiveness on any class of

problems can only be determined by experiment. Implementations of the GBA include the NCGB component of

NCAlgebra, [HS97b], and OPAL, [KFG98].

Our computer computations were performed with NCGB on a Sun Ultra I with one 166 Mhz processor and

192MB of RAM.

2 The Standard State Feedback Singular Perturbation Problem

The standard singularly perturbed linear time-invariant model consists of a di�erential state equation; which

depends on some perturbation parameter, �; and an output equation. The general control problem is to design

some feedback law which speci�es the input as a function of the output so that the controlled system will satisfy

some performance objective.

2.1 The System

Here we study the two time scale dynamic system previously analyzed in [KKO86]:

�
dx
dt

�dz
dt

�
=

�
A11 A12

A21 A22

� �
x

z

�
+

�
B1

B2

�
u (6)

y =
�
M1 M2

� � x

z

�
(7)

where x 2 Rn, z 2 Rm, u 2 Rp, and y 2 Rq.

2.2 The Near-Optimal LQR Problem

The in�nite-time optimal linear regulator problem is to �nd a control, u(t); t 2 [0;1] which minimizes the

quadratic cost

J =

Z
1

0

(yT y + uTRu)dt (8)

where R is a positive de�nite weighting matrix. It is well known that the solution to this problem is of the form

u� = �R�1BTK(�)

�
x

z

�
= G(�)

�
x

z

�
(9)

where K(�) is a solution to the Algebraic Riccati Equation (ARE)

KA +ATK �KBR�1BTK +MTM = 0 (10)

with

A =

�
A11 A12
A21

�
A22

�

�
; B =

�
B1
B2

�

�
; and M =

�
M1 M2

�
(11)

K(�) = K0 + �K1 + �2K2 + : : : (12)

3

If K is the solution to this optimal state feedback control problem it also may be used to express the optimal

cost as a function of the initial state of the system as

J� =
�
xT (0) zT (0)

�
K

�
x(0)

z(0)

�
: (13)

Notice that the solution as presented involves solving equation (10) which is a n+m dimensional Riccati. Since

we have noticed the partitioned structures present in the system (6) it seems likely that we might decompose the

problem and signi�cantly reduce the complexity of the linear algebra while deriving an only slightly sub-optimal

controller.

Indeed it is standard to divide the problem of solving the n +m dimensional Riccati, (10), into solving two

smaller Riccatis, one n dimensional, the other m dimensional, and then using these solutions to obtain a control

law which gives a performance J nearly equal to the optimal performance J�. This regulator is known as the

near-optimal regulator.

The noncommutative Groebner computer algebra which is the subject of our investigations is well suited for

manipulating polynomials into a desired form. In the next two subsections we review this decomposition. This

is mostly a matter of setting our notation, which in fact is the same notation as [KKO86].

2.3 Decomposing the Problem

Here, we decompose our two time scale system into it's fast parts and slow parts by �rst setting the fast subsystem

to it's steady state. In doing so, we will introduce standard notation which will help make the formulas we derive

a little more readable.

2.3.1 The Slow System

We will begin our analysis of this perturbed system by considering this system in it's slow state. The dynamics of

the slow system can be found by setting � to zero, often referred to as the quasi-steady state of the system. This

transforms the equation involving � in system (6) into an algebraic equation rather than a di�erential equation

dxs

dt
= A0xs(t) +B0us(t); xs(t0) = x0 (14)

zs(t) = �A�122 (A21xs(t) +B2us(t)) (15)

where

A0 , A11 � A12A
�1
22 A21; B0 , B1 � A12A

�1
22 B2:

Here the subscript s indicates that the vectors in equations (14)-(15) are the slow parts of the vectors in (6).

2.3.2 The Fast System

The fast system has dynamics

dzf

dt
= A22zf (t) +B2uf (t); zf (t0) = z0 � zs(t0) (16)

where zf = z � zs and uf = u� us:

2.4 Decomposing the Output

We may then also decompose (7) into it's slow and fast parts

y = M1x+M2z

= M1[xs +O(�)] +M2[�A
�1
22 (A21xs +B2us) + zf +O(�)]

= ys(t) + yf (t) +O(�) (17)

4

de�ning

ys =M0xs +N0us and yf = M2zf (18)

where

M0 ,M1 �M2A
�1
22 A21 and N0 , �M2A

�1
22 B2: (19)

3 Computer algebra vs. the standard singular perturbation problem

The matrix K(�) described above in (12) must be partitioned compatibly with the states, x and z, and is the

limit of the power series which is conventionally written in the form,

KN (�) =

NX
i=0

�i
�

k(1;i) �k(2;i)
�kT(2;i) �k(3;i)

�
: (20)

The remainder of this section will be devoted to �nding formulas for the k(j;i) for j 2 f1; 2; 3g and i � 0.

3.1 The zero-th order term of the Riccati equation (coe�cients of �
0)

We begin our investigations of the perturbed control problem by searching for the �rst term of the series (20)

consisting of matrices, k(1;0), k(2;0), and k(3;0). We can �nd an order of � approximation to the optimal K, (20),

by taking only the zero-th order terms in � of the equations given in (10). This is problem (b) mentioned in the

introduction. In the next section we will show how this may be done with the assistance of a computer.

This �nally brings us to the subject of our investigations, the manipulation of matrix polynomials with

computer algebra methods.

3.1.1 Computer algebra jargon

There are several terms we will use which, though simple conceptually, may not be familiar to the control engineer.

A product of variables, x�11 �x�22 � � �x�nn where �k 2 N, is called a monomial. A polynomial, f , is a �nite C -linear

combination of monomials,
mX
j=1

ajx
�
j

1

1 � x
�
j

2

2 � � �x
�jn
n

where aj 2 C . We call ak the coe�cient of the term akx
�k
1

1 � x
�k
2

2 � � �x
�kn
n . A relation is a polynomial which is

assumed to be 0. That is, we may write the equation, 3x2yz = yz + 4z2, as a relation, 3x2yz � yz � 4z2. Our

computer calls will take either relations or equations. We will slip back and forth between the two notations and

our meaning should be clear from the context.

3.1.2 Computer algebra �nds the basic equation

Groebner basis theory suggests that to �nd a polynomial in k10, A0, B0, M0, N0, R0, and other variables with

a minimal number of occurances of k10 we should create a Groebner basis for all polynomial relations known to

hold under the following order.

N0 < M0 < R0 < A0 < B0 � k10 � other variables (21)

Now we will list the input to our computer algebra program which will generate all polynomial relations known

to hold.

First, we de�ne the block matrices in (11). (What follows is the NCAlgebra notation for the matrices described

in (11) and (20). The matrix,

�
a b

c d

�
, is represented as ffa,bg,fc,dgg. The su�x, [[i; j]], extracts the i; j-

th element from a matrix. MatMult[] performs the matrix multiplication operation, tpMat[] performs the

symbolic transpose operation, and ** indicates noncommutative multiplication.)

5

A = ffA11,A12g,f1/ep**A21,1/ep**A22gg;

B = ffB1g,f1/ep**B2gg; M = ffM1,M2gg; (22)

We also de�ne a K0.

K0 = ffk10,ep**k20g,fep**tp[k20],ep**k30gg; (23)

The following Mathematica function takes as an argument a matrix K and generates the Riccati (10).

Riccati[K] := MatMult[K,A] + MatMult[tpMat[A],K] -

MatMult[K,B,Inv[R],tpMat[B],K] + MatMult[tpMat[M],M] (24)

The NCAlgebra command NCTermsOfDegree[] takes 3 arguments: a (noncommutative) polynomial, a list

of variables, and a set of indices. The command returns an expression such that each term is homogeneous of

degree given by the indices. For example, the call

NCTermsOfDegree[A**B + B**C**C + B**A**C + C**D, fCg, f1g] (25)

returns

B**A**C + C**D (26)

The following Mathematica commands will extract the 0-th order terms in �, creating the polynomials in (29),

(30), and (31).

Ep10 = NCTermsOfDegree[Riccati[K0][[1,1]] , fepg,f0g]

Ep20 = NCTermsOfDegree[Riccati[K0][[1,2]] , fepg,f0g]

Ep30 = NCTermsOfDegree[Riccati[K0][[2,2]] , fepg,f0g] (27)

3.1.3 The output and it's analysis

Input (27) creates three polynomials, a typical one of which is

k30**A22+tp[A22]**k30+tp[M2]**M2-k30**B2**Inv[R]**tp[B2]**k30. (28)

When all three are output in TeX, which is done easily by NCAlgebra, we get that Riccati[K0] = 0 corresponds

to the equations

0 = k10A11 + AT
11 k10 + k20A21 +AT

21 k
T
20 +MT

1 M1 � k10B1R
�1BT

1 k10 � k20B2R
�1BT

1 k10

� k10B1R
�1BT

2 kT20 + k20B2R
�1BT

2 kT20 (29)

0 = k20A22 � k20B2R
�1BT

2 k30 + k10A12 + AT
21 k30 +MT

1 M2 � k10B1R
�1BT

2 k30 (30)

0 = k30A22 + AT
22 k30 +MT

2 M2 � k30B2R
�1BT

2 k30 (31)

Notice that (31), the beauti�ed form of (28), contains only one unknown, k30, and has the Riccati form. Thus

one k30 is determined by this equation. Equation (29) contains two unknowns, k10 and k20, and equation (30)

contains all three unknowns, k10, k20, and k30. To solve for k20 we use equation (30) and call NCCollect[Ep20,

k20] to get the following relation

k20**(A22-B2**Inv[R]**tp[B2]**k30)+tp[A21]**k30+tp[M1]**M2-

k10**B1**Inv[R]**tp[B2]**k30+k10**A12 (32)

Upon examination of (32) it is immediate that we may give k20 explicitly in terms of k10 and k30 by assuming

the invertibility of the parenthetic expression in the above relation, A22 � B2R
�1BT

2 k30. We have

k20 =
�
�k10A12 + k10B1R

�1BT
2 k30 � AT

21k30 �MT
1 M2

�
(A22 � B2R

�1BT
2 k30)

�1: (33)

Use this de�nition of k20 to change (29) into an equation involving k10 and k30. The unknown matrices, ki0,

could then be found by �rst using (31) to solve for k30, then using our transformed (29) to solve for k10, and

�nally using (33) to obtain k20.

We will show in the next section how (29) may be changed into an equation involving only one unknown, k10,

so that k30 and k10 may be computed concurrently using two independent Riccati equations.

6

3.1.4 Other algebraic identities which are known to hold

In light of the slow system terminology introduced above in Sections 2.3.1 and 2.4 we make the following abbre-

viations.

Abbreviations = f N0 == - M2**Inv[A22]**B2,

M0 == M1 - M2**Inv[A22]**A21,

A0 == A11 - A12 ** Inv[A22]**A21,

B0 == B1 - A12**Inv[A22]**B2,

R0 == R + tp[N0]**N0 g (34)

Several of the matrices are known to be self adjoint, and therefore the following relations must hold:

SelfAdjoints = f k10 == tp[k10], k30 == tp[k30],

R == tp[R], R0 == tp[R0], Inv[R] == tp[Inv[R]], Inv[R0] == tp[Inv[R0]] g (35)

Several of the matrices or matrix polynomials in our problem are assumed to be invertible. It is common to

take the matrices, Aii, to be of full rank, since otherwise a transformation could be applied to the original system

to reduce the size of the state. The matrix A22 � B2R
�1BT

2 k30 has already been assumed to be invertible to

facilitate the de�nition of k20 in (33). The matrices R and R0 are positive de�nite and so must be invertible.

We generate the relations which result from these observations with the following command,

Inverses = NCMakeRelations[fInv ,

R,R0,A0,A11, A22,

(A22 - B2**Inv[R]**tp[B2]**k30) g], (36)

and combine all of our relations with

Relations = Union[Ep10,Ep20,Ep30,Abbreviations,SelfAdjoints,Inverses]. (37)

We must also include the transposes of each of these relations:

AllRelations = NCAddTp[Relations] (38)

The order mentioned in (21) is speci�ed next.

NCSmartOrder[ffN0,M0,R0,A0,B0 g,fk10g,

fB1,B2,M1,M2,R, A11, A12, A21, A22,

Inv[A22- B2**Inv[R]**tp[B2]**k30], tp[Inv[A22- B2**Inv[R]**tp[B2]**k30]]g

fk30g,fk20gg, AllRelations] (39)

Finally, the call to make the Groebner basis is made. This call will create a four iteration Groebner basis

from the polynomials included in AllRelations and the output will be stored in the �le, \FindK10".

NCProcess[AllRelations,4,"FindK10"] (40)

3.1.5 The output

The output of this command is a set of polynomials which make up the the Groebner basis created from the

polynomials in AllRelations under the order speci�ed in (39). The software we use actually does more than

just create a Groebner basis. NCProcess[] categorizes the output depending on how many unknowns lie in

each relation. Then it automatically sets them in TeX and opens a xdvi window displaying them. In this case a

category was found for k10 which consisted of a single relation, k10rel. After calling NCCollect[k10rel, k10

] this polynomial takes the form

The expressions with unknown variables fk10g

and knowns fA0; B0; M0; N0; A
T
0 ; B

T
0 ; M

T
0 ; N

T
0 ; R

�1
0 g

k10
�
A0 �B0R

�1
0 NT

0 M0

�
+
�
AT
0 �MT

0 N0R
�1
0 BT

0

�
k10 +MT

0 M0 � k10B0R
�1
0 BT

0 k10

�MT
0 N0R

�1
0 NT

0 M0 (41)

This calculation is no easy feat by hand, as the substitutions and non-standard notation on pages 116-7 of

[KKO86] will attest. The answer we found with the Groebner computer algebra is the same as derived there by

hand. This computation took less than 3 minutes.

7

3.1.6 The zero-th order term of the controller

Closer analysis of the �rst term of the optimal controller discovered in the previous section, Section 3.1,

G = �R�1
h
BT
1

BT
2

�

i�
k(1;0) �k(2;0)
�kT(2;0) �k(3;0)

�
; (42)

reveals that an � independent controller can be obtained by setting the upper right entry of K to zero. This gives

us

G

�
x

z

�
=
�
G10 G20

� � x

z

�
= �R�1(BT

1 k(1;0)x+BT
2 k

T
(2;0))x+ BT

2 k(3;0)z) (43)

where k(i;0) is de�ned by equations (41), (33), and (31) for i equal to 1,2, and 3 respectively.

3.2 The order � term of the Riccati equation

In Section 3.1.6, a controller was presented which does not depend on the parameter �. This is especially

appropriate if � represents some small unknown parameter. In fact, there are many circumstances when the

parameter, �, is known. In such a case, even though the optimal controller is an in�nite power series in � one can

make an nth order approximation to G(�) in (9) and arrive at a controller with enhanced performance.

A major obstruction to such an improved approach is the tedious computation required to generate formulas for

the coe�cients of higher powers of �. We did not �nd references where anyone generated formulas for coe�cients

of � higher than 1. The methods in this paper do, see Section 3.3.

As done in [KKO86] we will now obtain formulas for the matrices k(1;1), k(2;1), and k(3;1) described in (20).

Our approach will require considerably less work.

Instead of truncating the series (20) to only one term as done in Section 3.1.6, input (22), here we de�ne

symbolic entries for the second term of K as well.

K1 = ff k10, ep**k20 g, fep**tp[k20], ep**k30 gg

+ ep** ff k11, ep**k21 g, fep**tp[k21], ep**k31 gg (44)

We also append the following abbreviations for the controller discussed above in Section 3.1.6 and de�ned in

equation (43). These formulas are standard, [KKO86].

Abbreviations = Union[Abbreviations, f

G10 == -Inv[R]**(tp[B1]**k10 + tp[B2]**tp[k20]),

G20 == -Inv[R]**tp[B2]**k30 g] (45)

and, since A22 + B2G20 = A22 � B2R
�1BT

2 k30 which was previously assumed to be invertible, we also add the

invertibility relation,

Inverses = Union[Inverses, NCMakeRelations[fInv, (A22 + B2**G20)g]]. (46)

3.2.1 Extracting the coe�cients of �1

The Riccati expression in K1, Riccati[K1], generates equations quadratic in �. As done in the last section the

approach here is to equate coe�cients of �. Of course, the coe�cients of �2 cannot be equated since the actual

power series (20) would have k(i;2) which have not been introduced in computer input (44). We can extract the

coe�cients of � in equation (10) with the following commands.

Ep11 = NCTermsOfDegree[Riccati[K1][[1,1]] , fepg,f1g] (47)

creates the following polynomial

ep k11**A11+ep k21**A21+ep tp[A11]**k11+ep tp[A21]**tp[k21]-

ep k10**B1**Inv[R]**tp[B1]**k11-ep k10**B1**Inv[R]**tp[B2]**tp[k21]-

ep k20**B2**Inv[R]**tp[B1]**k11-ep k20**B2**Inv[R]**tp[B2]**tp[k21]-

8

ep k11**B1**Inv[R]**tp[B1]**k10-ep k11**B1**Inv[R]**tp[B2]**tp[k20]-

ep k21**B2**Inv[R]**tp[B1]**k10-ep k21**B2**Inv[R]**tp[B2]**tp[k20] (48)

and

Ep21 = NCTermsOfDegree[Riccati[K1][[1,2]] , fepg,f1g] (49)

Ep31 = NCTermsOfDegree[Riccati[K1][[2,2]] , fepg,f1g] (50)

give similar looking formulas.

3.2.2 Solving for the unknowns

These valid relations can now be added to all relations known to hold, (22), (24), (34), (35), and (36), with the

following command. Since the output of the NCTermsOfDegree[] command includes the variable, ep, which we

took the coe�cients of we must set the unwanted variable, ep, to 1.3 We do this by appending the Mathematica

rule /.ep->1 to expressions involving ep.

AllRelations = Union[Ep11/.ep->1,Ep21/.ep->1,Ep31/.ep->1,

Ep10,Ep20,Ep30, Abbreviations,SelfAdjoints,Inverses] (51)

Considering the analysis done in Section 3.1.2, k(1;0), k(2;0), and k(3;0) (k10, k20, k30) can be regarded as

known and we are now looking for formulas which describe the second term of the series (20), made up of symbols

k11, k21, and k31 introduced above, (44).

With this distinction between known variables and unknown variables the following order is appropriate

N0 < M0 < R < A0 < B0 < B1 < B2 < M1 < M2 < R0 <

A11 < A12 < A21 < A22 < G10 < G20 < k30 < k20 < k10 � k11 � other variables (52)

This order is imposed with the command

NCSmartOrder[ffN0,M0,R,A0,B0,

A11,A12,A21,A22,B1,B2,M1,M2,R0,G10,G20,k30,k20,k10g,

fk11g,fk31, k21g,f

Inv[A22- B2**Inv[R]**tp[B2]**k30],tp[Inv[A22- B2**Inv[R]**tp[B2]**k30]]

gg, AllRelations]; (53)

A three iteration Groebner basis is created with the NCProcess[] command similar to (40). On this input

NCProcess[] took less than 7 minutes. The output of this command contains a single relation with 24 terms

involving the single unknown matrix k(1;1), k11rel. Collecting around the k11 with the command

NCCollect[k11rel, k11] (54)

gives us the following relation

�1 k11 (A0�B0 R
�1
0 BT

0 k01�B0 R
�1
0 NT

0 M0)+(k01B0R
�1
0 BT

0 +MT
0 N0R

�1
0 BT

0 �A
T
0) k11+AT

0 k02A
�1
22 A21+

AT
21A

T�1
22 kT02A0 � k01B0R

�1
0 BT

0 k02A
�1
22 A21 � k01B0R

�1
0 BT

2 A
T�1
22 kT02A0 � AT

0 k02A
�1
22 B2R

�1
0 BT

0 k01 �

AT
0 k02A

�1
22 B2R

�1
0 NT

0 M0 � AT
21A

T�1
22 kT02B0R

�1
0 BT

0 k01 � AT
21A

T�1
22 kT02B0R

�1
0 NT

0 M0 �

MT
0 N0R

�1
0 BT

0 k02A
�1
22 A21 � MT

0 N0R
�1
0 BT

2 AT�1
22 kT02A0 + k01B0R

�1
0 BT

0 k02A
�1
22 B2R

�1
0 BT

0 k01 +

k01B0R
�1
0 BT

0 k02A
�1
22 B2R

�1
0 NT

0 M0 + k01B0R
�1
0 BT

2 A
T�1
22 kT02B0R

�1
0 BT

0 k01 +

k01B0R
�1
0 BT

2 A
T�1
22 kT02B0R

�1
0 NT

0 M0 + MT
0 N0R

�1
0 BT

0 k02A
�1
22 B2R

�1
0 BT

0 k01 +

MT
0 N0R

�1
0 BT

0 k02A
�1
22 B2R

�1
0 NT

0 M0 + MT
0 N0R

�1
0 BT

2 A
T�1
22 kT02B0R

�1
0 BT

0 k01 +

MT
0 N0R

�1
0 BT

2 A
T�1
22 kT02B0R

�1
0 NT

0 M0 (55)

The coe�cients of k(1;1) in equation (55), the relations in parentheses, suggest that we make the following

abbreviation

3Notice that Mathematica output (26) contains the variable C.

9

F0 == A0-B0**Inv[R0]**(tp[N0]**M0 + tp[B0]**k01)4 (56)

With computer input (56) appended to all relations known to hold, AllRelations, we can put F0 low in the

order and run NCProcess[] again, creating a new Groebner basis. The output of this command contains the

aesthetically pleasing relation de�ning k(1;1)

�k11F0 � 1FT
0 k11 + AT

21 (A22 +B2G20)
�T

kT20F0 + FT
0 k20 (A22 + B2G20)

�1
A21 +

FT
0 k20 (A22 +B2G20)

�1
B2G10 +GT

10B
T
2 (A22 + B2G20)

�T
kT20F0: (57)

This is a simple Lyapunov equation whose solution, k(1;1), is unique as long as F0, is Hurwitz. We will therefore

regard k(1;1) as known from this point forward.

Similar to the zero-th order case the equation de�ning k(3;1) is an immediate consequence of (58) and takes

the collected form

k31
�
A22 � B2R

�1BT
2 k30

�
+

�
AT
22 � k30B2R

�1BT
2

�
k31 + AT

12 k20 + kT02A12 � k30B2R
�1BT

1 k20 �

kT20B1R
�1BT

2 k30 (58)

Also similar to the zero-th order case we have an explicit formula for k(2;1) in terms of k(1;1) and k(3;1). The

following relatively simple formula was also in the output of the NCProcess[] command which generated (57).

k21 !�1 k11A12A
�1
22 �A

T
11 k20 (A22 +B2G20)

�1
�AT

21 k31 (A22 + B2G20)
�1
�GT

10B
T
1 k20 (A22 + B2G20)

�1
�

GT
10B

T
2 k31 (A22 +B2G20)

�1
+ k11B0R

�1
0

�
NT
0 M2A

�1
22 � BT

2 A
T�1
22 k30

�
(59)

Expressions equivalent to (57), (59), and (58) can be found in [KKO86].

Notice that a similar procedure could be done as that described in Section 3.1.6 to derive an order � controller.

3.3 The order �
2 term of the Riccati equation

At this point the tale is growing long and the weary reader can most likely guess what will be done in this

section from the title. For the sake of presenting a formula which has not appeared before we create a three term

approximation to K(�),

K2 = ff k10, ep**k20 g, fep**tp[k20], ep**k30 gg

+ ep** ff k11, ep**k21 g, fep**tp[k21], ep**k31 gg

+ ep^2** ff k21, ep**k22 g, fep**tp[k22], ep**k32 gg, (60)

For this problem a three iteration Groebner basis was created and we arrived at formulas de�ning k(1;2), k(2;2),

and k(3;2) which in total are 1,478 lines long in Mathematica notation (ine�cient).

We used a version of NCProcess[] which was specialized to display only equations involving the unknowns;

k(1;2) and k(2;2). (The formula for k(3;2) was immediate from the order two Riccati as in the lower order cases.)

This substantially speeds up run times. Still, our rather formidable conclusion took 21 and a half minutes. The

formulas can be found at

http://math.ucsd.edu/~ncalg/SingularPerturbation.

It is gratifying that our Groebner equation processing techniques prevailed on such a large problem. It leads us

to think that many singular perturbation problems are well within the scope of our computer algebra techniques.

4More analytic methods can be used, [KS72], to show that this expression is of the form A0 + B0G0 where G0 is the optimal

control for the slow part of the LQR optimal problem, (14). The focus here is on the computer algebra and the expression, F0, is
discovered purely algebraically.

10

4 Perturbing singular solutions of the Information State Equation

We would also like to mention that the techniques illustrated on the previous problem apply to other problems.

In particular we mention a singular perturbation analysis of an important entity in the output feedback H1
control problem, the information state. It corresponds not to fast and slow time scales but to sensors becoming

increasingly accurate, for details see [HJM98].

4.1 The General Problem

Consider the system

dx

dt
= A�(x) +B(x)v (61)

out = C(x) +D(x): (62)

An equation useful in estimation associated to this (details in [HJM98]) is the information state equation, ISE.

�
dp

dt
= (A�(x) + B(x) � v(t))Trxpt(x) + (rxpt(x))

TQ(x)rxpt(x) (63)

+ [C(x)�Dv(t)]T J [C(x)�Dv(t)] +
1

�2
kW [v(t)� x]k2;

where J is self adjoint. It is written even more concisely as

�
dp

dt
= �(x; t)rxpt(x) + (rxpt(x))

TQ(x)rxpt(x) (64)

+ J(x; t) +
1

�2
kW [v(t)� x]k2:

4.2 The linear case

Assuming that the associated vector �eld is linear and �xing � it is known that a solution exists of the form

pt(x) =
1

2
(x� x�)

TP�(x� x�) + �et ; (65)

where P� is a matrix which does not depend on t, but x and x� do depend on t, or more simply as

pt(x) =
1

2
~xTP�~x+ �et with ~x = x� x� (66)

We expand x� to arrive at

x� = xe0 + �x�;1 + �2x�;2 + : : : (67)

A few examples have led us to believe that P� is an irrational function of � which has a series form

P� =
1

�
P�1 + P0 + �P1 + �2P2 + : : : (68)

Then

rxp = P�(x� x�)

and noting that (A�x+Bv(t))Trp is scalar, we can symmetrize the above information state equation, ISE, (63),

and arrive at

�
dp

dt
= [A�x+B � v(t)]TP�(x� x�) + (x� x�)

TP�[A
�x+B � v(t)] (69)

+ (x� x�)
TP�QP�(x� x�) + [Cx�Dv(t)]T J [Cx�Dv(t)] +

1

�2
(v(t) � x)TR(v(t) � x):

where R = WTW .

11

4.3 Computer algebra works

We applied NCAlgebra methods very similar to the ones demonstrated in Section 3 to the ISE singular per-

turbation problem just described and found them highly e�ective. Results will be reported in the longer paper

corresponding to this conference note.

References

[CLS92] D. Cox, J. Little, and D. O' Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational

Algebraic Geometry and Commutative Algebra. Springer-Verlag, Undergraduate Texts in Mathematics,

1992.

[HJM98] J. W. Helton, M. R. James, and W. M. McEneaney. Nonlinear control: The joys of having an extra

sensor. Proceedings of the 37th IEEE CDC,Tampa, Florida, USA, Dec 16-18, 4:3609{13, 1998.

[HMS96] J.W. Helton, R.L. Miller, and M. Stankus. NCAlgebra: A Mathematica Package for doing noncommut-

ing Algebra. available from http://math.ucsd.edu/~ncalg, 1996. Beware that to perform the computa-

tions in this paper you need NCGB.

[HS97a] J.W. Helton and M. Stankus. Computer assistance in discovering formulas and theorems in system

engineering. to appear in Journal of Functional Analysis, 1997.

[HS97b] J.W. Helton and M. Stankus. NCGB: Noncommutative Groebner bases. available from

http://math.ucsd.edu/~ncalg, 1997. As of April'99 this requires Mathematica and the Solaris oper-

ating system. A Windows version is coming soon.

[HWS98] J.W. Helton, J.J. Wavrik, and M. Stankus. Computer simpli�cation of formulas in linear systems

theory. IEEE Transactions on Automatic Control, 43:302{14, 1998.

[KFG98] B. Keller, C.D. Feustel, and E. Green. The GRB/OPAL System. available from

http://csgrad.cs.vt.edu/~keller, 1998.

[KKO86] Petar V. Kokotovic, Hassan K. Khalil, and John O'Reilly. Singular Perturbation Methods in Control:

Analysis and Design. Academic Press, 1986.

[KS72] Huibert Kwakernaak and Raphael Sivan. Linear optimal control systems. Wiley Interscience., 1972.

[Mor86] F. Mora. Groebner bases for non-commutative polynomial rings. Lecture Notes in Computer Science,

229:353{362, 1986.

[PB93] Z.G. Pan and T. Basar. H1 optimal control for singularly perturbed systems 1. perfect state measure-

ments. Automatica, 29:401{423, 1993.

[PB94] Z.G. Pan and T. Basar. H1 optimal control for singularly perturbed systems 2. imperfect state mea-

surements. IEEE Transactions on Automatic Control, 39:280{299, 1994.

12

