Chapter 2

Proofs by Contradiction

2.1 Proving Negative Statements

The direct method is not very convenient when we need to prove a negation of some statement.

For example, we may try to prove that $78n + 102m = 11$ does not have integer solutions. It is not clear how to prove it directly since we can not consider all possible n and m. Hence, we need another approach. Let us assume that such a solution n, m exists. Note that $78n + 102m$ is even, but 11 is odd. In other words, an odd number is equal to an even number, it is impossible. Thus, the assumption was false.

Let us consider a more useful example, let us prove that if p^2 is even, then p is also even (p is an integer). Assume the opposite i.e. that p^2 is even but p is not. Let $p = 2b + 1^1$. Note that $p^2 = (2b + 1)^2 = 2(2b^2 + 2b) + 1$. Hence, p^2 is odd which contradicts to the assumption that p^2 is even.

Using this idea we may prove much more complicated results e.g. one may show that $\sqrt{2}$ is irrational. For the sake of contradiction, let us assume that it is not true. In other words there are p and q such that $\sqrt{2} = \frac{p}{q}$ and $\frac{p}{q}$ is an irreducible fraction.

Note that $\sqrt{2}q = p$, so $2q^2 = p^2$. Which implies that p is even and 4 devises p^2. Therefore 4 devises $2q^2$ and q is also even. As a result, we get a contradiction with the assumption that $\frac{p}{q}$ is an irreducible fraction.

1Note that we use here the statement that an integer n is not even iff it is odd, which, formally speaking, should be proven.
2.2 Proving Implications by Contradiction

This method works especially well when we need to prove an implication. Since the implication \(A \implies B \) is false only when \(A \) is true but \(B \) is false. Hence, you need to derive a contradiction from the fact that \(A \) is true and \(B \) is false.

We have already seen such examples in the previous section, we proved that \(p^2 \) is even implies \(p \) is even for any integer \(p \). Let us consider another example. Let \(a \) and \(b \) be reals such that \(a > b \). We need to show that \((ac < bc) \implies c < 0 \).

So we may assume that \(ac < bc \) but \(c \geq 0 \). By the multiplicativity of the inequalities we know that if \((a > b) \) and \(c > 0 \), then \(ac > bc \) which contradicts to \(ac < bc \).

A special case of such a proof is when we need to prove the implication \(A \implies B \), assume that \(B \) is false and derive that \(A \) is false which contradicts to \(A \) (such proofs are called proofs by contraposition); note that the previous proof is the proof of this form.

2.3 Proof of “OR” Statements

Another important case is when we need to prove that at least one of two statements is true. For example, let us prove that \(ab = 0 \) if \(a = 0 \) or \(b = 0 \). We start from the implication from the right to the left. Since if \(a = 0 \), then \(ab = 0 \) and the same is true for \(b = 0 \) this implication is obvious.

The second part of the proof is the proof by contradiction. Assume \(ab = 0 \), \(a \neq 0 \), and \(b \neq 0 \). Note that \(b = \frac{ab}{a} = 0 \), hence \(b = 0 \) which is a contradiction to the assumption.

End of The Chapter Exercises

2.2 Prove that if \(n^2 \) is odd, then \(n \) is odd.

2.3 In Euclidean (standard) geometry, prove: If two lines share a common perpendicular, then the lines are parallel.

2.4 Let us consider four-lines geometry, it is a theory with undefined terms: point, line, is on, and axioms:

1. there exist exactly four lines,
2.3. PROOF OF “OR” STATEMENTS

2. any two distinct lines have exactly one point on both of them, and
3. each point is on exactly two lines.

Show that every line has exactly three points on it.

2.5 Let us consider group theory, it is a theory with undefined terms: group-element and times (if a and b are group elements, we denote a times b by $a \cdot b$), and axioms:

1. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for every group-elements a, b, and c;
2. there is a unique group-element e such that $e \cdot a = a = a \cdot e$ for every group-element a (we say that such an element is the identity element);
3. for every group-element a there is a group-element b such that $a \cdot b = e$, where e is the identity element;
4. for every group-element a there is a group-element b such that $b \cdot a = e$, where e is the identity element.

Let e be the identity element. Show the following statements

• if $b_{0} \cdot a = b_{1} \cdot a = e$, then $b_{0} = b_{1}$, for every group-elements a, b_{0}, and b_{1}.
• if $a \cdot b_{0} = a \cdot b_{1} = e$, then $b_{0} = b_{1}$, for every group-elements a, b_{0}, and b_{1}.
• if $a \cdot b_{0} = b_{1} \cdot a = e$, then $b_{0} = b_{1}$, for every group-elements a, b_{0}, and b_{1}.

2.6 Let us consider three-points geometry, it is a theory with undefined terms: point, line, is on, and axioms:

1. There exist exactly three points.
2. Two distinct points are on exactly one line.
3. Not all the three points are collinear i.e. they do not lay on the same line.
4. Two distinct lines are on at least one point i.e. there is at least one point such that it is on both lines.

Show that there are exactly three lines.

2.7 Show that there are irrational numbers a and b such that a^{b} is rational.

2.8 Show that there does not exist the largest integer.