
Fractals  
from Wikipedia:    list of fractals by Hausdoff dimension

Sierpinski Triangle

3D Cantor Dust

Lorenz attractor

Coastline of Great Britain

Mandelbrot Set           

What makes a fractal?

I’m using 2 references:  
Fractal Geometry by Kenneth Falconer
Encounters with Chaos by Denny Gulick

1)  A fractal is a subset of Ρn with non integer dimension.  
Of course this make no sense without a definition of dimension.

2)  Fractal contains copies of itself at many scales.

3)  It is too irregular to be described by traditional language.

Mandelbrot coined the term in 1977 though many examples were known.  
"Clouds are not spheres, mountains are not cones, coastlines are not 
circles, and bark is not smooth, nor does lightning travel in a straight 
line."(Mandelbrot, 1983).

Other references:  the web, books by Mandelbrot
M. Barnsley, Fractals Everywhere



1) Cantor Dust.
From the interval [0,1] remove the middle third.  Then remove the 
middle third from the remaining 2 intervals  [0,1/3] and [2/3,1].
Keep going with this removal of middle thirds   forever …..
You end up with the Cantor dust.  Impossible to draw it.  We give the 
first 5 steps.  Later we will see   the Cantor Dust has box dimension 
ln2/ln3 ≅ .63.

Higher dimension than a point but smaller than an interval.   
There are many interesting facts about the Cantor dust.  For 
example, the set is uncountable, but if you integrate the function 
that is 1 on the Cantor set and 0 off the set (using the Lebesgue 
integral), you get 0.  The Riemann integral cannot deal with this.

Defn. Start with C0=[0,1]. Let C1=[0,1/3]∪[2/3,1].   Continue in this 
way, defining Ck as a union of 2k subintervals, each of length 3-k

obtained by removing middle thirds of the intervals in Ck-1. The 
Cantor set C is the intersection of all the Ck, for k running over all 
integers ≥ 0.

Problem 1. Show that the Cantor set can be identified with all the 
real numbers in [0,1] that can be represented in the form

This includes, for example, 20/27 = 2/3 + 2/27 = 0.202000... .  
Here, if a number has 2 expansions, we are saying 1 and only 1 of 
these expansions has no dn taking the value 1.  Thus 1/3∈C since even 
though 1/3=.10000 …, since we also have 1/3=.0222….

This implies there are as many points in the Cantor set as 
there are real numbers. The Cantor set is uncountable.
Hint.  The numbers requiring a 1 in the 1st place of their ternary 
expansion lie in the interval (1/3,2/3).  The numbers requiring a 1 in 
the 2nd place of their ternary expansion lie in the union of the
intervals (1/9,2/9) and (7/9,8,9).  
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2) Sierpinski Triangle.

Start with an equilateral triangle 
and remove the center triangle.

Remove the center triangles from each of the 
3 remaining triangles.

Keep going forever.                 

Fractal dimensions give a way of comparing fractals. Fractal dimensions can 
be defined in connection with real world data, such as the coastline of Great 
Britain. It turns out to have fractal dimension approximately 1.2.  
Here we will only look at the box dimension. It is only one of a wide variety 
of notions of fractal dimension. (The oldest and perhaps most important is 
the Hausdoff dimension. It is harder to calculate and you will need to look at 
the references such as Falconer to find out what that is.)

here we use ln(x) 
rather than log(x)

Definition of Box Dimension.
Defn. Suppose S is a subset of Ρn,  n=1,2,3.  By an n-box, we 
mean a closed interval if n=1;  a square if n=2;  a cube if n=3.
Defn. ∀ε>0  let  N(ε)  be the smallest number of n-boxes of side 
length ε needed to cover S.   
Example.
It takes 8 boxes of length 1/3 to 
cover the unit square with center 
square of side 1/3 removed.
Defn.  Box dimension   of S⊂ Ρn is defined to be  the following 
limit if it exists:

Note. The box dimension is often called capacity.  It sometimes 
differs from the Hausdorff dimension which we do not define here.  
But both definitions of dimension agree on most of the simple 
examples. For an m-dimensional surface in Ρn,  n=1,2,3, the box 
dimension can be shown to be m.  Thus, for example, the box 
dimension of the surface of the sphere is 2.  See Falconer, p. 44.

Problem 2. Show that the box dimension of the unit square is 2.
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Theorems to aid us in computing the box dimension.
Theorem 1. Let S be a subset of Ρn,  n=1,2,3.   If 0<r<1,  then 
the limit defining dimBS exists iff the following limit exists and then 
they are equal

Proof Sketch.        Given   ε>0 and   r with 0<r<1,    you just 
have to find a positive integer k such that
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Example.
The Box dim  of the Cantor set C.  

Recall that C is obtained from the interval [0,1] by continually
removing middle thirds.  At each stage there are twice as 
many intervals as the preceding stage.  And each interval has 
length 1/3 that of the preceding stage.  Since N(1/3) =2,  
we find that, by induction,  N(1/3K)=2K,  for each k≥1.
Let r=1/3 in the preceding theorem and find
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Problem 3. Show that the box dimension of the set of 
rational numbers in [0,1] is 1.

Defn.  Suppose our set S is a subset of Ρn, n=1,2,3.  
The distance between 2 points x,y is denoted Πx-y Π.  
Suppose that a function f:S→S has the property that for some constant r with 
0<r<1,    Πf(x)-f(y)Π = r Πx-y Π,   for all x,y  in S.  Then we call f a 
similarity of S. The constant r is called the similarity constant.

Example.  Let S=[0,1]  &  f(x)=2/3 + x/3.  Then f is a similarity with constant 
1/3.  It maps [0,1] onto [2/3,1].

Defn. If there are m similarities  f1,…,fm of S such that  
S=f1(S)  ∪ … ∪ fm(S), and the images are non-overlapping except possibly for 
boundaries, we say that S is a self-similar set.  It is composed of m (shrunk) 
copies of itself.

Example. The Canter set C.   Define  g(x)=x/3   and    
f(x)= 2/3 + x/3.  Then  C=f(C) ∪ g(C).  Both f and g are similarity functions with 
similarity constant 1/3.

Another Theorem making it easy to compute the box dimension.

Theorem 2.   Suppose that S is a self similar set in Ρn, n=1,2,3;  
i.e.,  S=f1(S)  ∪ … ∪ fm(S),  non-overlapping, and such that each 
similarity function fi has the same similarity constant r.  Then  

dimBS=ln m/ln(1/r).

Proof. We use Theorem 1. Since  N(rk)  =cmk,  for some positive 
constant c   (Why? is Problem 5. Hint. Think about the Cantor set),  we 
have
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Problem 4. Show that the Sierpinski triangle is a self-similar set. Use this to see 
that the box dimension of the Sierpinski triangle  is    ln3/ln2≅1.58 using the 
following theorem.  You need to define functions of vectors in the plane. First put 
the origin at the left hand base point of the big triangle.  Then figure out what 
function shrinks the big triangle to the small one at the origin.  Next what vector 
must you add to that function to shift the left small triangle over to the right one 
at the base?



Defn. A set M of real numbers is said to have Lebesgue measure 0 iff 
for every ε > 0 there is a sequence of open intervals En such that  

Sets of Lebesgue measure 0 are considered negligible in the theory of 
the Lebesgue integral. One can ignore what a function does on such sets 
when computing Lebesgue integrals. And one identifies functions that 
are equal except on a set of Lebesgue measure 0.

Problem 6. Show that any countable set M of real numbers has Lebesgue 
measure 0.

Problem 7. Show that the Cantor set has Lebesgue measure 0.
Hint. To do this recall that setting C0=[0,1]. Let C2=[0,1/3]∪[2/3,1].   Continue 
in this way, defining Ck as a union of 2k subintervals, each of length 3-k obtained 
by removing middle thirds of the intervals in Ck-1. The Cantor set C is the 
intersection of all the Ck, for k running over all integers ≥ 0.
Show that Ck is has length (2/3)k.
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Defn.  The Devil's Staircase or the Almost Perfect Sneak.  
Define a function on the interval [0,1] as follows. Write the complement of the 
Cantor set in [0,1] as a union of intervals.  First define f on the complement of 
the Cantor set.   
Define  f(x)=½ for  x∈ ;  f(x)=¼ for x∈ ,  f(x)=¾ for x∈ .

Then in the kth step, going from left to right on the 2k-1

subintervals left out of the Cantor set define 

f(x) = 

Define f(x) for x∈C=the Cantor set by  
f(x) = l.u.b.{ f(t) |  t < x, t∈[0,1]-C} and set f(0)=0. 

Problem 8. Prove that f(x) is increasing, continuous and has derivative f’(x)=0 
except on the Cantor set C, which has Lebesgue measure 0. But f(0)=0 and 
f(1)=1. So the fundamental theorem of calculus fails for this function:
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Hint.  If f were not continuous, f would have a 
jump. Then there would have to be an open 
subinterval of [0,1] containing no value of f. But 
the range of f contains all numbers of the form 
(2n+1)/2k in [0,1]. 



A person moving toward you according to the Devil’s staircase law y=f(x) 
would cover a unit distance in a unit of time, but you might never see 
him or her move even if you were watching all the time. Thus Korevaar, 
Mathematical Methods, p. 404, calls this function "the almost perfect 
sneak.“

In 1872 Weierstrass found functions that were continuous everywhere 
but nowhere differentiable. This shocked many famous mathematicians 
who had thought such a function impossible. 

Hermite described these functions as a "dreadful plague." 

Poincaré wrote: "Yesterday, if a new function was invented it was to 
serve some practical end; today they are specially invented only to show 
up the arguments of our fathers, and they will never have any other 
use." Even as late as the 1960's, before "everyone" had a computer fast 
enough to graph these things, such examples were viewed as pathological 
monsters. Now there are thousands of websites with pictures of 
approximations of them.

The Weierstrass Nowhere Differentiable Function.
Weierstrass published this construction in 1872.  It too is a fractal.
Defn.  The Weierstrass function f.    The definition involves 
parameters   λ>1   and    1<s<2.  Then f:[0,1]→Ρ is defined by

Theorem 3. If λ is large enough, the box dimension of the graph of 
f(t)  in Ρ2 is s.  By the graph of f,  we mean the set of points  
(t,f(t)),  for all t in [0,1].

There are lots of pictures of this graph on the web. For example
http://en.wikipedia.org/wiki/Weierstrass_function.
http://planetmath.org/encyclopedia/WeierstrassFunction.html
Or  see http://www.math.washington.edu/%7Econroy/
for an animation zooming in on the Weierstrass function
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Problem 9. Show that                                              is a 

continuous function  on  [0,1].
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The following pictures of the Weierstrass function with λ=2  and  
s=1.9  were produced using the Mathematica commands below.  I summed the 
first 150 terms of the Fourier series for the Weierstrass function and then 
plotted the result on the interval [0,1].  Why do 150 terms suffice?   Look at 
the geometric series with  x=2^(-.1).  To get x^k<10^(-4),  you need  
log(x^k)<log(10^-4)  to get 4 significant digits.   Then we want the next term 
which is the estimate for the remainder to be        

k log(2^(-.1)) < -4 log 10    ⇔ -.1 k log2 < -4 log 10    
⇔ k >  40 log 10/log 2

40*Log[10]/Log[2]//N  ≅132.877

The commands to sum the first 150 terms and make a function of it.  Then plot 
on the interval [0,1].

fun[t_]:=fun[t]=Sum[2^(-k*(2-1.9))*Sin[t*2^k],{k,1,150}]
Plot[fun[t],{t,0,1}];
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Same function plotted on the 
interval [0,0.01].      

The essence of a fractal  - the 
same behavior at all scales.  
This function also looks nowhere 
differentiable.
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Weierstrass function λ=2  and  
s=1.9   plotted  on the interval 
[0,1].



Defn.   Rf[a,b]=sup{|f(t)-f(u)|,  t,u in[a,b]}.

Proposition 1. Let f:[0,1]→Ρ,  be continuous.  Suppose that  
0<δ<1,  and m is the least integer greater than or equal to 1/δ.  
If  N(δ)  is the number of squares of side δ that intersect the 
graph of f, we have

Proof.
The  number of squares of side δ in the column above the interval 
[k δ,(k+1) δ]  that intersect the graph of f  is at least 
Rf[kδ, (k+1)δ]/δ.   It is at most  2+ Rf[kδ, (k+1)δ]/δ,  using the 
fact that f is continuous.   Sum over all the intervals to finish the 
proof.

Problem 10. Fill in the details in this proof.  Draw a picture.
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Preparations for computing the box dimension of a graph of 
a function.
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Lemma 1. Let f:[0,1]→Ρ be continuous.  Assume the  box dimension 
of the graph of f exists.
1) Suppose that ∃ c>0  and s,  1≤s≤2,  such that 

|f(t)-f(u)| ≤c|t-u|2-s,  ∀ t,u  in [0,1].   Then dimBgraphf ≤s.
This remains true if the inequality only holds for |t-u|<δ ,  for 
some δ>0.

2)  Suppose that ∃ c>0, δ0>0  and s,  1≤s≤2  such that
∀ t in [0,1],  and ∀ δ with  0< δ ≤ δ0 ∃ u such that  |t-u|< δ
and   |f(t)-f(u)|≥c δ2-s.
Then dimBgraphf ≥s.

Proof.
1)  From the hypothesis of 1) we see that Rf[a,b]≤c|a-b|2-s,  for  a,b 
in [0,1].  Using the notation of the proposition, we see that  

m<(1+ δ-1)  and thus
N(δ)≤(1+ δ-1)(2+cδ-1δ2-s) ≤c1 δ-s,

where c1 is independent of δ.  The result follows from the definition 
of box dimension.
2) Similarly the hypothesis of 2) implies  that Rf[a,b]≥c|a-b|2-s.  
Since δ-1 ≤m,   we have from Proposition 1 that  N(δ) ≥ δ-1 δ-1 c δ2-s
=cδ-s.  Again, the result follows from the definition of box dimension.
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Problem 11. Suppose f:[a,b] →Ρ has a continuous derivative.  Show 
dimBgraphf=1.  Hint.  Use the mean value theorem and Lemma 1.
Now we prove Theorem 3 which says that  λ large enough implies that 
the box dimension of the graph of the Weierstrass function is s.

Given h in (0,1),  let N be the integer such that  
λ-(N+1)  ≤ h  <  λ-N.

Use our definition  

Splitting sums up into 2 parts we get:

Here we used the mean value theorem on the first N terms and that 
|sinx|≤1  for the rest of the terms.
Then we sum the geometric series to see that 
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where  c is independent of h.
This implies that the dimB(graph f)  ≤ s  by the Lemma above.

To go the other way, take our sum defining f(t+h)-f(t)  and split it 
into 3 parts,  the first N-1 terms, the Nth term, and the rest.  This 
implies that 
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Suppose that  λ>2  is large enough that

For  δ<1/λ,  take N  such that  

∀ t,  ∃ h,  such that   

and such that 

All this implies that  

It follows from the preceding Lemma that  dimB(graphf) ≥s 

( 2) 2 21 1( ) ( ) .
20 20

s N s sf t h f t λ λ δ− − −+ − ≥ ≥

( 1).N Nλ δ λ− − −≤ <
( 1)N Nhλ λ− + ≤ <

( ) 1sin sin .
10

N Nt h tλ λ⎡ ⎤ ⎡ ⎤+ − >⎣ ⎦ ⎣ ⎦

( 2)(*) 1 , .
20

s Nright hand side of is Nλ −< ∀

Problem  12. Show that any function satisfying condition 2 of 
Lemma 1 with s>1 must be nowhere differentiable.  It follows 
that the Weierstrass function is continuous but nowhere 
differentiable.

There is lots more to say about fractals, but we will stop here.
I leave you with a picture of the Mandelbrot set from Wikipedia.


