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The usual hypotheses:The usual hypotheses:
Graphs are finite,connected, not directed or 
weighted;  w ght ;
No degree 1 vertices;  
Rank fundamental group = r > 1;
|E| | ||E|-|V|=r-1>0

Bad GraphBad Graph



Labeling Edges of Graphs

Orient the m edges arbitarily. 
Label them as follows. m f
Here the inverse edge has 
opposite orientation.

e1=a, e2=b, …, e6=f;

e7=a-1,e8=b-1,…,e12=f-1
7 8 12



Primes in Graphs

are equivalence classes [C] of closed backtrackless

p

are equivalence classes [C] of closed backtrackless
tailless primitive paths C=e1e2 … es ,  s=ν(C)

DEFINITIONS equivalence class: change starting pointDEFINITIONS     equivalence class:  change starting point

backtrack ei+1=(ei)-1

tail es=(e1)-1 
α

Here α is the start of the path

non-primitive:  go around path more than  once



EXAMPLES of Primes in a Graph

[C] [ ][C] =[e1e2e3]

[D]=[e4e5e3]
e3 e2

e4

e5 [E]=[e1e2e3e4e5e3]

e1

ν(C) = # edges in C

ν(C)=3, ν(D)=3, ν(E)=6

E=CD    
another prime [CnD],  n=2,3,4, …
infinitely many primesinfinitely many primes



Ihara Zeta Function

( ) 1( )( ) 1 Cu X uνζ
−∏ ( )( )

[ ]
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u X uζ = −∏ |u| small 
enough

prime

Ihara’s Theorem (Bass, Hashimoto, etc.)
A  =  adjacency matrix of X
Q  =  diagonal matrix; jth diagonal entry  

d jth t 1= degree jth vertex -1;
r  =  rank fundamental group = |E|-|V|+1

1 2 1 2( , ) (1 ) det( )ru X u I Au Quζ − −= − − +( ) ( ) ( )Qζ



The Edge Matrix  W1
Define W to be the 2|E|×2|E| matrix with i j entry 1Define W1 to be the 2|E|×2|E| matrix with i j entry 1 

if edge i feeds into edge j,  and    j≠i-1
otherwise the i j entry is 0otherwise the i j entry is 0.

i j

Theorem. ζ(u,X)-1=det(I-W1u).
C ll Th l f Ih t thCorollary.  The poles of Ihara zeta are the 
reciprocals of the eigenvalues of W1.
Th l R f i h l h i i B L d ’The pole R of zeta is the closest to the origin.  By Landau’s 
theorem on power series with non-negative coefficients the pole 
R is simple.  Moreover, R=1/Perron-Frobenius eigenvalue of 
W1; i.e., the largest eigenvalue which has to be positive real 
and simple if the graph satisfies our usual hypotheses.  

N t : th d b t th m i l i dNote: the correspondence between theorems in analysis and 
linear algebra. 



Remarks for q+1-Regular Graphs Mostly

Riemann Hypothesis, (non-trivial poles on circle 
of radius q-1/2 center 0) means graph isof radius q 1/2 center 0), means graph is
Ramanujan i.e., non-trivial spectrum of  
adjacency matrix is contained in the intervaladjacency matrix is contained in the interval 
(-2√q, 2√q) = spectrum for the universal covering
t [ L b t k Philli & S ktree [see Lubotzky, Phillips & Sarnak, 
Combinatorica, 8 (1988)].  

Ihara zeta has functional equations relating 
l d 1/( ) d 1value at u and  1/(qu),  q=degree - 1 

Set u=q-s  to get s goes to 1-s.



Alon conjecture says RH is true for “most” regular graphs but can be 
false. See Joel Friedman's website    (www.math.ubc.ca/~jf)  for j
a paper proving that a random regular graph is almost Ramanujan.

F i l h th i l f th Ri H th i dFor irregular graphs there is an analog of the Riemann Hypothesis and 
of the Alon conjecture but no functional equation.  
See my book also Friedman website.

The Prime Number Theorem (graphs satisfying usual hypotheses)
πX(m) = number of primes [C] in X of length m R=1/q if

y

πX(m) = number of primes [C] in X of length  m 
Δ = g.c.d. of lengths of primes in X
R = radius of largest circle of convergence of ζ(u,X)   

R=1/q, if 
graph is 

q+1-regular

If Δ divides m, then

πX(m) ∼ Δ R-m/m,  as m →∞.X

The proof comes from explicit formulas for πX(m)  by analogous 
method to that of Rosen, Number Theory in Function Fields, page 
56.  



Explicit Formulas Nm=# closed paths C in X of 
l th ith

p
log ( , ) m

m
d u Xu N u
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ζ ∞
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length m with no 
backtracks, no tails;

πX(m) = number of primes [P]
in X of length m1mdu =
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Weil type explicit formulasyp p

( ) ( )h N h mρ ρ = 
1

( ) ( )m
m
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pole ζ
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Here we need 0<a<R and h very niceHere we need 0<a<R  and  h   very nice.
Example.  h(u)=u-n-1,  n-1,2,3,….  This leads 
to one of our earlier formulas.



N for K4-eNm for K4-e

x d/dx  log ζ (x,K4-e) 

=12x3+8x4+24x6+28x7+8x8+48x9+120x10    

+ . . . 

π(3)=4                      π (4)=2                       

(5) 0 (6) 2 ( )N d dππ (5)=0                     π(6)=2
|

( )m
d m

N d dπ=



Artin L FunctionsArtin L-Functions 
of Graphs



Graph Galois Theory Gives generalization 
of Cayley & Schreier
graphsgraphs

Graph Y an unramified covering of Graph X means (assuming no loopsGraph Y an unramified covering of Graph X means (assuming no loops
or multiple edges)  π:Y→X is an onto graph map such that  

for every x∈X &  for every y ∈ π-1(x),
π maps the points z ∈ Y adjacent to y 1-1 onto the points w ∈ Xπ maps the points z ∈ Y adjacent to y 1-1, onto the points w ∈ X
adjacent to x.

Normal d-sheeted Covering means: 
∃ d graph isomorphisms g g mapping Y → Y∃ d graph isomorphisms g1 ,..., gd mapping Y → Y  

such that   π gj (y) = π (y), ∀ y ∈ Y
Galois group   G(Y/X) = { g1 ,..., gd }.



First pick a spanning 
tree in X (no cycles, 

d l d ll

How to Label the Sheets of a 
Galois Covering

connected, includes all 
vertices of X).

S d k |G| i f th

Y

Second make n=|G| copies of the
tree T in X. These are the sheets of Y. 
Label the sheets with g∈G.  Then

g(sheet h)=sheet(gh)
g(α,h)=(α,gh)g( , ) ( ,g )

g(path from (α,h) to (β,j))
= path from (α,gh) to (β,gj)

(α g)
Given G, get 
examples Y by(α,g)

α

X
examples Y by 
giving permutation  
representation of 
generators of G to

π
α generators of G to 

lift edges of X 
left out of T.



Example 1. Quadratic Cover

Cube covers 
Tetrahedron

Spanning Tree in X is red. 
Corresponding sheets of Y are also red



Evil Exercise.  State and prove the fundamental theorems of 
graph Galois theory See my book for some answersgraph Galois theory.  See my book for some answers.      

www.math.ucsd.edu/~aterras/newbook.pdf 
about to appear from Cambridge U. Press

Definition. A graph Z is an intermediate covering to 
the covering Y/X with projection map π:Y → X means p j p
there are projection maps π1:Z→X and π2:Y →Z so 
that π = π1 ° π2.

Definitions. 2 intermediate 
covers Z and Z’ to Y/X are 
covering isomorphiccovering isomorphic
(conjugate) if there is an 
graph isomorphism i:Z→Z’ 

h th t ’ isuch that     π’1 ° i = π1 .

For us to say Z=Z’ we need
also i ° π2  = π’2 .



Fundamental Theorems of Graph Galois Theory

Theorem. Suppose Y/X is an unramified normal covering with 
Galois group G=G(Y/X).

1)  We have a 1-1 correspondence between subgroups H of G 
and graphs Z(H) intermediate to Y/X.  Each intermediate 
graph Z to Y/X corresponds to some subgroup H(Z) of G.graph Z to Y/X corresponds to some subgroup H(Z) of G.  
Write  Z ↔ H when intermediate graph Z corresponds to 

subgroup H.
2) f Z H f i 1 2 h Z i i di Y/Z iff2) If Zi ↔ Hi, for i=1,2, then Z1 is intermediate to Y/Z2 iff      

H1 ⊂ H2.

3) 2 i t di t h t Y/X d t j t3) 2 intermediate graphs to Y/X correspond to conjugate 
subgroups of G iff they are covering isomorphic.

4) If Z is an intermediate covering to Y/X, then Z is itself a 
normal covering of X iff the corresponding subgroup H of G is 
a normal subgroup.  Then Gal(Z/X) ≅ G/H.g p ( )



Example of Splitting of Primes 
in Qu dr tic C v r

d''b''
in Quadratic Cover f=2

cc" a' c

b'd'

a'' c'

b'd

a d

b

a d

Picture of Splitting of Prime which is inert; 
i.e., f=2, g=1, e=1

1 prime cycle D above & D is lift of C21 prime cycle D above, & D is lift of C2.



Example of Splitting of Primes 
in Quadratic Cover

d''b''

in Quadratic Cover

2
c"

b

a'
c

g=2

b'd'

a''a c' b

a d

Picture of Splitting of Prime which splits completely; 
i e f=1 g=2 e=1i.e., f=1, g=2, e=1

2 primes cycles above



Frobenius Automorphism

(α,j)
Frob(D) =         =   ji-1 ∈ G=Gal(Y/X) 

 
 

Y/X
D

D a 
prime 
above C(α,j)

where  ji-1 maps sheet i to sheet j
 D

The unique lift  of C in Y   
Y

starts at  (α,i) ends at (α,j)
(α,i)

π Normalized Frobenius σ(C)=g  
means start lift  on sheet 1 
and end on sheet g

X 
C

Exercise: Compute σ(C) on 

and end on sheet g

α C preceding pages, G={1,g}.



4(1)

3(2)

1(2)

4(2)

3(5)
1(4)

4(4)

2(4) 1(1)

2(1)

3(1)

4
2(2)

4(3)1(3)2(3)

3(3)

Y6

3(6)

1(6)

4(6)

2(5)

1(5)

3

3(4)

4(4) 3(3)

x=1,2,3

a(x),a(x+3)

G=S3,  H={(1),(23)} fixes Y3. 
4’’ 1’’

3’’

1(6)2(6)4(5)

a(x)

3, {( ),( )} 3

a(1)=(a,(1)),  a(2)=(a,(13)), a(3)=(a,(132), 
a(4)=(a,(23)),a(5)=(a,(123)),a(6)=(a,(12)).

4’’’
1’’’

2’’’ 2’’
Y3

Here we use standard cycle notation 
for elements of the symmetric group.

a(x)

2’

1’
4’

3’3’’’

a

2

4
2’

X 3

1

2 3



Prime Splitting Completely in Y3/X
path in X (list vertices) 14312412431
Length is 10

f=1, g=3 3 primes above in Y3
1’4’3’’’1’’’2’’’4’’1’’2’’4’’’3’1’1 4 3 1 2 4 1 2 4 3 1
1’’4’’3’’1’’2’’4’’’1’’’2’’’4’’3’’1’’
1’’’4’’’3’1’2’4’1’2’4’3’’’1’’’
Frobenius trivial   density 1/6

4

2 3Question:  Is 10 the minimal 
1length of a prime of X 

splitting completely in Y6/X?



Properties of Frobenius

1) R pl c ( i) ith ( hi) Th n F b(D) ji 1
 
 

Y/X
1) Replace (α,i) with (α,hi). Then Frob(D) =        = ji-1

is replaced   with  hji-1h-1. Or replace D with different
b C d h

 
 D

prime above C and see that
Conjugacy class of Frob(D) ∈ Gal(Y/X) unchanged.

2) Varying  α=start of C does not change Frob(D).

Artin L-Function

y g g
3) Frob(D)j = Frob(Dj) . 

ρ = representation of G=Gal(Y/X), u complex, |u| small

11
( )/( , , / ) det 1 CY XL u Y X u

D
νρ ρ

−
  = −     

∏
[C]=primes of X

[ ]C D    
∏

[ ] pr m f X
ν(C)=length C,   D a prime in Y over C



Properties of Artin L-Functions

1) L(u,1,Y/X)  =  ζ(u,X)  =  Ihara zeta function of X    

2) d∏2) ( , ) ( , , / )du Y L u Y X ρ

ρ
ζ ρ=∏

ρ

product over all irreducible representations of G,  

d =degree ρdρ=degree ρ



Det(I-uW1) formula for Artin L-FunctionsDet(I-uW1) formula for Artin L-Functions

Set W1=(w f) and call the normalized FrobeniusSet W1=(wef) and call the normalized Frobenius 
automorphism of an edge σ(e).

( ) ( )1 ( ( ))efW w eρ ρ σ=( ) ( )1, ( ( ))efefρ ρ

( / ) det( )L u Y X I uWρ = 1,( , , / ) det( )L u Y X I uW ρρ = −



Ihara Theorem for L-Functions
1( / )L u Y Xχ −

2( 1)2

( , , / )

(1 ) d e t( ' ' ' )r d

L u Y X

u I A u Q uρ

ρχ
− +

r=rank fundamental group of X = |E|-|V|+1
i f G G l(Y/X) d d d

(1 ) d e t( ' ' ' )u I A u Q uρ
ρ= − − +

ρ= representation of G = Gal(Y/X), d = dρ = degree ρ

Definitions. nd×nd matrices A’, Q’, I’,  n=|X|, Q , , | |
nxn matrix A(g), g ∈ Gal(Y/X),  has entry for α,β∈X  
given by
(A(g))α,β = # { edges in Y from (α,e) to (β,g) }, 

e=identity ∈ G.' ( ) ( )A A g gρ= ⊗
Q = diagonal matrix jth diagonal entry = q

( ) ( )
g G

A A g gρ ρ
∈

= ⊗
Q = diagonal matrix, jth diagonal entry = qj

= (degree of jth vertex in X)-1,
Q’ = Q⊗Id ,    I’ = Ind =  identity matrix.



Y=cube X=tetrahedron: G = {e g}
EXAMPLE

Y=cube,  X=tetrahedron:   G = {e,g}
representations of G are 1 and ρ: ρ(e) = 1, ρ(g) = -1
A(e)u v =  #{ length 1 paths u’ to v’ in Y}( )u,v { g p }
A(g)u,v =  #{ length 1 paths u’ to v’’ in Y}

0 1 0 0 0 0 1 1   
(u,e)=u'
(u,g)=u"

1 0 1 1 0 0 0 0
( ) ( )

0 1 0 0 1 0 0 1
A e A g

   
   
   = =
   
   

d''b''
c" a'

0 1 0 0 1 0 1 0      
   

A’1 = A = adjacency matrix of X = A(e)+A(g) b'd'

c a

0 1 1 1
1 0 1 1

− − 
 

A 1 = A = adjacency matrix of X = A(e)+A(g)

c
a'' c'

b'd'

1 0 1 1
' ( ) ( )

1 1 0 1
A A e A gρ

 
 = − =
 − −
  

c

1 1 1 0  − −  a d
b



 ζ(u,Y)-1 = L(u,ρ,Y/X)-1 ζ(u,X)-1

 L(u,ρ,Y/X)-1 = (1-u2) (1+u) (1+2u) (1-u+2u2)3

1 ζ(u,X)-1 = (1-u2)2(1-u)(1-2u) (1+u+2u2)3



Explicit Formulas for L-functions  (T. Petrillo)

Assume Y/X Galois with G(Y/X)=G.  Let σ(C) 
denote the normalized Frobenius automorphism

{ }, # | ( )m gN C C C gσ= =is closed, no backtrack, notail, length m,
d

denote the normalized Frobenius automorphism.

,
1 ( / )

( , , / ) ( ) m
m g

m g G Y X

du LogL u Y X N g u
du ρρ χ

≥ ∈

= 

{ }{ }( , ) # [ ] | [ ] ( ) , ( )m g P P P m P gπ σ= = =prime, length
We want to find the minimum length of a prime that splits 

/( , , / ) ( , ) ( )m d mdu LogL u Y X d d g g uρρ π χ=  

completely in Y.  This means we want σ(P)=e the identity of G.

1 ( / ) |
( , , ) ( , ) ( )

m g G Y X d m
g g g

du ρρ χ
≥ ∈
  

( / ) m mdu LogL u Y X uρ λ= 
1,1 ( )

( , , / )
m Spec W

u LogL u Y X u
du

ρλ
ρ λ

≥ ∈

= 



To get rid of the sum over G, use a trick that goes 
back to Dirichlet.  Sum the formulas times conjugate 
of   χρ(g).  Use the dual orthogonality relations for 
characters of irreducible unitary representations ofcharacters of irreducible unitary representations of 
G=G(Y/X).

1| | , { } { | }G if g s xsx x G− ∈ = ∈̂
, { } { | }

|{ } |( ) ( )
0,G

if g s xsx x G
sg s

otherwise
ρ ρ

ρ
χ χ

∈

∈ ∈= 




This leads to the formulas:


,

1

1 ( ) log ( , , / )
| |

m
m s

mG

ds u L u Y X N u
G duρ

ρ

χ ρ
≥∈

= 

1 ( ) mN sχ λ=  

1| | mGρ ≥∈


1,

,
( )

( )
| |m s

Spec WG

N s
G

ρ

ρ
λρ

χ λ
∈∈

=  



With this sort of information one obtains theWith this sort of information one obtains the 
Chebotarev density theorem.
Define the analytic density of a set S of primes y y p
in the graph X to be: ( )

[ ]

C

C S
uν

δ ∈


[ ]
( )

[ ]

( ) lim
X

C S
Cu R

C

S
uνδ ∈

→ −
=


[ ]C

Assume the graphs satisfy our usual hypotheses.
If Y/X is normal and {g} is a fixed conjugacy class in

{ }

If Y/X is normal and {g} is a fixed conjugacy class in 
the Galois group G=G(Y/X),then   

{ } { }
[ ] |{ ( )} { }

g
P P g

G
δ σ = =

G



We can also work out 
examples such as Y6/X

Question:  Is 10 the 
minimal length prime of Xminimal length prime of X 
splitting completely in Y6/X?



12u3+8u4+24u6+28u7+8u8+48u9+120u10+…log ( ,1, / )du L u Y X
du

=

12u3+8u4+24u6 28u7+8u8 48u9+120u10+

du

log ( / )du L u Y Xχ = -12u3+8u4+24u6-28u7+8u8-48u9+120u10+…log ( , , / )u L u Y X
du

χ =

d
-8u4+12u6-8u8-60u10+…log ( , , / )du L u Y X

du
ρ =


,

1

1 ( ) log ( , , / )
| |

m
m e

mG

de u L u Y X N u
G duρ

ρ

χ ρ
≥∈

=  = 12u6+20u10+…

So we have to look for paths of length 6 and 
10 B t th th f l th 6 th t lift t10.  But the paths of length 6 that lift to 
closed paths in Y6 are from C2 not primes.  
The the minimal length of a prime that splitsThe the minimal length of a prime that splits 
completely in Y6 /X  is indeed 10.



References: 3 papers with Harold Stark in Advances in Math.

See my website for draft of a book:  

www.math.ucsd.edu/~aterras/newbook.pdf

Soon to be a real book from Cambridge U. Pressg

Tom Petrillo, Ph.D. Thesis,  UCSD, 2010

The End


