What are primes in graphs and how many of them have a given length?

A graph is a bunch of vertices connected by edges. The simplest example for the talk is the tetrahedron K_{4}.

A prime in a graph is a closed path in the graph minimizing the number of edges traversed. This means no backtrack, no tails. Go around only once. Orientation counts. Starting point doesn't count.

The length of a path is the number of edges in the path.
The talk concerns the prime number theorem in this context.
Degree of a vertex is number of edges incident to it.

Graph is regular if each vertex has same degree.
K_{4}. is 3-regular.
We assume graphs connected, no degree 1 vertices, and graph is not a cycle.

Examples of primes in K_{4}

Here are 2 of them in K_{4} :
$[C]=\left[e_{1} e_{2} e_{3}\right]$ $=\left\{e_{1} e_{2} e_{3}, e_{2} e_{3} e_{1}, e_{3} e_{1} e_{2}\right\}$
The [] means that
it does not matter where the path starts.
$[D]=\left[e_{4} e_{5} e_{3}\right]$
$[E]=\left[e_{1} e_{2} e_{3} e_{4} e_{5} e_{3}\right]$
$v(C)=$ length $C=\#$ edges in C
$v(C)=3, v(D)=3, v(E)=6$

$E=C D$

another prime [$C^{n} D$], $n=2,3,4, \ldots$
infinitely many primes
assuming the graph is not a cycle or a cycle with hair.

Ihara Zeta Function

Definition

$$
\zeta(u, X)=\prod_{\substack{[C] \\ \text { prime }}}\left(1-u^{v(C)}\right)^{-1}
$$

u complex number |u| small enough

Ihara's Theorem (Bass, Hashimoto, etc.)
$A=$ adjacency matrix of $X=|V| x|V|$ matrix of $O s$ and $1 s$ with i, j entry 1 iff vertex i adjacent to vertex j
$Q=$ diagonal matrix; jth diagonal entry
$=$ degree j th vertex -1 :
$r=|E|-|V|+1$
$\zeta(u, X)^{-1}=\left(1-u^{2}\right)^{r-1} \operatorname{det}\left(I-A u+Q u^{2}\right)$

Labeling Edges of Graphs

Orient the m edges; i.e., put arrows on them.
Label them as follows.
Here the inverse edge has opposite orientation.

$$
\begin{aligned}
& e_{1}, e_{2}, \ldots, e_{m}, \\
& e_{m+1}=\left(e_{1}\right)^{-1}, \ldots, e_{2 m}=\left(e_{m}\right)^{-1}
\end{aligned}
$$

Note that these directed edges are our alphabet needed to express paths in the graph.

The Edge Matrix W

Define W to be the $2|E| \times 2|E|$ matrix with $i j$ entry 1 if edge i feeds into edge j, (end vertex of i is start vertex of j) provided that $\mathrm{j} \neq$ the inverse of i , otherwise the $i j$ entry is 0 .

Theorem. $\quad \zeta(u, X)^{-1}=\operatorname{det}(I-W u)$.
Corollary. The poles of Ihara zeta are the reciprocals of the eigenvalues of W .
The pole R of zeta is the closest to 0 in absolute value.
$R=1 /$ Perron-Frobenius eigenvalue of W; i.e., the largest eigenvalue which has to be positive real. See Horn \& Johnson, Matrix Analysis, Chapter 8.

Example. W for the Tetrahedron Label the edges
The inverse of edge j is edge $\mathrm{j}+6$.

$$
W=\left(\begin{array}{llllllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

e_{7}

The Prime Number Theorem

$$
\pi_{\mathrm{x}}(m)=\#\{\text { primes }[C] \text { in } X \text { of length } m\}
$$

$\Delta=$ greatest common divisor of lengths of primes in X
$R=$ radius of largest circle of convergence of $\zeta(u, X)$ If Δ divides m, then

$$
\pi_{x}(m) \sim \Delta R^{-m / m}, \quad \text { as } m \rightarrow \infty
$$

$R=1 / q$, if graph is $q+1$ regular

The proof involves formulas like the following, defining $N_{m}=\#$ \{closed paths of length m where we count starting point and orientation\}

$$
u \frac{d \log \zeta(u, X)}{d u}=\sum_{m=1}^{\infty} N_{m} u^{m}
$$

The proof is similar to one in Rosen, Number Theory in Function Fields, p. 56.

2 Examples
 K_{4} and
 K_{4}-edge

$\zeta\left(u, K_{4}\right)^{-1}=$
$\left(1-u^{2}\right)^{2}(1-u)(1-2 u)\left(1+u+2 u^{2}\right)^{3}$
$\zeta\left(u, K_{4}-e\right)^{-1}=$
$\left(1-u^{2}\right)(1-u)\left(1+u^{2}\right)\left(1+u+2 u^{2}\right)\left(1-u^{2}-2 u^{3}\right)$

N_{m} for the examples

Example 1. The Tetrahedron K_{4}. $\mathrm{N}_{\mathrm{m}}=\#$ closed paths of length m

$$
x \frac{d \log \zeta(x, G)}{d x}=\sum_{m=1}^{\infty} N_{m} x^{m}
$$

$x d / d x \log \zeta\left(x, K_{4}\right)=24 x^{3}+24 x^{4}+96 x^{6}+168 x^{7}+168 x^{8}+528 x^{9}+\cdots$
$\pi(3)=8 \quad$ (orientation counts)
$\pi(4)=6$
$\pi(5)=0$
we will show that:

$$
\begin{gathered}
N_{6}=\sum_{d \mid 6} d \pi(d)=\pi(1)+2 \pi(2)+3 \pi(3)+6 \pi(6) \\
\pi(6)=24
\end{gathered}
$$

$\Delta=$ g.c.d. lengths of primes $=1$
Example 2. The Tetrahedron minus an edge.
$x d / d x \log \zeta\left(x, K_{4}-e\right)=12 x^{3}+8 x^{4}+24 x^{6}+28 x^{7}+8 x^{8}+48 x^{9}+\cdots$
$\pi(3)=4$
$\pi(4)=2$
$\pi(5)=0$
$\pi(6)=2$
$\Delta=$ g.c.d. lengths of primes $=1$

Poles of Zeta for K_{4} are

$$
\left\{1,1,1,-1,-1, \frac{1}{2}, r_{+}, r_{+}, r_{+}, r_{-}, r_{-}, r_{-}\right\}
$$

where $r_{ \pm}=(-1 \pm \sqrt{ }-7) / 4$ and $|r|=1 / \sqrt{ } 2$ $\mathrm{R}=\frac{1}{2}=$ Pole closest to 0
The prime number thm $\pi(m) \sim \Delta R^{-m} / m$, as $m \rightarrow \infty$. becomes

$$
K_{4} \quad \pi(m) \sim \quad 2^{m} / m, \quad \text { as } m \rightarrow \infty
$$

Poles of zeta for $K_{4}-e$ are

$$
\begin{aligned}
& \left\{1,1,-1, i,-i, r_{+}, r_{-}, \alpha, \beta, \beta\right\} \\
& R=\alpha \text { real root of cubic } \cong .6573 \\
& \beta \text { complex root of cubic }
\end{aligned}
$$

The prime number thm becomes for $1 / \alpha \cong 1.5$

$$
K_{4}-e \quad \pi(m) \sim 1.5 \mathrm{~m} / \mathrm{m}, \quad \text { as } m \rightarrow \infty
$$

Proof of Prime Number Theorem
Start with the definition of zeta as a product

over primes.

Take \log and a derivative. Use Taylor series.

$$
\zeta(u, X)=\prod_{\substack{[C] \\ \text { prime }}}\left(1-u^{\nu(C)}\right)^{-1}
$$

$$
\begin{aligned}
& u \frac{d}{d u} \log \zeta(u, X)=-u \frac{d}{d u} \sum_{\substack{[C] \\
\text { prime }}} \log \left(1-u^{v(C)}\right) \\
& =u \frac{d}{d u} \sum_{[C]} \sum_{j \geq 1} \frac{1}{j} u^{v(C) j}=\sum_{\substack{[C] \\
\text { prime }}} v(C) \sum_{j \geq 1} u^{v(C) j} \\
& u \frac{d}{d u} \log \zeta(u, X)=\sum_{j \geq 1} \sum_{\substack{C \\
\text { prime }}} u^{v\left(C^{j}\right)} \quad \#[C]=v(C) \\
& =\sum_{m \geq 1} N_{m} u^{m} \\
& \text { Taylor Series } \\
& \text { for } \log (1-x) \\
& \text { non-primes are } \\
& \text { powers of } \\
& \text { primes }
\end{aligned}
$$

This completes the proof of the first formula
(1)

$$
u \frac{d}{d u} \log \zeta(u, X)=\sum_{m \geq 1} N_{m} u^{m}
$$

Next we note another formula for
the zeta function coming from the
original definition.
a
Recall
$\pi(n)=\#$ primes [C] with $v(C)=n$

$$
\zeta(u, X)=\prod_{n \geq 1}\left(1-u^{n}\right)^{-\pi(n)}
$$

$$
\begin{gathered}
\zeta(u, X)=\prod_{n \geq 1}\left(1-u^{n}\right)^{-\pi(n)} . \\
u \frac{d}{d u} \log \zeta(u, X)=\sum_{n \geq 1}^{n \pi(n) u^{n}} \frac{n-u^{n}}{1}=\sum_{m \geq 1}\left(\sum_{d / m} d \pi(d)\right) u^{m}\left(\begin{array}{l}
\text { Tayyor. } \\
\begin{array}{l}
\text { series for } \\
(1-X)^{-2}
\end{array}
\end{array}\right.
\end{gathered}
$$

If you combine this with formula 1, which was

$$
u \frac{d}{d u} \log \zeta(u, X)=\sum_{m \geq 1} N_{m} u^{m}
$$

you get our $2 n d$ formula saying N_{m} is a sum over the positive divisors of m :

$$
\begin{equation*}
N_{m}=\sum_{d \mid m} d \pi(d) \tag{2}
\end{equation*}
$$

$$
N_{m}=\sum_{d \mid m} d \pi(d)
$$

This is a math 104 (number theory) -type formula and there is a way to invert it using the Mobius function defined by:

$$
\mu(n)=\left\{\begin{array}{cc}
1, & \text { if } \quad n=1 \\
0, & \text { if } n \text { not square }- \text { free } \\
(-1)^{r}, & n=p_{1} \cdots p_{r}, \text { with } p_{i} \text { distinct primes }
\end{array}\right.
$$

$$
\begin{equation*}
\pi(m)=\frac{1}{m} \sum_{d \mid m} \mu\left(\frac{m}{d}\right) N_{d} \tag{3}
\end{equation*}
$$

To complete the proof, we need to use one of our 2 determinant formulas for zeta.

$$
\zeta(u, X)^{-1}=\operatorname{det}(I-W u) .
$$

Fact from linear algebra - Schur Decomposition of a Matrix (Math 102)
There is an orthogonal matrix Q (i.e., $Q Q^{\dagger}=I$) and
$T=u p p e r$ triangular with eigenvalues of W along the diagonal such that $W=$ QTQ $^{-1}$.

$$
T=\left(\begin{array}{ccccc}
\lambda_{1} & * & \cdots & * & * \\
0 & \lambda_{2} & \cdots & * & * \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{m-1} & * \\
0 & 0 & \cdots & 0 & \lambda_{m}
\end{array}\right)
$$

So we see that

$$
\begin{aligned}
& \operatorname{Det}(I-u W)=\operatorname{Det}\left(I-u Q T Q^{-1}\right) \\
& =\operatorname{Det}(I-u T)=\prod_{i=1}^{m}\left(1-u \lambda_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
\zeta(\mathbf{u}, \mathbf{X})^{-1}=\operatorname{det}(\mathbf{I}-\mathbf{W u})= & \prod_{\substack{\lambda \\
\text { eigenvalue of } w}}(1-\lambda u) \\
u \frac{d}{d u} \log \zeta(u, X) & =u \frac{d}{d u} \sum_{\substack{\lambda \\
\text { eigenvalue of } W}} u \frac{d}{d u} \log (1-\lambda u) \\
= & \sum_{\substack{\lambda}}^{\text {eigenvalue of } W} \sum_{m=1}^{\infty}(\lambda u)^{m}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
N_{m}=\sum_{\substack{\lambda \\ \text { eigenvalue of } W}} \lambda^{m} \tag{4}
\end{equation*}
$$

$$
N_{m}=\sum_{\substack{\lambda \\ \text { eigenvalue of } W}} \lambda^{m}
$$

The main terms in this sum come from the largest eigenvalues of W in absolute value.
There is a theorem in linear algebra that you don't learn in a 1 st course called the Perron-Frobenius theorem. (Horn \& Johnson, Matrix Analysis, Chapter 8).
It applies to our W matrices assuming we are looking at connected graphs (no degree 1 vertices) \& not cycles.

The easiest case is that $\Delta=g . c . d$. lengths of primes $=1$.
Then there is only 1 eigenvalue of W of largest absolute value. It is positive and is called the Perron-Frobenius eigenvalue.
Moreover it is $1 / R, R=$ closest pole of zeta to 0 .
So we find that if $\Delta=1, \quad N_{m} \approx R^{-m}, \quad$ as $m \rightarrow \infty$.

$$
\text { If } \Delta=1, \quad N_{m} \approx R^{-m}, \quad \text { as } \quad m \rightarrow \infty
$$

To figure out what happens to $\pi(m)$, use

$$
\pi(m)=\frac{1}{m} \sum_{d \mid m} \mu\left(\frac{m}{d}\right) N_{d}
$$

This allows you to prove the prime number theorem when $\Delta=1$

$$
P_{x}(m) \sim R^{-m / m}, \quad \text { as } m \rightarrow \infty
$$

For the general case, see my book
www.math.ucsd/~aterras/newbook.pdf

