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Part I

Rings
1 Introduction

This part of the lectures covers rings and fields. We aim to look at examples and applications to such things as error-
correcting codes and random number generators. Topics will include: definitions and basic properties of rings, fields, and
ideals, homomorphisms, irreducibility of polynomials, and a bit of linear algebra of finite dimensional vector spaces over
arbitrary fields. Our favorite rings are the ring Z of integers and the ring Zn of integers modulo n.

Rings have 2 operations satisfying the axioms we will soon list. We denote the 2 operations as addition+ and multiplication
∗ or ·. The identity for addition is denoted 0. It is NOT assumed that multiplication is commutative. If multiplication is
commutative, then the ring is called commutative. A field F is a commutative ring with an identity for multiplication (called
1 6= 0) such that F is closed under division by non-zero elements. Most of the rings considered here will be commutative.
We will be particularly interested in finite fields like Zp, where p =prime. You must already be friends with the field Q of
rational numbers; i.e., fractions with integer numerator and denominator. And you know the field R of real numbers from
calculus; i.e., limits of Cauchy sequences of rationals. We are not supposed to say the word "limit" in these lectures as this
is algebra. So we will not talk about constructing the field of real numbers.
Historically, much of our subject came out of number theory and the desire to prove the Fermat Last Theorem by knowing

about factorization into irreducibles in rings like Z[
√
−m] =

{
a+ b

√
−m | a, b ∈ Z

}
, where m is a non-square integer. For

example, it turns out that, when m = 5, we have 2 different factorizations: 2 ·3 =
(
1 +
√
−5
) (

1−
√
−5
)
. So the fundamental

theorem of arithmetic is false for Z[
√
−5].

Algebraic number theory concerns fields like Q and rings like Z as well as fields like Q[
√
−m] =

{
a+ b

√
−m | a, b ∈ Q

}
,

where m is a square-free positive integer, and the corresponding ring of algebraic integers (which is Z[
√
−m] only when

m ≡ 2 or 3(mod 4)). The definition of ring of integers in an algebraic number field makes the ring of integers associated to
Q[
√
−m] in the remaining case somewhat larger by allowing denominators of 2. (Thus you, in fact, have unique factorization

into primes for the ring of integers in Q[
√
−3], despite the confusion about this on the web. That is 1+

√
−3
2 is an integer in

Q[
√
−3].) See any book on algebraic number theory; e.g., P. Samuel, Algebraic Theory of Numbers, or K. Ireland and M.

Rosen, A Classical Introduction to Modern Number Theory.
Assuming that such factorizations were unique, Lamé thought that he had proved Fermat’s Last Theorem in 1847.

Dedekind fixed up arithmetic in such rings by developing the arithmetic of ideals, which are certain sets of numbers from the
ring soon to be defined here. One then had (at least in rings of integers in algebraic number fields) unique factorization of
ideals as products of prime ideals, up to order. Of course, Lamé’s proof of Fermat’s last theorem was still invalid (lame).
The favorite ring of the average human mathematics student is the field of real numbers R. A favorite finite field for a

computer is Fp = Z/pZ, where p=prime. Of course you can define Zn, for any positive integer n, but you only get a ring
and not a field if n is not a prime. We considered Zn as a group under addition in Part I. Now we view it as a ring with 2
operations, addition and multiplication.
Finite rings and fields were really invented by Gauss (1801) and earlier Euler (1750). Galois and Abel worked on field

theory to figure out whether nth degree polynomial equations are solvable with formulas involving only radicals m
√
a. In fact,

finite fields are often called "Galois fields." Dedekind introduced the German word Körper for field in 1871. David Hilbert
introduced the term "ring" for the ring of integers in an algebraic number field in his Zahlbericht in 1897. Earlier Dedekind
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had called these things "orders." The concept of ring was soon generalized. The relationship between groups and fields -
Galois theory - was worked out by many mathematicians after Galois.
It would perhaps shock many pure mathematics students to learn how much algebra is part of the modern world of applied

math. - both for good and ill. Google’s motto: "Don’t be evil," has not always been the motto of those using algebra. Of
course, the Google search engine itself is a triumph of modern linear algebra.
Section 12 concerns random number generators from finite rings and fields. These are used in simulations of natural

phenomena. In prehistoric times like the 1950s sequences of random numbers came from tables like that published by the
Rand corporation. Random numbers are intrinsic to Monte Carlo methods. These methods were named for a casino in
Monaco by J. von Neumann and S. Ulam in the 1940s while working on the atomic bomb. Monte Carlo methods are
useful in computational physics and chemistry (e.g., modeling the behavior of galaxies, weather on earth), engineering (e.g.,
simulating the impacts of pollution), biology (simulating the behavior of biological systems such as a cancer), statistics
(hypothesis testing), game design, finance (e.g., to value options, the analyze derivatives - the very thing that led to the
horrible recession/depression of 2008), numerical mathematics (e.g., numerical integration, stochastic optimization).
In Section 13 we will show how the finite field with 2 elements and vector spaces over this field lead to error correcting

codes. These codes are used in CDs and in the transmission of information between a Mars spacecraft and NASA on the earth.
Section 14 concerns (among other things) the construction of Ramanujan graphs which can provide effi cient communication
networks.
Section 15 gives applications of the eigenvalues of matrices to Googling.
Section 16 gives applications of elliptic curves over finite field to cryptography.
Figure 1 comes from making an m ×m matrix of values of x2 + y2(modm) for x, y ∈ Z/nZ. Then Mathematica does a

ListDensityPlot of the matrix. There is a movie of such things on my website letting m vary from 3 to 100 or so.

Figure 1: The color at point (x, y) ∈ Z2163 indicates the value of x2 + y2(mod 163).

A more complicated finite field picture is that of Figure 2. It is associated with 2× 2 matrices with elements in the finite
field Z11. We will explain it in Section 14.
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Figure 2: Points (x, y) ∈ Z2112−the x-axis have the same color if z = x + y
√
δ are equivalent under the action of non-

singular 2 × 2 matrices g =

(
a b
c d

)
with entries in Z11. The action of g on z is by fractional linear transformation

z → (az + b)/(cz + d) = gz. Here δ is a fixed non-square in the field F121 with 121 elements.
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Much of abstract ring theory was developed in the 1920s by Emmy Noether. Discrimination against both women and
Jews made it hard for her to publish. The work became well known thanks to Van der Waerden’s 2 volumes titled Modern
Algebra. Van der Waerden wrote this after studying with Emmy Noether in 1924 in Göttingen. He had also heard lectures
of Emil Artin in Hamburg earlier.
The abstract theory of algebras (which are special sorts of rings) was applied to group representations by Emmy Noether

in 1929. This has had a big impact on the way people do harmonic analysis, number theory, and physics.
We should also mention Von Neumann rings of operators from a paper of J. Von Neumann in 1929. These are rings

of operators acting on Hilbert spaces, which are (complete) infinite dimensional vector spaces with an inner product. The
subject is intrinsic to modern analysis.
The rush to abstraction of 20th century mathematics has had some odd consequences. One of the results of the abstract

ring theory approach was to create such an abstract version of Fourier analysis that few can figure out what is going on.
A similar thing has happened in number theory where the abstract notion of adelic group representations has replaced the
theory of automorphic forms for discrete groups of matrices acting on real symmetric spaces. See Terras, Harmonic Analysis
on Symmetric Spaces and Applications, I,II for the classical version. On the other hand modern algebra has often made
it easier to see the forest for the trees by simplifying computations, removing subsubscripts, doing calculations once in the
general case rather than many times, once for each example.
The height of abstraction was achieved in the algebra books of Nicolas Bourbaki (really a group of French mathematicians).

I am using the Bourbaki notation for the fields of real numbers, complex numbers, rational numbers, and the ring of integers.
But Bourbaki seems to have disliked pictures as well as applications. I don’t remember seeing enough examples or history
either when I attempted to read Bourbaki’s Algebra as an undergrad. Cartier in an interview for the Math. Intelligencer
(Vol. 9, No. I, 1998) said: "The Bourbaki were Puritans, and Puritans are strongly opposed to pictorial representations of
truths of their faith."
We will attempt to be as non-abstract as possible in these notes and will seek to draw pictures in a subject where few

pictures ever appear.
References:
L. Dornhoff and F. Hohn, Applied Modern Algebra; J. Gallian, Contemporary Abstract Algebra; W. J. Gilbert and W. K.

Nicholson, Modern Algebra with Applications; G. Birkhoff and S. Maclane, A Survey of Modern Algebra; I. Herstein, Topics
in Algebra; A. Terras, Fourier Analysis on Finite Groups and Applications.

2 Rings

Our favorite ring for error-correcting codes will be Z2 or Zp, where p is a prime. Other favorites are the ring of integers Z,
the field of real numbers R, the field of complex numbers C, the field of rational numbers Q.

Definition 1 A ring R is an abelian group under + with an associative multiplication satisfying left and right distributive
laws:

a(b+ c) = ab+ ac and (a+ b)c = ac+ bc, for all a, b, c ∈ R.

We will call the identity for addition 0. Multiplication in a ring need not be commutative. If it is, we say that the ring
is a commutative ring.

Also, the ring need not have an identity for multiplication (except that some people do require this; e.g. M. Artin,
Algebra). If the ring does have such an identity, we say it’s a ring with (2-sided) identity for multiplication and we call
this identity 1 so that 1 ·a = a ·1 = a, ∀a ∈ R. Some people (e.g., Gallian,Contemporary Abstract Algebra) call the identity for
multiplication a "unity." I find that too close to the word unit which means that the element has a multiplicative inverse.
The identity for multiplication must be unique by the same argument that worked for groups. Normal people might want

to assume that 1 and 0 are distinct as well. Otherwise {0} is a ring with identity for multiplication. That must be the silliest
ring with identity for multiplication. However, it looks like some people do call this a ring with identity for multiplication.
What can I say? The terminology is not set in stone yet. The subject is still alive. However, I will normally assume that
1 6= 0.
The preceding examples Zp, Z, Q, R, C, were all commutative rings.
Some authors drop the requirement that multiplication be associative and consider non-associative rings. Imagine the

problems if you have to keep the parentheses in your products because (ab)c 6= (ab)c. We will not consider such rings here.
Example 1. A Non-commutative Ring.
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Consider the ring R2×2 =

{(
a b
c d

)∣∣∣∣ a, b, c, d ∈ R} , with addition defined by(
a b
c d

)
+

(
a′ b′

c′ d′

)
=

(
a+ a′ b+ b′

c+ c′ d+ d′

)
and multiplication defined by (

a b
c d

)
·
(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
.

Example 2. A Ring without an Identity for Multiplication. 2Z, the ring of even integers.

Proposition 2 (Properties of Rings). Suppose that R is a ring. Then, for all a, b, c ∈ R, we have the following facts.
1) a · 0 = 0 · a = 0, where 0 is the identity for addition in R.
2) a(−b) = (−a)b = − (ab) (where, as in Part I, a+ (−a) = 0).
3) (−a)(−b) = ab.
4) a(b− c) = ab− ac.
5) If R has an identity for multiplication (which we call 1) then (−1)a = −a, (−1)(−1) = 1.

Proof. First recall that, since R is a group under addition, the identity, 0, is unique as are additive inverses −a of elements
a.
1) Using the fact that 0 is the identity for addition in R as well as the distributive laws, we have

0 + a · 0 = a · 0 = a · (0 + 0) = a · 0 + a · 0.

Upon subtracting a · 0 from both sides of the equation, we see that 0 = a · 0. You can make a similar argument to see that
0 · a = 0.
2) We have

a(−b) + ab = a(−b+ b) = a · 0 = 0 =⇒ a(−b) = −(ab).

What ring axioms are being used at each point? We leave it as an exercise to finish the proof of 2).
3) First note that −(−a) = a since a+ (−a) = 0. Then, by part 2) and the associative law for multiplication:

(−a)(−b) = −(a(−b)) = −(−ab) = ab.

4) We have, using the distributive laws and part 2)

a(b− c) = ab+ a(−c) = ab− ac.

5) Exercise.
Next we will define subring in an analogous way to the way we defined subgroup in Part I. You should be able to make

the definition yourself without looking at what follows. Just don’t forget to say the subring is non-empty.

Definition 3 Suppose that R is a ring. If S is a non-empty subset of R which is a ring under the same operations as R,
we call S a subring of R.

Proposition 4 (Subring Test). A non-empty subset S of a ring R is a subring of R iff S is closed under subtraction and
multiplication.

Proof. The 1-step subgroup test from Part I implies that S is a subgroup of R under addition. Moreover S must be abelian
under + since R is. Since S is closed under multiplication, we are done because the associative law for multiplication, plus
the distributive laws follow from those in R.
Example 1. {0} is a subring of any ring R.
To see this, apply the subring test. First note that −0 = 0 and thus 0− 0 = 0 + 0 = 0. Also 0 · 0 = 0, by multiplication

rule 1).
Example 2. S = {0, 3, 6, 9(mod 12)} = {3x | x ∈ Z12} is a subring of Z12.
To see this, use our subring test. Then 3x− 3y = 3(x− y) and (3x) (3y) = 3(3xy) are both in S.

Example 3. nZ is a subring of Z.
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Example 4. The Gaussian integers Z[i] = {a+ bi | a, b ∈ Z} is a subring of C. Here i =
√
−1.

Again we use the subring test.

(a+ bi)− (c+ di) = (a− c) + (b− d)i ∈ Z[i],

and (a+ bi)(c+ di) = (ac− bd) + i(ad+ bc) ∈ Z[i],

since a, b, c, d ∈ Z[i] implies a− c, b− d, ac− bd, ad+ bc ∈ Z[i].
Example 5. The real numbers R form a subring of the complex numbers C.
Example 6. The ring Z is a subring of Z[

√
−5] =

{
a+ b

√
−5

∣∣ a, b ∈ Z}.
Exercise. a) Show that 2Z ∪ 5Z is not a subring of Z.
b) Show that 2Z+ 5Z = {2n+ 5m|n,m ∈ Z} = Z.
c) Show that 2Z ∩ 5Z = 10Z.

Exercise. Consider the set

R =

{(
a b
0 c

)∣∣∣∣ a, b, c ∈ Z} .
Assume that addition is componentwise and multiplication is the usual matrix multiplication. Prove or disprove: R is a
subring of the ring Z2x2 of all 2× 2 matrices with integer entries.

Definition 5 Suppose R is a ring with identity for multiplication, (which we call 1). The units in R are the invertible
elements for multiplication:

R∗ = {a ∈ R | ∃b ∈ R such that ab = 1 = ba}=units of R.

If ab = 1 = ba, write b = a−1.

Proposition 6 If R is a ring with identity, the set of units R∗ forms a group under multiplication.

Proof. We need to check 4 things.
1) R∗ is closed under multiplication.
2) The associative law holds for multiplication.
3) R∗ has an identity for multiplication.
4) If a ∈ R∗, then a−1 ∈ R∗; i.e., R∗ is closed under inverses.
To prove 2), you just need to recall that the associative law holds in R.
To prove 3), just note that 1 · 1 = 1.

To prove 4), let a ∈ R∗. Then there is a−1 in R such that aa−1 = a−1a = 1. But then a =
(
a−1

)−1
and thus a−1 ∈ R∗.

To prove 1), suppose a, b ∈ R∗. Then we have a−1 and b−1 in R and so (ab) b−1a−1 = abb−1b−1 = 1. Similarly
b−1a−1 (ab) = 1. It follows that ab ∈ R∗ with inverse b−1a−1.

One moral of the preceding proof is that in a non-commutative ring, (ab)
−1

= b−1a−1. We knew this already from part
I.
Example 1. Z∗ = {1,−1}.
To see this, just note that if n and 1

n are both in Z, then n must be 1 or −1. Otherwise, |n| > 1 and 0 < 1
|n| < 1. This

contradicts an exercise at the end of Section 3 of Part I.
Example 2. Z∗n = {a(modn) | gcd(a, n) = 1} .
See Section 11 of Part 1.

Example 3. Z[x] =ring of polynomials in 1 indeterminate x with integer coeffi cients.
The elements of Z[x] have the form f(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0, where aj ∈ Z. If an 6= 0, we say that

the degree of f is n = deg f . The zero polynomial is not usually said to have a degree (unless you want to say it has degree
−∞).
To add two of these polynomials, if degree f is n and degree of g is m ≤ n, put in some extra terms for g with coeffi cients

that are 0, if necessary. Then you just add coeffi cients of like powers of x; i.e.,

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

g(x) = bnx
n + bn−1x

n−1 + · · ·+ b1x+ b0

give
f(x) + g(x) = (an + bn)xn + (an−1 + bn−1)x

n−1 + · · ·+ (a1 + b1)x+ a0 + b0.
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Multiplication is more complicated but you have known how to do this since high school. We know that we want the
operation to be associative and distributive. So suppose

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

g(x) = bmx
m + bm−1x

m−1 + · · ·+ b1x+ b0

f(x)g(x) =
(
anx

n + an−1x
n−1 + · · ·+ a1x+ a0

) (
bmx

m + bm−1x
m−1 + · · ·+ b1x+ b0

)
= anbmx

m+n + anbm−1x
m+n−1 + · · ·+ anb1x

n+1 + anb0x
n

+
(
an−1x

n−1 + · · ·+ a1x+ a0
) (
bmx

m + bm−1x
m−1 + · · ·+ b1x+ b0

)
= anbmx

n+m + (anbm−1 + an−1bm)xn+m−1 + · · ·+

 ∑
i+j=k

aibj

xk + · · ·+ (a1b0 + a0b1)x+ a0b0.

The sum and product are still in Z[x]. Checking the other ring properties is a bit tedious. The zero polynomial has all
its coeffi cients equal to 0. The additive inverse of f(x) has as its coeffi cients the negatives of the corresponding coeffi cients
of f(x). The multiplicative identity is the constant polynomial f(x) = 1. Checking the associative law for multiplication is
the worst.
Assuming that no polynomial in the formula below is the zero polynomial, we have

deg(fg) = deg f + deg g. (1)

Exercise. Complete the proof that Z[x] is a commutative ring with identity for multiplication. Do your arguments work
if you replace Z by any commutative ring R with identity for multiplication?
Exercise. What is the analog of formula (1) for deg(f + g)? Hint: Consider an inequality rather than an equality.
Question. What is the group of units of Z[x]?

To answer this, you need formula (1). This means that if fg = 1, deg f + deg g = 0. The only way that can happen is if
deg f = deg g = 0. Thus

(Z[x])
∗

= Z∗ = {1,−1}.

The group of units of the polynomial ring is the same as the group of units of the ring of integers.
Of course, you can still consider 1

f(x) but instead of a polynomial you get an infinite series. For example, the geometric
series is

1

1− x =

∞∑
n=0

xn.

Moreover, this is only a convergent series if |x| < 1. But algebra is not suppose to deal with convergence and limits. Instead
an algebraist would view this as a "formal power series" with coeffi cients in some ring R; as an element of R[[x]], whose

elements look like
∞∑
n=0

anx
n, with an ∈ R.

Exercise. Find the group of units in R[x], the ring of polynomials with real coeffi cients.
Exercise. Check that the set C(R) consisting of all continuous real valued functions on the real line forms a commutative
ring if you define (f + g)(x) = f(x) + g(x) for all x ∈ R, and (fg)(x) = f(x)g(x), ∀ x ∈ R. Here we assume that f, g are in
C(R). Does this ring have an identity for multiplication?
Exercise. Find units in the ring Z2×2 of 2× 2 matrices with integer entries and the usual matrix operations.

3 Integral Domains and Fields are Nicer Rings

Next we want to consider rings that are more like the ring of integers.

Definition 7 If R is a commutative ring, we say a 6= 0 in R is a zero-divisor if ab = 0 for some b ∈ R such that b 6= 0.

Example. In R = Z6, both 2 and 3 (mod 6) are zero divisors since 2 · 3 ≡ 0(mod 6).
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Definition 8 If R is a commutative ring with identity for multiplication and no zero divisors, we say that R is an integral
domain.

I’m thinking zero divisors are "bad." and thus integral domains are "good." Of course I’m also thinking Z6 is pretty nice
and it is clearly not an integral domain. Hmmmm. I must be thinking Z5 is way nicer than Z6.

Example 1. Z is an integral domain as are R, C, and Q.
Example 2. Zn is not an integral domain if n is not a prime.
To see this, note that if n is not prime, then n = ab, where 0 < a, b < n. But then neither a nor b can be congruent to 0

mod n and thus a and b are both zero divisors.
Example 3. Zp is an integral domain if p is a prime.
To see this note that ab ≡ 0(mod p) ⇐⇒ p divides ab. Then, by Euclid’s Lemma from Section 5 of Part I, this means p

divides either a or b. So either a or b is congruent to 0(mod p).
The following Lemma shows that cancellation is legal in an integral domain R even though inverses of non-0 elements

may not exist in R.

Lemma 9 (Cancellation Law in an Integral Domain). Suppose that R is an integral domain. If a, b, c ∈ R, a 6= 0,
and ab = ac, then b = c.

Proof. Since ab = ac, we see that 0 = ab− ac = a(b− c). Since a 6= 0 and R has no zero divisors, it follows that b− c = 0.
Thus b = c.
Exercise. Show that the ring of matrices Z2×2, with the usual addition and multiplication, is not an integral domain.
Integral domains R are nice, but maybe not nice enough. Suppose we want to have a−1 ∈ R for any a ∈ R− {0}. Then

we want a field. Of course you can construct a field out of an integral domain by imitating the construction of Q out of Z,
but that is another story to be told in Section 9.

Definition 10 A field F is a commutative ring with identity for multiplication such that any non-zero element a ∈ F has
a multiplicative inverse a−1 ∈ F.

It follows from this definition that if F is a field, then the group of units F ∗ = F −{0} , which is as big as the unit group
could be. Yes, there is no way it is ever legal to divide by 0.

Proposition 11 1) Any field F is an integral domain.
2) Any finite integral domain D is a field.

Proof. 1) If a, b ∈ F such that ab = 0 and a 6= 0, then b = a−1ab = 0. So F has no zero divisors.
2) We just need to show that D − {0} is a group under multiplication. It is clearly closed and satisfies the associative

law. So we just need to show that it is closed under inverse. We proceed as in the proof of the finite subgroup test in
Section 12 of Part I. That is we look at 〈a〉 =

{
a, a2, a3, ...

}
for a ∈ D − {0} . Since 〈a〉 is finite, we know that ai = aj for

some pair i, j with i > j. But then ai−j = 1. It follows then that a−1 = ai−j−1.

Example 1. Z is not a field as the only units in Z are 1 and −1.
Example 2. Zp is a field iff p =prime.
Example 3. Q = rational numbers =

{
a
b |a, b ∈ Z, b 6= 0

}
is a field.

Example 4. The set of real numbers R is also a field as is the set of complex numbers C.
So we could view the finite field Zp for p =prime, as an analog of the field R of real numbers. But the picture of R is a

continuous line without holes, while our picture of Zp is a finite circle of points.
Question. Are there other finite fields?
Answer. Yes, you can imitate the construction that gives the complex numbers C.

F9 = Z3[i] = {a+ bi | a, b ∈ Z3} , where i2 = −1.

The order of F9 is 9 since there are 3 choices of a and 3 choices of b in a + ib. You add and multiply in F9 just as you
would in the complex numbers, except that every computation is modulo 3. Why is it a field? Certainly you get a ring.
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To see that F9 is a field, we need to see that if a+ ib is a non-zero element of F9, then it has an inverse in F9. Use the same
argument that works for C. That is,

1

a+ ib
=

1

a+ ib

a− ib
a− ib =

a− ib
a2 + b2

=
a

a2 + b2
+ i

−b
a2 + b2

.

Why is a2 + b2 6= 0? This is a little harder to prove than it was if a, b ∈ R. We know that a+ ib 6= 0 =⇒ either a or b is
not 0 in Z3. Suppose a is not 0 in Z3. Thus a ≡ 1 or − 1(mod 3). So a2 ≡ 1(mod 3). Then b2 ≡ 0 or 1(mod 3). It follows
that a2 + b2 ≡ 1 or 2(mod 3). Thus a2 + b2 is not 0(mod 3). Since Z3 is a field, we know that 1

a2+b2 ∈ Z3.
Note that for any element z ∈ F9, 3z = z + z + z = 0. This happens because z = x + iy, with x, y ∈ Z3 and

3z = 3x+ i3y = 0. We say that F9 has characteristic 3.

Definition 12 The characteristic of a ring R is the smallest n ∈ Z+ such that nx = x+ x+ · · ·+ x︸ ︷︷ ︸
n times

= 0, for all x ∈ R.

If no such n exists, we say that R has characteristic 0.

Lemma 13 Suppose that R is a ring with identity 1 for multiplication. Then we have the following facts.
1) If the additive order of 1 is not finite, then the characteristic of R is 0.
2) If the additive order of 1 is n, then the characteristic of R is n.

Proof. 1) Exercise.
2) Clearly the characteristic must be divisible by n. On the other hand, if 1 + · · ·+ 1︸ ︷︷ ︸

n times

= 0, then ∀x ∈ R

(
1 + 1 + · · ·+ 1︸ ︷︷ ︸

)
x

n times

= x+ x+ · · ·+ x︸ ︷︷ ︸
n times

= 0.

This means that the characteristic is ≤ n. It follows that the characteristic must equal n.
Example 1. Z,Q,R,C all have characteristic 0. To see this, by the preceding Lemma, you just need to note that no finite
sum of ones can equal 0 in these rings.
Example 2. Zp has characteristic p by the Lemma since that is the additive order of 1 in Zp.
Example 3. F9 has characteristic 3 since that is the additive order of 1, again using the preceding Lemma. F9 has 9
elements.
Example 4. Zp[x], the ring of polynomials in 1 indeterminate with coeffi cients in Zp, has characteristic p. Zp[x] has infinitely
many elements.
Example 5. Z5[i] = {a+ bi | a, b ∈ Z5}, where i2 + 1 = 0, is not a field, since (2 + i)(2− i) = 0.

In 1964 D. Singmaster asked in the American Math. Monthly how many rings of order 4 are there? The solution was
given by D. M. Bloom (11 rings of order 4, of which 3 have a multiplicative identity). See the website on small rings from
an abstract algebra class of Gregory Dresden at the Math. Dept. of Washington and Lee University. We list these rings of
order 4, though we have yet to define direct sum of rings, quotient rings, and isomorphic rings. You should be able to guess
what these things are from your knowledge of direct sum of groups and quotient groups.

The Rings of Order 4 (Up to Isomorphism)

1) Z4,
2) the ring of matrices with entries in Z4 :{(

0 0
0 0

)
, a =

(
0 0
1 0

)
,

(
0 0
2 0

)
,

(
0 0
3 0

)}
.

This is additively generated by a and a2 = 0.
3) the ring of matrices with entries in Z4 :{(

0 0
0 0

)
, a =

(
1 1
1 1

)
,

(
2 2
2 2

)
,

(
3 3
3 3

)}
.

9



This is additively generated by a and we have a2 = 2a.
4) the ring of matrices with entries in Z4 :{(

0 0
0 0

)
, a =

(
2 0
0 0

)
,

(
0 0
0 2

)
,

(
2 0
0 2

)}
.

5) As a subring of Z2 ⊕ Z4, {(0, 0), (0, 2), (1, 0), (1, 2)}.
6) A quotient ring of the ring of polynomials over Z4 : Z4[x]/

〈
2x, x2 + x

〉
Here

〈
2x, x2 + x

〉
means the subring of Z4[x] generated by 2x and x2 + x.

7) ring direct sum: Z2 ⊕ Z2.
8) A quotient ring of the ring of polynomials over Z2 : Z2[x]/

〈
x2 + 1

〉
= {0, 1, x, 1 + x}

9) A field with 4 elements: Z2[x]/
〈
x2 + x+ 1

〉
= {0, 1, x, 1 + x}

This differs from ring 8 since we will see that this ring is a field while ring 8 has zero divisors,
since x2 + 1 = (x+ 1)2 as elements of Z2[x].
Ring 9 can also be viewed as a matrix ring with coeffi cients in Z2 :{(

0 0
0 0

)
, 1 =

(
1 0
0 1

)
, x =

(
1 1
1 0

)
,

(
0 1
1 1

)}
.

10) a matrix ring with coeffi cients in Z2 :{(
0 0
0 0

)
, a =

(
1 0
0 0

)
, b =

(
0 1
0 0

)
,

(
1 1
0 0

)}
.

11) a matrix ring with coeffi cients in Z2 :{(
0 0
0 0

)
, a =

(
1 0
0 0

)
, b =

(
0 0
1 0

)
,

(
1 0
1 0

)}
.

Exercise. Find the characteristics of the rings of order 8. Then tell which are commutative, which have a multiplicative
identity, which are integral domains, which are fields?

Lemma 14 Suppose that R is an integral domain. Then the characteristic of R is either a prime or 0

Proof. If the additive order of 1 is not finite, the characteristic of R is 0, by the preceding Lemma.
Suppose the additive order of 1 is n ∈ Z+. We must show that n is prime. We do a proof by contradiction.
Otherwise n = ab for some integers a, b with 0 < a, b < n. This means 0 = a · b = (a · b) · 1 = (a · 1) · (b · 1) . Since R

has no zero divisors, it follows that either a · 1 = 0 or b · 1 = 0. But this contradicts the minimality of n = ab. It follows
that n is prime.
Question. Which of the following 5 ring examples are fields?
Z, Z[i], where i2 = −1, Z[x] =polynomials with integer coeffi cients, Z[

√
−5], Zp, for prime p

Answer. Only the last example is a field. In all other cases 1
2 is not in the ring even though 2 is.

We define subfield just as we define subgroup or subring.

Definition 15 A subset F of a field E is a subfield if it is a field under the operations of E. We also say that E is a field
extension of F.

Proposition 16 (Subfield Test). Suppose that E is a field and F ⊂ E. Then F is a subfield of E iff ∀a, b ∈ F with
b 6= 0, we have a− b and ab−1 ∈ F.

Proof. Just use the 1-step subgroup test on F to see that it is an additive subgroup of E and then use the same test again
to see that F − {0} is a multiplicative subgroup of E − {0} . The distributive laws are automatic.

The following Lemma gives a formula in characteristic p 6= 0 which some calculus students seem to believe is true in the
real numbers. But that would say most of the terms in the binomial theorem somehow vanish miraculously.

Lemma 17 Suppose that R is an integral domain of (necessarily prime) characteristic p. Then ∀x, y ∈ R, we have (x+ y)
p

=
xp + yp.

10



Proof. By the binomial theorem (whose proof works in any integral domain), we have

(x+ y)
p

=

p∑
k=0

(
p

k

)
xkyp−k.

To finish this proof, we must show that the prime p divides
(
p
k

)
if k = 1, 2, ..., p − 1. This follows from the fact that the

binomial coeffi cient is an integer which is represented by the fraction:(
p

k

)
=
p(p− 1) · · · 2 · 1
k(k − 1) · · · 2 · 1 .

Since p clearly divides the numerator, we just need to show that p does not divide the denominator. But that is true since p
divides no factor in the denominator. This means that the binomial coeffi cients that are not congruent to 0 mod p are only
those of the k = 0 and k = p terms.
Exercise. a) Which of the following rings are integral domains? Give a brief explanation of your answer.

b) Same as a), replacing "integral domains" with "fields."
i) Z[i] = {a+ bi|a, b ∈ Z} , where i2 = −1.
ii) Z/12Z.
iii) Z2×22 , 2× 2 matrices with coeffi cients in Z2.
iv) Z11 .
v) Z⊕ Z .
vi) Q =rational numbers.
vii) C(R) = {continuous real valued functions f : R→ R} with addition and multiplication defined as usual in

calculus pointwise; i.e., ∀x ∈ R, (f + g) (x) = f(x) + g(x) and (fg) (x) = f(x)g(x).
Exercise. a) List all the zero divisors in the 7 rings from the preceding problem except that you should replace vii) C(R)
with Cpw(R) =the piecewise continuous functions on R (i.e., we allow a finite number of removable or jump discontinuities).

b) List all the units in the rings R of part a); i.e. find R∗.
c) What is the relation between the zero divisors and the units of R, if any?

4 Building New Rings from Old: Quotients and Direct Sums of Rings

We need to build quotient rings in the same way that we constructed Z/nZ. We will also imitate the construction of quotient
groups in Section 17 of Part I. To create a quotient group using a subgroup H of a group G, we needed H to be a normal
subgroup. It turns out we will need a similar notion for the subring S of ring R. That is, we will need S to be an ideal in R.

Definition 18 A non-empty subset I of a ring R is an ideal iff I is an additive subgroup of R such that ra ∈ I and ar ∈ I,
∀r ∈ R and ∀a ∈ I.

Example. nZ is an ideal in Z.
We call n the principal ideal generated by n and write nZ = 〈n〉 .

Definition 19 Given a ring R and an element a ∈ R, the (2-sided) ideal generated by a, denoted 〈a〉 , consists of elements
ra and ar for all r ∈ R. Similarly, the ideal 〈S〉 generated by a subset S of R is the smallest ideal containing S.

Exercise. a) Suppose thatR is a commutative ring with identity. Let S ⊂ R. Show that 〈S〉 = {ra+ sb | ∀r, s ∈ R,∀a, b ∈ S}
is an ideal.

b) Suppose R = Z. Show that if a, b ∈ Z, then 〈a, b〉 = 〈gcd(a, b)〉 .

Ideals were introduced by R. Dedekind in 1879. The main use for them in number theory is to get a substitute for prime
numbers - the prime ideals we are about to define. This allows one to have unique factorization of ideals in rings of integers
of algebraic number fields into products of prime ideals, though the unique factorization fails for actual algebraic integers in
a number field like Q(e2πi/n). The concept of ideal was further developed by D. Hilbert and E. Noether.
To construct the quotient ring R/I if I is an ideal in the ring R, we create the set of additive cosets [a] = a + I =

{a+ r | r ∈ R} . Once again, you can view these cosets as equivalence classes for the equivalence relation defined on elements
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a, b ∈ R by a ∼ b iff a − b ∈ I. Exercise. Prove this last statement. We should note that some authors (e.g., Gallian)
call R/I a "factor ring."
Then we add and multiply cosets as usual:

[a] + [b] = [a+ b] , [a] · [b] = [ab] . (2)

Theorem 20 Suppose that I is a subring of the ring R. Then, with the definitions just given, R/I is a ring iff I is an ideal
in R.

Proof. =⇒ If I is an ideal in R, we need to see that the operations defined in formula (2) make R/I a ring. Once we have
checked that the operations are well defined, everything else will be easy. To check the operations make sense, suppose that
[a] = [a′] and [b] = [b′] . Then we must show that [a+ b] = [a′ + b′] and [ab] = [a′b′] . In fact, we have already checked the
additive part in Section 17 of Part I, since I is automatically a normal subgroup of the additive group of R. Why?
So let’s just check the multiplicative part. We need to prove that ab−a′b′ ∈ I. To do this, we recall proofs of the formula

for the derivative of a product. That means we should add and subtract a′b (or ab′). This gives

ab− a′b′ = ab− a′b+ a′b− a′b′ = (a− a′) b+ a′(b− b′).

Since both a− a′ and b− b′ are in the ideal I, it follows that (a− a′) b and a′(b− b′) are both in I. But then the sum must
be in I and we’re done.

So now we know addition and multiplication in R/I are well defined. From the fact that R is a ring, it is easy to see
that R/I must be a ring too. The identity for addition in R/I is [0] . The additive inverse of [a] is [−a] . The associative
laws in R/I follow from the laws in R as do the distributive laws.
⇐= Conversely, if R/I is a ring, the multiplication of cosets defined in formula (2) must be well defined. Since [0] = I,

for any a ∈ R, we have [0] [a] = [a] [0] = [0] . This means IR ⊂ I and RI ⊂ I. Of course I must also be closed under addition
and subtraction as [0]± [0] = [0] in R/I. Thus I must be an ideal in R/I.

Example. Consider the ring R[x] of polynomials in the indeterminate x. An example of an ideal in this ring is

I =
〈
x2 + 1

〉
=
{
f(x)(x2 + 1)

∣∣ f(x) ∈ R[x]
}
.

Question: What is R[x]/
〈
x2 + 1

〉
?

Answer: We can identify this quotient with the ring C of complex numbers. To give some evidence for this statement,
let Θ = [x] = x+ I = x+

〈
x2 + 1

〉
in R[x]/I. Then Θ2 + 1 = [x]

2
+ [1] =

[
x2 + 1

]
= [0] . This means Θ2 = −1 in our ring

R[x]/I. So Θ behaves like i in C.
In order to prove our statement identifying C and R[x]/

〈
x2 + 1

〉
, we need to study polynomial rings a little more and we

need to define what we mean by isomorphic rings. See Section 5. In particular, we need the analog of the division algorithm for
polynomial rings like R[x]. Once we have that, we can identify cosets [f(x)] in R[x]/I = R[x]/

〈
x2 + 1

〉
= R[x]/

(
x2 + 1

)
R[x]

with cosets of the remainders [r(x)] upon dividing f(x) by x2+1; i.e., f(x) =
(
x2 + 1

)
q(x)+r(x), where deg r < 2 or r(x) = 0.

So the remainders look like a+bx, with a, b ∈ R. This means elements of R[x]/I have the form [a+ bx] = [a]+[b][x] = a+bΘ,
which we can identify with a complex number a+ bi, for a, b ∈ R.
Our Goal. Replace R in the preceding construction with a finite field Zp. Then replace x2 + 1 with any irreducible

polynomial mod p. Then apply the result to error correcting codes in Section 13. For example, take p = 2. Since
x2 + 1 = (x+ 1)

2 in Z2[x], we know that x2 + 1 is not an irreducible polynomial in Z2[x]. An irreducible polynomial is our
analog of a prime in the ring Z2[x]. We have already seen an irreducible polynomial in Z2[x]. It was x2 + x + 1. Why?
It has no roots mod 2 and thus cannot have degree 1 factors as we will show in our section on polynomial rings. This will
imply that Z2[x]/

〈
x2 + x+ 1

〉
is a field with 4 elements {[0] , [1] , [x] , [x+ 1]} where [x]

2
+ [x] + 1 = 0.

The following theorem says that every ideal in the ring of integers is principal. We will have a similar theorem later
about rings like R[x].

Theorem 21 Any ideal I in the ring Z of integers is principal; i.e., I = 〈n〉 = nZ for some n ∈ Z. In fact, if I 6= {0} , we
can choose n to be the smallest positive element of I.

12



Proof. The case I = {0} = 〈0〉 is clear. Otherwise I 6= {0} and we let n be the least positive element of I. Then 〈n〉 ⊂ I.
Suppose that a ∈ I. The division algorithm says a = nq + r, with 0 ≤ r < n. Since I is an ideal and r = a− nq, we know
that r ∈ I. But n is the least positive element of I. Therefore r = 0. This implies I ⊂ 〈n〉 . So I = 〈n〉 .

Question: Suppose I is an ideal in R, a commutative ring with identity for multiplication. When is the quotient ring R/I
an integral domain?
Answer: When I is a prime ideal meaning that ab ∈ I =⇒ either a or b ∈ I.

Proof. First note that R/I automatically has all the properties of an integral domain except for the lack of zero divisors.
It inherits these properties from R. For example, the identities for addition and multiplication are [0] and [1] , respectively.
We get a zero divisor in R/I iff there are a, b ∈ R such that [a] [b] = [0] but [a] 6= [0] or [b] 6= [0] . This means ab ∈ I but a /∈ I
or b /∈ I.

Example. Which ideals 〈n〉 in Z are prime ideals? The answer is the ideals 〈p〉 with p a prime.
Proof. First note that ab ∈ 〈n〉 = nZ is equivalent to saying n divides ab.
If n is not a prime, then n = ab with 1 < a, b < n. It follows that ab ∈ 〈n〉, but n cannot divide either a or b. Thus 〈n〉

cannot be a prime ideal in Z.
If p is a prime and ab ∈ 〈p〉 , then p divides ab. Euclid’s lemma from Part I, Section Section 5, tells us that then p must

divide either a or b. Thus either a or b must be in 〈p〉 and 〈p〉 is a prime ideal.

But we really want the answer to the following question.
Question: Suppose I is an ideal in R, a commutative ring with identity for multiplication. We assume 1 6= 0 in R. When
is the quotient ring R/I a field?
Answer: When I is a maximal ideal. This means that if A is an ideal of R such that I ⊂ A ⊂ R, then either A = I

or A = R.
Proof. First note that R/I automatically inherits all the properties of a field from R except closure under inverse for non-zero
elements. In particular, [0] = I is the identity for addition in R/I and [1] = 1 + I is the identity for multiplication.
Suppose that R/I is a field. If A is an ideal such that I ⊂ A ⊂ R but A 6= I, then we need to show that A = R. Since

A 6= I, there is an element a ∈ A − I. This means [a] 6= [0] in R/I. Since R/I is a field, there exists [b] ∈ R/I such that
[a] [b] = [1] . This means ab− 1 ∈ I. Thus 1 = ab− c for some c ∈ I. But then, because I is an ideal containing a and c, it
follows that 1 ∈ I. Therefore, for any r ∈ R, we have r = 1 · r ∈ I and I = R. Thus I is a maximal ideal.
Now suppose that I is maximal. We need to show that R/I is a field. Suppose [a] 6= [0] in R/I. We need to find [a]

−1
.

Look at the ideal B generated by I and a. That is B = {c+ ra | c ∈ I, r ∈ R} = 〈I, a〉 . Exercise. Show that B is an
ideal. Then I ⊂ B ⊂ R. We know that I 6= B. Since I is maximal, it follows that B = R. But then 1 ∈ B. So 1 = c+ ra
for some c ∈ I, r ∈ R. This implies [r] [a] = [1] . So [r] = [a]

−1 and we are done.
Example 1. Which ideals 〈n〉 in Z are maximal ideals? The answer is that the prime ideals in Z are the maximal ideals
in Z. We know this since we proved finite integral domains are fields in Proposition 11.
Exercise. Prove the prime ideals in Z are the maximal ideals in Z directly by showing Z/nZ is a field iff n=prime.
Example 2. What are the maximal ideals in Z12?
First we show that all ideals I in Z12 are principal. To prove this, consider the the corresponding ideal Ĩ in Z,

which is Ĩ = {m ∈ Z | [m] ∈ I} . Exercise. Show that Ĩ is an ideal in Z. Now, we know any ideal in Z is principal.
Thus Ĩ = 〈n〉 = nZ for some n ∈ Z. But then I = nZ12.

Next suppose that u is a unit in Z12. Then we can show that unZ12 = nZ12. For the fact that r = u−1 exists in Z12
implies nZ12 = u−1unZ12 ⊂ unZ12. There is no problem seeing the reverse inclusion unZ12 ⊂ nZ12. This is a general fact
about principal ideals, by the way.
Now we can list all the ideals in Z12. They are:

〈0〉 = {0} , 〈1〉 = 〈3〉 = 〈5〉 = 〈7〉 = 〈11〉 = Z12, 〈2〉 = 〈10〉 = 2Z12 = {0, 2, 4, 6, 8, 10(mod 12)} ,
〈3〉 = 〈9〉 = 3Z12 = {0, 3, 6, 9(mod 12)} , 〈4〉 = 〈8〉 = 4Z12 = {0, 4, 8 (mod 12)} ,
〈6〉 = 6Z12 = {0, 6(mod 12)} .

The poset diagram for the ideals in Z12 is in Figure 3.
It follows from Figure 3 that the maximal ideals in Z12 are 〈2〉 and 〈3〉 .

Exercise. Explain the equalities in the formulas for the ideals of Z12; e.g. why is it that 〈8〉 = 〈4〉?
Exercise. Show that any ideal in the ring Zn is principal.
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Figure 3: poset diagram of the ideals in Z12

Exercise. Suppose that R is an integral domain. Show that for a, b ∈ R, we have aR = 〈a〉 = 〈b〉 = bR iff a = ub, where
u is a unit in R.
Exercise. Find all the maximal ideals in Z15.

Definition 22 To create the direct sum R⊕ S of 2 rings R and S, we start with the Cartesian product R× S and define
the ring operations componentwise. That is, for (a, b) and (r, s) ∈ R × S, we define (a, b) + (r, s) = (a + r, b + s) and
(a, b)(r, s) = (ar, bs).

Exercise. Show that the preceding definitions make R⊕ S a ring.
Exercise. Is Z2⊕Z2 a field, an integral domain? Same question for Z2⊕Z3.
Exercise. Find the characteristics of the following rings: Z2⊕Z2, Z2⊕Z4, Z2⊕Z3.
Exercise. Find a subring of R = Z⊕ Z that is not an ideal. Hint. Look at S = {(a, b)|a+ b is even} .
Exercise. If A and B are ideals in a commutative ring R, define the sum A+B = {a+ b|a ∈ A, b ∈ B} and the product

AB =

{
n∑
i=1

aibi

∣∣∣∣∣ ai ∈ A, bi ∈ B
}
.

a) Show that A+B and AB are ideals of R.
b) Show that A+B = R implies AB = A ∩B.
c) Suppose R = Z. If A = 〈a〉 and B = 〈b〉, show that A + B = 〈gcd(a, b)〉 . If A + B = 〈1〉 , show that

AB = 〈ab〉 = A ∩B.

5 Polynomial Rings

Suppose that F is a field. We consider the ring F [x] of polynomials in one indeterminate, x, and coeffi cients in F.
Beware: Don’t confuse polynomials and functions. For example, in Z3[x] the polynomials f(x) = x2 + x + 1 and

g(x) = x4 +x+ 1 represent the same function even though the 2 polynomials are different. To see this, plug in the elements
of Z3.

f(0) = 1 f(1) = 0 f(−1) = 1
g(0) = 1 g(1) = 0 g(−1) = 1
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This sort of thing has to happen, since the number of functions T : Z3 → Z3 is 33 = 27, while the ring Z3[x] is infinite.

Hopefully we did the exercise in Section 2 showing that R[x] is a commutative ring with multiplicative identity, if R is
a commutative ring with multiplicative identity. If not, do that exercise now! The bad part is the associative law for
multiplication. It might help to look at the following:

(
K∑
k=0

akx
k

)((
M∑
m=0

bmx
m

)(
N∑
n=0

cnx
n

))
=

K+M+N∑
r=0

xr


∑

k+m+n=r
0≤k≤K
0≤m≤M
0≤n≤N

akbmcn

 .

If R = Z3, we add and multiply as in the following examples.
(x2 + 2x+ 2) +

(
x3 + x+ 2

)
= x3 + x2 + 1 (since 3 ≡ 0(mod 3) and 4 ≡ 1(mod 3));

(x2 + 2x+ 1) ·
(
x3 + 2

)
= x5 + 2x4 + x3 + 2x2 + x+ 2.

We learned to do this in the dim dark past by making the following table:
x2 + 2x+ 1

x3 + 2
__________________

2x2 + 4x+ 2
x5 + 2x4 + x3

__________________
x5 + 2x4 + x3 + 2x2 + x+ 2 (since 4 ≡ 1(mod 3))

Recall that units R∗ of a ring R are the invertible elements for multiplication in R. When R = Z , the only units are 1
and −1. When the ring is Z[x], it turns out the units are the same as for Z, as we saw in Section 2. We get the same result
when F is a field, i.e.,

(F [x])
∗

= F ∗ = F − {0} . (3)

The proof is the same as that in Section 2 for Z.
Exercise. Prove formula (3).

Now we want to imitate what we said about the integers in Section 5 of Part I of these notes. We will have analogs of
primes, the division algorithm, the Euclidean algorithm, and the fundamental theorem of arithmetic for the ring F [x], where
F is any field. Pretty amazing!
Assumption. For the rest of this section F is a field.
First we define the polynomial analog of prime.

Definition 23 A polynomial f(x) of degree > 0 is irreducible iff f(x) = g(x)h(x) for g, f ∈ F [x] implies either g or h has
degree 0.

Now we want to get rid of the units in a factorization as we did in Z by allowing only positive non unit integers to be called
primes assuming they could not be factored non-trivially. To get rid of units in F [x], we look at monic polynomials; i.e.,
polynomials with leading coeffi cient (i.e., coeffi cient of the highest power of x) equal to 1. So a monic irreducible polynomial
is the analog of a prime in F [x].
Example. Irreducible Polynomials of Low Degree in Z2[x].

degree 1 polynomials: x, x+ 1 Both irreducible.
degree 2 polynomials: x2, x2+1 = (x+1)2, x2+x = x(x+1), x2+x+1. The 1st 3 polynomials are clearly reducible.

What about x2 + x+ 1? Does x or x+ 1 divide x2 + x+ 1? The answer is: No! For we have x2 + x+ 1 = x(x+ 1) + 1.
This means that if we had x2 + x + 1 = xq(x), then x would divide 1 = xq(x) − x(x + 1). But that is impossible, as
0 = deg(1) = deg(x {q(x)− x− 1}) ≥ 1. A similar argument shows that x+ 1 cannot divide x2 + x+ 1.

This means that x2+x+ 1 is the only irreducible polynomial of degree 2 in Z2[x].
degree 3 polynomials: x3, x3 + 1, x3 + x = x(x2 + 1), x3 + x+ 1, x3 + x2 = x2(x+ 1), x3 + x2 + 1, x3 + x2 + x =

x(x2+x+ 1), x3+x2+x+ 1. Which of the polynomials x3+ 1, x3+x+ 1, x3+x2+ 1, x3+x2+x+ 1 are irreducible? To
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answer this question more rapidly it helps to know that x− a divides a polynomial f(x) iff f(a) = 0. Here we are assuming
a ∈ Z2 and f(x) ∈ Z2[x]. We will prove this in a few pages as a corollary of the division algorithm.
The polynomial f(x) of degree 3 will be reducible iff it has a factorization f(x) = g(x)h(x) with g(x), h(x) ∈ Z2[x], such

that deg g 6= 0 and deg h 6= 0. But then 3 = deg g + deg h implies that either g or h has degree 1. This means that f is
reducible iff f(a) = 0 for some a ∈ Z2.
So we need to test x3 + 1, x3 + x + 1, x3 + x2 + 1, x3 + x2 + x + 1 for roots in Z2. However the only possible root is

1, since we have already eliminated the polynomials with 0 as a root. The polynomials with an even number of terms will
have 1 as a root in Z2[x].

This implies that there are only 2 irreducible degree 3 polynomials in Z2[x] : x
3
+x+ 1 and x3 +x2 +1.

Exercise. Find the degree 4 irreducible polynomials in Z2[x].
Exercise. Find the irreducible polynomials of degrees 1 and 2 in Z3[x].
In order to do the same things for rings of polynomials F [x], when F is a field, that we did for the ring Z of integers, we

will need a division algorithm. The division algorithm works just as it did in high school or wherever it was. In fact, it
really works the same way it did for the integers in elementary school (as in Section 5 of Part I).
Example 1. In Z2[x], we have the following computation.

x3 +1
x2 + x+ 1 x5 + x4 + x3 +x2 + x+ 1

x5 + x4 + x3

x2 + x+ 1
x2 + x+ 1
0

As a result, we have x5 + x4 + x3 + x2 + x+ 1 =
(
x2 + x+ 1

) (
x3 + 1

)
. The remainder is 0.

Example 2. In Z3[x], we have the following computation.

2x +1
2x+ 1 x2 + x +2

x2 + 2x
2x +2
2x +1

1

This says x2 + x+ 2 = (2x+ 1)(2x+ 1) + 1. The remainder is 1. Note that we are definitely using the fact that Z3 is
a field and 2−1 ≡ 2(mod 3). That is, 2 · 2 ≡ 1(mod 3).

Theorem 24 (The Division Algorithm for Polynomial Rings) Suppose that F is a field. Given f(x) and g(x) ∈ F [x]
with g(x) not the zero polynomial, there are polynomials q(x) (the quotient) and r(x) (the remainder) in F [x] such that
f(x) = g(x)q(x) + r(x) and deg r < deg g or r is the zero polynomial.

Proof. Sketch (Induction on deg f).
If f has degree 0, or if f is the zero polynomial, then the remainder will be f . Also, if deg g = 0, the result is trivial as

g is then a unit in the ring F [x]. So we assume deg g > 0 from now on.
Induction Step. Now assume the theorem true if deg f ≤ m− 1. Suppose that

f(x) = bmx
m + · · · and g(x) = anx

n + · · · , with an 6= 0 and bm 6= 0.

We may assume m ≥ n or we can take r = f. Then we start the process by choosing the 1st term of q(x) to be a−1n bmx
m−n

so that h(x) = f(x)− a−1n bmx
m−ng(x) has degree less than deg f = n.

a−1n bmx
m−n + · · ·

g(x) = anx
n + · · · f(x) = bmx

m + · · ·
bmx

m + · · ·
0 h = lower degree polynomial than f

This gets the induction going. The induction hypothesis allows us to divide h by g and we’re done.
Exercise. Fill in the details of the preceding proof.
Exercise. Prove the uniqueness of the polynomials q and r in the division algorithm.
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Corollary 25 Suppose that F is a field, f(x) ∈ F [x], and a ∈ F. Then f(a) = 0 ⇐⇒ f(x) = (x − a)q(x) for some
q(x) ∈ F [x].

Proof. =⇒ By the division algorithm, f(x) = (x− a)q(x) + r(x), where deg r < 1 or r = 0. It follows that r must be a
constant in F. Thus f(a) = (a− a)q(a) + r = r. If f(a) = 0, then r is the 0 polynomial and f(x) = (x− a)q(x).
⇐= Hopefully this is clear.

Corollary 26 Suppose f ∈ F [x] and deg f = n. Then f has at most n roots in F counting multiplicity. This means that
we count a not just once but k times if (x − a)k exactly divides f(x) and k > 1 (meaning that (x − a)k divides f(x) and
(x− a)k+1 does not divide f(x)).

Proof. By the preceding corollary, f(a) = 0 implies f(x) = (x − a)q(x) and deg f = n = 1 + deg q. Thus deg q = n − 1.
So we finish the proof by induction on the degree of f.

Corollary 27 Every ideal in F [x] is principal, when F is a field.

Proof. Let I be an ideal in F [x]. If I = {0} = 〈0〉 , we’re done. Otherwise, let f(x) be an element of I of minimal degree.
Then we claim I = 〈f〉 . To prove this, suppose h ∈ I. Then the division algorithm says there exist q, r ∈ F [x] such that
h = qf + r, with deg r < deg f or r = 0. Then r = h− qf ∈ I since h, f ∈ I. This contradicts the minimality of the degree
of f unless r = 0. Then h ∈ 〈f〉 and I = 〈f〉 .

Corollary 28 (Irreducible Polynomials correspond to Fields). The following are equivalent in F [x], when F =field.
a) 〈f(x)〉 is a maximal ideal.
b) f(x) ∈ F [x] is irreducible.
c) F [x]/ 〈f(x)〉 = field.

Proof. We know from Section 4 that a)⇐⇒c). So let’s show a)⇐⇒b).
a)=⇒b) Assume 〈f〉 is a maximal ideal. If f = g · h, for g, h ∈ F [x], such that neither g nor h is a unit, then

〈f〉 ⊂ 〈g〉 ⊂ 〈1〉 = F [x] and 〈f〉 ⊂ 〈h〉 ⊂ 〈1〉 = F [x] and none of the inclusions are equality. Why? Recall the exercise in
Section 4 that said 〈a〉 = 〈b〉 ⇐⇒ b = au, for some unit u in F [x]. This contradicts the maximality of 〈f〉 .

b)=⇒a) Suppose f is irreducible. We know by the preceding Corollary that every ideal in F [x] is principal. So any ideal
containing 〈f〉 must have the form 〈g〉 , for some g ∈ F [x]. If 〈f〉 ⊂ 〈g〉 ⊂ F [x], then f = g · h for some h ∈ F [x]. But the
irreducibility of f says that either g or h is a unit. If g is a unit then 〈g〉 = F [x]. If h is a unit, then 〈f〉 = 〈g〉 . Thus 〈f〉
is maximal.

Exercise. a) In Z3[x] show that the polynomials f(x) = x4 + x and g(x) = x2 + x determine the same function mapping Z3
into Z3.

b) In Z7[x] find the quotient and remainder upon dividing f(x) = 5x4 + 3x3 + 1 by g(x) = 3x2 + 2x+ 1.
c) Find all degree 2 irreducible polynomials in Z3[x] with lead coeffi cient equal to 1.

Integral domains with a division algorithm are called Euclidean domains. Thus the ring of polynomials over a field
F is an Euclidean domain. As such it has similar properties to Z. One defines the greatest common divisor d = gcd(f, g)
for f, g ∈ F [x], to be the unique monic polynomial which divides both f and g such that any common divisor h of f and g
must divide d. Again there is an Euclidean algorithm to compute d. One has the analog of the theorem in Section 5 of Part
I saying d = uf + vg for some u, v ∈ F [x] and the Euclidean algorithm can be used to find u and v.
Exercise. Prove the preceding statements about gcd(f, g) for f, g ∈ F [x] by imitating the proofs that worked in Z.
Exercise. Suppose x is a non-0 element of a finite field F with n elements. Show that xn−1 = 1,
Exercise. a) Consider Z5[i] = {a+ bi | a, b ∈ Z5} , where i2 = −1. Show that this ring is not a field.

b) Consider Z7[i] = {a+ bi | a, b ∈ Z7} , where i2 = −1. Show that this ring is a field.
c) Can you develop a more general version of this problem for Zp[i] where p is an odd prime according to whether p

is congruent to 1 or 3 (mod 4)?
Exercise. Show that the ideal 〈a(x), b(x)〉 in F [x] is 〈gcd(a(x), b(x))〉 .
Exercise. a) Show that if an ideal A of ring R contains an element of the unit group R∗, then A = R.

b) Show that the only ideals of a field F are {0} and F itself.
Example. A Field with 8 elements is F8 = Z2[x]/

〈
x3 + x+ 1

〉
.
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To see this, you just have to recall a few of the facts that we proved here. First we know from earlier in this Section
that x3 + x + 1 is irreducible in Z2[x]. Second, we showed that 〈f〉 is maximal in Z2[x] iff f is irreducible in Z2[x], And
we know from Section 4 that Z2[x]/I is a field iff the ideal I is maximal. Thus Z2[x]/

〈
x3 + x+ 1

〉
is a field.

How do we know that our field has 23 elements? The answer is that a coset [f ] in Z2[x]/
〈
x3 + x+ 1

〉
is represented by

the remainder of f upon division by x3 + x+ 1. The remainder has degree ≤ 2 and thus has the form ax2 + bx+ c, where
a, b, c ∈ Z2. Moreover 2 polynomials g, h of degree ≤ 2 cannot be congruent modulo x3 +x+ 1 unless they are equal. Why?
Congruent means the difference g − h is a multiple of x3 + x+ 1. The only way a degree ≤ 2 polynomial like g − h can be a
multiple of a degree 3 polynomial is if g − h is really the 0 polynomial. Thus g must equal h.
The preceding is analogous to what happens in Z/163Z. The elements [m] are represented by [r] , where r is the remainder

of m upon division by 163.
We can think Θ = [x] in Z2[x]/

〈
x3 + x+ 1

〉
. This means Θ is a root of x3 + x + 1 = 0. We are saying that

F8 =
{
aΘ2 + bΘ + c | a, b, c ∈ Z2

}
. Moreover we can view F8 as a vector space over the field Z2. A basis for this vector

space is
{

1,Θ,Θ2
}
. See Section 10 for more information on vector spaces over finite fields.

If we express the elements of F8 in the form aΘ2 + bΘ + c, for a, b, c ∈ Z2, it is easy to add the elements but hard to
multiply. Thus it is useful to show that the multiplicative group of F8 is cyclic - a fact that can be proved for any finite field.
It turns out the a generator in this case is Θ. This is a fact that does not always hold for a finite field since only primitive
polynomials k(x) over the base field Zp will have this property that a root of k(x) is a generator of (Zp[x]/ 〈k(x)〉)∗ .
Next we create a table of powers of Θ = [x] in Z2[x]/

〈
x3 + x+ 1

〉
. We know that Θ3 + Θ + 1 = 0. This implies

that Θ3 = −Θ − 1 = Θ + 1 since −1 = +1 in Z2. Next we note that Θ(a0 + a1Θ + a2Θ
2) = a0Θ + a1Θ

2 + a2Θ
3 =

a0Θ + a1Θ
2 + a2 (Θ + 1) = a2 + (a0 + a2) Θ + a1Θ

2.
So multiplication by Θ sends the coeffi cients (a0, a1, a2) to (a2, a0 + a2, a1). This is what is called a "feedback shift

register." So now it is easy to make a table of powers of Θ. The jth row will list the coeffi cients (a0, a1, a2) of Θj =
a0 + a1Θ + a2Θ

2.

Θj = a0 + a1Θ + a2Θ
2 a0 a1 a2

Θ 0 1 0
Θ2 0 0 1
Θ3 1 1 0
Θ4 0 1 1
Θ5 1 1 1
Θ6 1 0 1
Θ7 = 1 1 0 0

This shows that the multiplicative group of units F∗8 is a cyclic group of order 7. We call x3+x+1 a primitive polynomial
in Z2[x] for this reason. Figure 4 shows the picture of the feedback shift register corresponding to this polynomial. You
can use primitive polynomials to construct other feedback shift registers. It is a finite state machine that will cycle through
2n − 1 states if f(x) is a primitive polynomial of degree n in Z2[x]. The states are really the rows of the table of powers of Θ
for Θ a root of f(x), and this is really the unit group of the finite field Z2[x]/ 〈f(x)〉 . The successive states of the registers
are given in the preceding table.

Figure 4: A feedback shift register diagram corresponding to the finite field Z2[x]/
〈
x3 + x+ 1

〉
and the multiplication table

given in the text.

Feedback shift registers are of interest in generating pseudo-random numbers and in cryptography. There are applications
in digital broadcasting, communications, and error-correcting codes.
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Exercise. a) Show that x2 − 2 is an irreducible polynomial in Z5[x].
b) Show that the factor ring Z5[x]/ < x2 − 2 > is a field with 25 elements.
c) Show that the field in part b) can be identified with Z5[

√
2] = {a+ b

√
2|a, b ∈ Z5} = the smallest field containing

Z5 and
√

2.
d) What is the characteristic of the field with 25 elements in parts b and c?

Exercise. Identify F25 ∼= Z5[x]/
〈
x2 − 2

〉
as the set Z5[

√
2] as in the preceding problem. Set θ =

√
2. Find the table of

powers Θj = a0 + a1Θ, where Θ2 = 2, in a similar manner to the table we created for Z2[x]/
〈
x3 + x+ 1

〉
. Do these powers

give the whole unit group in Z5[x]/ < x2 − 2 >? This would say that the polynomial x2 − 2 is primitive in Z5[x]? What
is the feedback shift register diagram corresponding to this polynomial? How many states does it cycle through before it
repeats?
Hint. The order of the unit group F∗25 is 24 while the order of 2 is 4 and thus the order of

√
2 is 8.

Exercise. a) Show that the ideal < x > in Z3[x] is maximal.
b) Prove that Z3 is isomorphic to Z3[x]/ < x >.

Exercise. a) Show that Z3[x]/ < x2 + x + 2 > is a field F9 with 9 elements which can be viewed as the field Z3[θ] =
{a+ bθ|a, b ∈ Z3}, where θ2 + θ + 2 = 0.

b) Imitating the table in above, compute the powers of θ from part a).
c) Is the multiplicative group F∗9 in the field of part a) cyclic?
d) Draw the corresponding feedback shift register diagram as in Figure 4.

Exercise. Find an infinite set of polynomials f(x) ∈ Z3[x] such that f(a) = 0 for all a ∈ Z3.

6 Ring Homomorphisms

We need to discuss the ring analog of group homomorphism from Part I.

Definition 29 Suppose that R and S are rings. Then T : R → S is a ring homomorphism iff T preserves both ring
operations; i.e.,

T (a+ b) = T (a) + T (b) and T (ab) = T (a)T (b), for all a, b ∈ R.

If, in addition, T is 1-1 and onto, we say that T is a ring isomorphism and write R ∼= S.

For most purposes, we can identify isomorphic rings, just as we can identify isomorphic groups.
Example. π : Z → Zn defined by π(a) = a(modn) is a ring homomorphism and is onto but not 1-1. This example is
easily generalized to π : R→ R/I, where I is any ideal in a ring R.
Application. Test for Divisibility by 3.
Any integer has a decimal expansion which we write n = akak−1 · · · a1a0, for aj ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} , where

this means that n = ak10k + ak−110k−1 + · · · + a110 + a0. Then we have 3 divides n = akak−1 · · · a1a0 iff 3 divides
ak + ak−1 + · · ·+ a1 + a0 =the sum of the digits of n.
Proof. Look at the homomorphism π : Z→ Z3 defined by π(a) = a(mod 3). Then, since π(10) ≡ 1(mod 3), we have

π(n) = π
(
ak10k + ak−110k−1 + · · ·+ a110 + a0

)
= π (ak)π (10)

k
+ π (ak−1)π (10)

k−1
+ · · ·+ π (a1)π (10) + π (a0) .

≡ ak + ak−1 + · · ·+ a1 + a0(mod 3).

Example. Does 3 divide 314159265358979323846? We compute the sum of the digits to be 103 and then the sum of those
digits is 4 which is not divisible by 3. So the answer is "No."
Exercise. Does 3 divide 271828182845904523536 ?
Exercise. Create a similar test to see whether 11 divides a number? Then use your theorem to see whether 11 divides the
numbers in the 2 preceding exercises.
The following theorem shows that ring homomorphisms have analogous properties to group homomorphisms.

19



Theorem 30 (Properties of Ring Homomorphisms). Suppose that S and S′ are rings and T : S → S′ is a ring
homomorphism. Let 0 be the identity for addition in S and 1 the identity for multiplication in S, if S has an identity for
multiplication. Then let 0′ be the identity for addition in S′. Then we have the following facts.
1) a) T (0) = 0′.

b) If S has an identity for multiplication and T (1) 6= T (0), then T (1) is the identity for multiplication in the image
ring T (S). Here the image of S is T (S) = {T (s) | s ∈ S}.
2) The image T (S) is a subring of S′. If S is a field, then T (1) 6= T (0) implies that the image T (S) is a field.
3) Define the kernel of T to be kerT = T−1(0′) = {x ∈ S | T (x) = 0′} . Then kerT is an ideal in S. And T is 1-1 iff

kerT = {0} .
4) (First Isomorphism Theorem). S/ kerT ∼= T (S).

Proof. 1) a) follows from the corresponding fact about groups, since S and S′ are groups under addition.
1) b) To do this, we must think a little since S, S′ are not groups under multiplication unless something weird happens

like S = S′ = {0} . Also we need part 2) to know that the image T (S) is a ring. Then, if T (1) 6= T (0) and a ∈ S, we have

T (1)T (a) = T (1 · a) = T (a),

T (a)T (1) = T (a · 1) = T (a).

It follows that T (a) is the identity for multiplication in T (S).
2) The image T (S) is an additive subgroup of S′ from results of Section 18 of Part I. To see that T (S) is closed under

multiplication, note that T (a)T (b) = T (ab) ∈ T (S), for all a, b ∈ S. The associative law for multiplication and distributive
laws follow from those for S; e.g., T (a) (T (b) + T (c)) = T (a(b+ c)) = T (ab+ac) = T (a)T (b) +T (a)T (c). Then if S is a field,
from part b) we know that T (1) is the identity for multiplication in T (S). Since S∗ = S−{0} is a group under multiplication,
we can use results from Part I, Section 18 to see that T (S∗) = T (S)∗ is a group under multiplication.
3) We know that kerT is an additive subgroup of S′ by results of Section 18 of Part I. To show kerT is an ideal we also

need to show that if a ∈ kerT and s ∈ S, then sa and as are in kerT. This is easy since T (sa) = T (s)T (a) = T (s)0 = 0
implies sa ∈ kerT. The same argument works for as.
4) We imitate the proof of the 1st Isomorphism Theorem for groups in Part I, Section 18. As before, we define a map

T̃ : S/ kerT → T (S) by setting T̃ ([a]) = T̃ (a+ kerT ) = T (a). Then we need to show that T̃ is a ring isomorphism.
T̃ is well defined since if [a] = a+ kerT = [b] , then b = a+u, where u ∈ kerT. This implies T̃ (b) = T (b) = T (a+u) =

T (a) + T (u) = T (a) + 0 = T (a) = T̃ (a).

T̃ is 1-1 since T̃ ([a]) = T̃ ([b]) implies T (a) = T (b) and thus a− b ∈ kerT and [a] = [b] .

T̃ is onto since any element of T (S) has the form T (a) for some a ∈ S. Thus T̃ ([a]) = T (a).

T̃ preserves both ring operations since for any a, b ∈ S, we have the following, using the definition of addition and
multiplication in the quotient S/ kerT , the definition of T̃ , and the fact that T is a ring homomorphism:

T̃ ([a] + [b]) = T̃ ([a+ b]) = T (a+ b) = T (a) + T (b) = T̃ ([a]) + T̃ ([b]) ,

T̃ ([a] · [b]) = T̃ ([a · b]) = T (a · b) = T (a) · T (b) = T̃ ([a]) · T̃ ([b]) .

Example. Define Z3[i] = {x+ iy | x, y ∈ Z3} , where i2 = −1. We can use the 1st isomorphism theorem to show that

Z3[i] ∼= Z3[x]/
〈
x2 + 1

〉
.

Note that the right-hand side is a field because x2 + 1 is irreducible in Z3[x] since −1 is not a square mod 3 means x2 + 1 has
no roots in Z3. The left-hand side can be shown directly to be a field by proving that it is possible to find the multiplicative
inverse of any non-0 element.
First we define a ring homomorphism T : Z3[x]→ Z3[i] by T (f(x)) = f(i) for any polynomial f(x) ∈ Z3[x]. The map T

is well-defined, preserves the ring operations and is onto. We leave this as an Exercise. For example, one must show that

T (f + g) = (f + g)(i) = f(i) + g(i) = T (f) + T (g)

and
T (f · g) = (f · g)(i) = f(i) · g(i) = T (f) · T (g).
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Prove these facts first for f(x) = axr.
We claim kerT =

〈
x2 + 1

〉
. To see this, note 1st that

〈
x2 + 1

〉
⊂ kerT, since i2 + 1 = 0. To prove kerT ⊂

〈
x2 + 1

〉
, let

g(x) ∈ kerT. By the division algorithm, we have g(x) =
(
x2 + 1

)
q(x) + r(x), where deg r < 2 or r = 0. Since g(i) = 0,

we see that r(i) = 0. But if r 6= 0, deg r = 0 or 1, and we have r(x) = ax+ b, with a, b ∈ Z3. But then ai+ b = 0. If a 6= 0,
this would say i = −b/a ∈ Z3, a contradiction to the fact that −1 is not a square in Z3. Thus r must be the 0-polynomial
and kerT ⊂

〈
x2 + 1

〉
to complete the proof that kerT =

〈
x2 + 1

〉
.

It follows then from the 1st isomorphism theorem that Z3[i] ∼= Z3[x]/
〈
x2 + 1

〉
.

Exercise. Suppose that R,S are rings, A is a subring of R, B is an ideal of S. Let T : R→ S be a ring homomorphism.
a) Show that for all r ∈ R and all n ∈ Z+, we have T (nr) = nT (r) and T (rn) = T (r)n.
b) Show that T (A) is a subring of S.
c) Show that if A is an ideal in R and T (R) = S, then T (A) is an ideal of S.

Exercise. Under the same hypotheses as in the preceding Exercise, prove:
a) T−1(B) is an ideal of R. Here the inverse image of B under T is T−1(B) = {a ∈ A | T (a) ∈ B}. We are not

assuming the inverse function of T exists.
b) If T is a isomorphism of R onto S, then T−1 is an isomorphism of S onto R.

Exercise. a) If we try to define T : Z5 → Z10 by setting T (x) = 5x we don’t really have a well defined function. Explain.
b) Show that T : Z4 → Z12 defined by T (x) = 3x is well defined but does not preserve multiplication.
c) Show that every homomorphism T : Zn → Zn has the form T (x) = ax for some fixed a in Zn
with a2 = a.

Exercise. a) Show that the ring of complex numbers C is isomorphic to the factor ring R[x]/ < x2 + 1 >. Here R[x] is the
ring of polynomials in 1 indeterminate x and real coeffi cients.

b) Show that complex conjugation φ(a+ ib) = a− ib, for a, b in R and i2 = −1, defines a ring isomorphism from C
onto C.

c) Show that C is not isomorphic to R.

d) Show that C is isomorphic to the ring
{(

a b
−b a

)∣∣∣∣ a, b ∈ R} , where the operations are the usual matrix

addition and multiplication.
Exercise. a) Show that the only ring homomorphisms from the rationals Q to Q are the map T (x) = 0, ∀x ∈ Q and the
identity I(x) = x, ∀x ∈ Q. Hint: First look at the map on Z.

b) Show that the only ring isomorphism φ mapping the reals R onto R is the identity map. Hint: First, recall that
the positive reals are squares of non-zero reals and vice versa. Then recall that a < b ⇐⇒ b− a > 0. Use this to show that
a < b implies φ(a) < φ(b). Then suppose that ∃a s.t. φ(a) 6= a. Consider the 2 cases that a < φ(a) and φ(a) < a. There
is a rational number between a and φ(a). Use the fact that φ must be the identity on the rationals to get a contradiction.

7 The Chinese Remainder Theorem

An example of the Chinese remainder theorem can be found in a manuscript by Sun Tzu (or Sun Zi) from the 3rd century
AD.

Theorem 31 (The Chinese Remainder Theorem for Rings). Assume that the positive integersm,n satisfy gcd(m,n) =

1. The mapping T̃ : Zmn → Zm ⊕ Zn defined by T̃ ([s]) = T (s) = (s (modm) , s (modn)) is a ring isomorphism showing that
Zmn is isomorphic to the ring Zm ⊕ Zn.

Proof. First consider the mapping T : Z → Zm ⊕ Zn defined by T (s) = (s (modm) , s (modn)) . Then T is a ring
homomorphism. Note that we already showed it is an additive group homomorphism in Part I, Section 19. To see that it
preserves multiplication: let a, b ∈ Z. Then, using the definition of T and the definition of multiplication in Zm ⊕ Zn, we
have:

T (a · b) = (a · b (modm) , a · b (modn)) = (a (modm) , a (modn)) · (b (modm) , b (modn)) = T (a) · T (b).

It follows from the 1st isomorphism theorem that Z/ kerT is isomorphic to T (Z). So we need to compute the kernel
of T. This is, since gcd(m,n) = 1,

kerT = {a ∈ Z|a ≡ 0(modm) and a ≡ 0(modn)} = {a ∈ Z|m divides a and n divides a} = mnZ.
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The map T̃ : Zmn → Zm⊕Zn is defined by T̃ ([s]) = T (s) = (s (modm) , s (modn)) . This map T̃ is 1-1 since T̃−1 ((0, 0)) = {0}
by a fact from Section 18 of Part I. By the pigeonhole principle, T̃ must be onto because both Zmn and Zm ⊕ Zn have mn
elements.
In particular, the Chinese Remainder Theorem says that if gcd(m,n) = 1, there is a solution x ∈ Z to the simultaneous

congruences: {
x ≡ a(modm)
x ≡ b(modn).

When the theorem is discussed in elementary number theory books, only the onto-ness of the function is emphasized. Many
examples like the following are given. This result and its generalizations have many applications; e.g., to rapid and high-
precision computer arithmetic. See the next section or L. Dornhoff and F. Hohn, Applied Modern Algebra; D. E. Knuth, Art
of Computer Programming, II ; I. Richards, Number Theory in Math. Today edited by L. A. Steen; K. Rosen, Elementary
Number Theory; or A. Terras, Fourier Analysis on Finite Groups and Applications.
Example. Solve the following simultaneous congruences for x, y:{

3x ≡ 1(mod 5)
2x ≡ 3(mod 7).

The 1st congruence has the solution x ≡ 2(mod 5) as one can find by trial and error. Then put x = 2 + 5u into the 2nd
congruence. This gives

2x = 2(2+5u) ≡ 3(mod 7) and thus 4+10u ≡ 3(mod 7). This becomes 3u ≡ 6(mod 7). One immediately sees a solution
u ≡ 2(mod 7). This means that u = 2 + 7t. Plug this back into our formula for x and get x = 2 + 5(2 + 7t) = 12 + 35t. This
means x ≡ 12(mod 35). You should check that it works.
There are many ways to understand the Chinese remainder theorem. The 1st step is to extend it to an arbitrary number

of relatively prime moduli. If the positive integers mi satisfy gcd(m1, ...,mr) = 1, and m = m1m2 · · ·mr, then the rings Zm
and Zm1

⊕ · · · ⊕ Zmr are isomorphic under the mapping f(xmodm) = (xmodm1, ..., xmodmr). We leave the proof of this
as an exercise.
Let’s look at the case r = 2 again. To create the isomorphism between Z15 and Z3 ⊕ Z5, for example, you can make a

big table of positive integers.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 1
2 2
3 3
1 4
2 5
3 6
1 7
2 8
3 9
1 10
2 11
3 12
1 13
2 14
3 15

Next we fill in the blanks upper left 3× 5 part of the table by taking the 1st number left out which is 4 and moving it up
3 rows. Similarly we move 5 up 3 rows. The next number 6 must be moved up 3 rows and then moved left 5 columns.

1 2 3 4 5

1 1 4
2 2 5
3 6 3
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Continue in this way to complete the table.

1 2 3 4 5

1 1 7 13 4 10
2 11 2 8 14 5
3 6 12 3 9 15

Since the isomorphism preserves addition and multiplication we can computemod 17 by computingmod 3 andmod 5. This
is not so impressive but it would work better if we took a lot of primes likem = 25 ·33 ·52 ·72 ·11·13·17·19·23·29·31·37·41·43·47
which is > 3 · 1021. Then computing modm would be the same as computing modmi, for m1 = 25,m2 = 33, ...,m15 = 47.
See Dornhoff and Hohn, Applied Modern Algebra, p. 238 for more information.

In another visualization, we see the additive group Z15 as a discrete circle by taking the Cayley graphX(Z15, {±1(mod 15)}).
See Figure 5. Now we can view the same group as a 2 dimensional product of the circles Z3 and Z5. This is a torus or
doughnut graph. It is also the Cayley graph X(Z15, {5, 6, 9, 10(mod 15)}) in Figure 6.

Figure 5: The Cayley graph X(Z15, {±1(mod 15)})

Exercise. Draw analogous figures to Figures 5 and 6 for Z35.
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Figure 6: The Cayley graph X(Z15, {5, 6, 9, 10(mod 15)})
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As we noted above, the most important thing for a number theorist is the onto-ness of the isomorphism T̃ : Zmn → Zm⊕Zn
for gcd(m,n) = 1, defined by T̃ ([s]) = T (s) = (s (modm) , s (modn)) . We want to discuss an old method to give an explicit
formula for the solution of the simultaneous congruences that express this onto-ness. For example, suppose that m = 3 and
n = 5, and we want to solve {

x ≡ a(mod 3)
x ≡ b(mod 5).

(4)

Then we first solve 2 sets of simultaneous congruences:{
5u ≡ 1(mod 3)
u ≡ 0(mod 5)

and

{
v ≡ 0(mod 3)

3v ≡ 1(mod 5).

and set x = 5au+ 3bv(mod 15). It is easily checked that x does solve the problem of formula (4).
Exercise. Find an analogous procedure to that of the last paragraph to solve x ≡ a(mod 3)

x ≡ b(mod 5)
x ≡ c(mod 7).

What is the solution when a = 2, b = 4, c = 1?
Exercise. Show that Z3[x]/

〈
x2 − 1

〉 ∼= Z3 ⊕ Z3.

There are also applications of the Chinese remainder theorem in RSA cryptography, secret sharing, the Fast Fourier
transforms, and proving the Gödel incompleteness theorem in logic.
There are many puzzles related to the Chinese remainder theorem. Some are ancient. The following is a puzzle found

in O. Ore, Number Theory and its History, pp. 118 ff.
"An old woman goes to market and a horse steps on her basket and crushes the eggs. The rider offers to pay for the

damage and asks her how many eggs she had brought. She does not remember the exact number, but when she had taken
them out 2 at a time there was 1 egg left. The same happened when she picked them out 3,4,5, and 6 at a time, but when
she took them out 7 at a time they came out even. What is the smallest number of eggs she could have had?"
Exercise. Solve the preceding puzzle.
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8 Comparisons Between Z and F [x]
Suppose that F is a field and F [x] is the ring of polynomials in one indeterminate with coeffi cients in F. We want to create
a table of comparisons between the ring of integers Z and the ring F [x].
Table Comparing Z and F [x]
property Z F [x]

infinite ring yes yes
integral domain yes yes
unit group {1,−1} F ∗

division algorithm n = mq + r, 0 < r ≤ m f(x) = g(x)q(x) + r(x),
r = 0 or deg r < deg g

divisibility m|n ⇐⇒ n = mq, for some q ∈ Z g(x)|f(x) ⇐⇒ f(x) = g(x)q(x),
for some q(x) ∈ F [x]

prime
p > 1 s.t. p = a · b =⇒
either a or b is a unit

f(x) monic irreducible,
f(x) 6= constant polynomial

f = g · h implies either g or h is a unit

unique factorization
into primes

n 6= 0 =⇒ n = ±p1p2 · · · pr,
pi = prime, factorization

unique up to order

f(x) 6= 0 =⇒ f(x) = unit · p1(x) · · · pr(x),
pi(x) monic irreducible

factorization unique up to order

every ideal principal
I = 〈n〉 , n least positive element of I,

if I 6= {0}
I = 〈f〉 , f element of I of least degree

if I 6= {0}
maximal ideal I = 〈p〉 , p =prime I = 〈f(x)〉 , f(x) irreducible
R/I = field

when I maximal
Z/pZ=field when p =prime F [x]/ 〈f(x)〉 =field when f irreducible

Euclidean algorithm for
gcd(a, b) = na+mb(
Bezout′s identity

) yes yes

Euclid’s Lemma p =prime, p|ab =⇒ p|a or p|b f(x) irreducible, f(x)|a(x)b(x)
=⇒ f(x)|a(x) or f(x)|b(x)

Exercise. a) Compute h(x) = gcd(x2 + 1, x4 + x3 + x2 + 1) in Z2[x]. Find polynomials u(x) and v(x) in Z2[x] such that
h(x) = u(x)

(
x2 + 1

)
+ v(x)

(
x4 + x3 + x2 + 1

)
.

b) Factor x3 + 1 as a product of monic irreducible polynomials in Z7[x].
c) Write x4 + x3 + x2 + 1 as a product of monic irreducible polynomials in Z2[x].

Exercise. Prove the analog of Euclid’s Lemma for F [x], where F is a field. .
Exercise. a) Assume p=prime. How many irreducible polynomials of the form f(x) = x2 + ax+ b are there in Zp[x] ?

b) Show that for every prime p, there exists a field with p2 elements.
Exercise. a) Find all zeros of f(x) = 3x2 + x+ 4 in Z7 by the process of substituting all elements of Z7.

b) Find all zeros of the polynomial f(x) in part a) using the quadratic formula for Z7. Do your answers agree?
Should they?

c) Same as a) for g(x) = 2x2 + x+ 3 over Z5.
d) Same as b) for g(x) in part c).

Exercise. Assume that F is a field. Prove that every polynomial f(x) ∈ F [x] factors as f(x) = unit·p1(x) · · · pr(x), where
pi(x) = monic irreducible, and this factorization is unique up to order.

Next let’s consider a few facts about F [x] and its quotients.

Proposition 32 (Irreducibility Test for Low Degree Polynomials). Suppose F is a field, f(x) ∈ F [x] and deg f = 2
or 3. Then f is not irreducible iff ∃c ∈ F such that f(c) = 0.

Proof. We have a non-trivial factorization of f iff f = gh, for g, h ∈ F [x], where either g or h has degree 1. This is true
since deg f = deg g + deg h and 2 = 1 + 1 or 3 = 2 + 1 = 1 + 2 are the only possibilities for partitions of 2 or 3 into sums of
2 integers. It follows that we can take one of the factors, say g(x), to be monic and linear; i.e., g(x) = x− c for some c ∈ F.

Example. The preceding test fails for Z6[x] since, for example, f(x) = (2x+ 1)2 has no roots in Z6.
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Proposition 33 (A Field with pn elements, p =prime). If p=prime and f(x) is an irreducible polynomial in Zp[x],
then the quotient Fpn = Zp[x]/ 〈f(x)〉 is a field with pn elements, where n = deg f .

Proof. Since f is irreducible, the ideal 〈f〉 is maximal and thus F [x]/ 〈f(x)〉 is a field by Corollary 28. To see that this field
has pn elements, we just need to see that the elements of Zp[x]/ 〈f(x)〉 are represented by the remainders of h ∈ Zp[x] upon
division by f . These remainders have the form r(x) = an−1x

n−1 + · · ·+ a1x+ a0, where aj ∈ Zp. Moreover, the cosets in
Zp[x]/ 〈f(x)〉 of 2 distinct remainders cannot be the same. Otherwise f would divide the difference of the remainders. But
deg f is greater than the degree of the difference of 2 remainders. Contradiction. How many such remainders are there?
There are p possibilities for each aj . Thus there are pn remainders and thus pn elements of Zp[x]/ 〈f(x)〉 .
Example. A field with 9 elements: Z3[x]/

〈
x2 + 1

〉
= F9.

If we view Z3 as an analog of the real numbers, this field may be viewed a a finite analog of the complex numbers. From
the preceding Proposition, we know that Z3[x]/

〈
x2 + 1

〉
is a field with 9 elements, once we know that x2 + 1 is irreducible

in Z3[x]. From Proposition 32, we know that x2 + 1 is irreducible iff it has no roots in Z3. Consider f(x) = x2 + 1 and plug
in the elements of Z3. You get f(0) = 1, f(1) = f(−1) = 2. Thus x2 + 1 is irreducible in Z3[x].
The field Z3[x]/

〈
x2 + 1

〉
is isomorphic to Z3[i] = {a+ bi | a, b ∈ Z3} =the smallest field containing Z3 and i such that

I2 = −1. We showed in the preceding paragraph that no element of Z3 satisfies the equation for i. To prove this, you
can define an onto map T : Z3[x] → Z3[i] by T (f(x)) = f(i). Then kerT =

〈
x2 + 1

〉
since if g ∈ kerT, we have

g(x) = q(x)(x2 + 1) + r(x), where deg r(x) < 2 or r = 0. So 0 = g(i) = r(i) says r = 0, and then g ∈
〈
x2 + 1

〉
. Conversely

any element of
〈
x2 + 1

〉
must be in kerT. Thus, the 1st isomorphism theorem says Z3[x]/

〈
x2 + 1

〉
is isomorphic to Z3[i].

Next we consider Zp, for p=prime to be an analog of the real numbers R and we ask, is there an analog of the
quadratic formula? So consider the quadratic equation ar2 + br + c = 0 for a, b, c ∈ Zp and a 6= 0. Now we do the Zp
analog of completing the square, as long as p 6= 2. We can divide by a since Zp is a field and obtain

r2 +
b

a
r =
−c
a
.

Then for p 6= 2 we can add
(
b
2a

)2
to both sides and get

r2 +
b

a
r +

(
b

2a

)2
=
−c
a

+

(
b

2a

)2
.

Now the left hand side is a square and we have(
r +

b

2a

)2
=
−c
a

+

(
b

2a

)2
=
−4ac+ b2

4a2
.

Define the discriminant D = b2 − 4ac and obtain (
r +

b

2a

)2
=

D

(2a)
2 .

So we take square roots of both sides and note that we may have to go to a larger field than Zp to find
√
D. This gives:

r =
−b±

√
D

2a
.

This is the "same" quadratic formula we saw in junior high or high school (now maybe middle school). We have 2 cases:
Case 1 for Finite Fields. If

√
D ∈ Zp then r ∈ Zp.

Case 2 for Finite Fields. If
√
D /∈ Zp, we can view r as an element of our analog of the complex numbers

Zp[
√
D] ∼= Zp[x]/

〈
x2 −D

〉
= Fp2 .

For the real numbers we also had 2 cases:
Case 1. D = b2 − 4ac ≥ 0 =⇒roots real.
Case 2. D = b2 − 4ac < 0 =⇒roots complex and not real.

You may be wondering about the case p = 2. When p = 2, the quadratic formula does not make sense as 1/2 makes no
sense in Z2.
In the next section we recall a bit of linear algebra, just to make sure that you believe it works for any fields as well as

for the field of real numbers.
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9 Field of Quotients

Field of quotients or fractions or quotient field generalizes the idea from elementary school creating the rational numbers Q
from the integers Z. It also generalizes the construction of the field of rational functions F (x) from the ring of polynomials
F [x] over a field F . Recall that we need to identify the fractions: 1

3 = 2
6 = −2

−6 or 3
4 = 75

100 . You need to recall how to add
and multiply them too: 2

3 + 5
7 = 14+15

21 = 29
21 ,

2
3 ·

5
7 = 10

21 .
Once you remember this, you should be able to generalize the idea to any integral domain. Thus you would make the

following definition, state the next theorem, and do the ensuing exercise.

Definition 34 Suppose that D is an integral domain. Then we can construct the field of quotients F by 1st creating a
set S whose elements are the symbols a

b , where a, b ∈ D and b 6= 0. An equivalence relation on S is given by saying a
b ∼

c
d

iff ad = bc. Then define F to be the set of equivalence classes
[
a
b

]
of S. Addition is defined by saying

[
a
b

]
+
[
c
d

]
=
[
ad+bc
bd

]
,

and multiplication is defined by saying
[
a
b

] [
c
d

]
=
[
ac
bd

]
, for a, b, c, d ∈ D. In these definitions of addition and multiplication,

we always assume bd 6= 0.

Theorem 35 The preceding definition creates a field F which contains a subring isomorphic to D.

Exercise. Prove the preceding theorem by checking that ∼ is indeed an equivalence relation, then that the definitions
of addition and multiplication of equivalence classes is independent of representative. Finally check that F satisfies field
axioms.
The preceding exercise is worked out in many of the references.
The earliest known use of fractions (according to the all wise internet) goes back to 2800 B.C. in India (the Indus valley).

10 Vector Spaces

We recall only the basics of linear algebra. We will make much of this subject an exercise. You can find solutions in Dornhoff
and Hohn, Applied Modern Algebra, for example. Or you could look at whatever book you used for this part of your calculus
course and ask what remains true if we replace R by Zp or some other field F . Most of the earlier chapters on Gaussian
elimination, dimension, determinants work as before. So, for example, you might take the book Linear Algebra and its
Applications by G. Strang (or the book with the same title by D. Lay) and convince yourself that all the results of the early
chapters work for arbitrary fields.
The favorite calculations from linear algebra involve Gaussian elimination. It turns out that this is not due to Gauss at

all but appears in a Chinese book parts of which were written as early as 150 B.C. Gaussian elimination allows one to
put a matrix A ∈ Fm×n into echelon form using elementary row operations.

The elementary row operations over the field F are:
1) permute row i and row j;
2) multiply row i by a non-0 element of F times row i;
3) replace row i by row i plus an element of F times row j.

Row Echelon form means that
1) Rows with at least 1 non-0 element are above the rows of all 0’s.
The 1st non-0 element of a non-0 row is called a pivot.
Below each pivot is a column of 0’s;

2) Each pivot is to the right of the pivot in the row above.

You can put the matrix in row-reduced echelon form by normalizing all pivots to be 1 and then by putting 0’s above
all pivots.
Example. Suppose the field is Z3 and the matrix is 2 1 0 2

1 0 0 2
1 0 0 0

 .

We can replace (row 2) by (row2-2*row1) and do the same for (row 3) to get 2 1 0 2
0 1 0 1
0 1 0 2

 .
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Finally replace the (row 3) by (row3-row2) to get  2 1 0 2
0 1 0 1
0 0 0 1

 .

This matrix is in row-echelon form.

The row reduced-echelon form of the matrix is  1 0 0 0
0 1 0 0
0 0 0 1

 .

Exercise. Over the field Z2 put the following matrix (which we will see again in the section on error-correcting codes)
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


into row-echelon form and row-reduced echelon form.

Since the elementary row operations on the matrix of a homogeneous equation do not change the solution set, we get the
theorem saying that a homogeneous system of m linear equations in n unknowns over a field F has a non-trivial solution if
m < n. This can be seen by looking at the matrix version of the system of equations Ax = 0, with A ∈ Fm×n, x ∈ Fn.
One can do Gaussian elimination on the matrix A; i.e., elementary row operations over the field F are used to put A into
a nicer (echelon) form. To help understand this, note that each elementary row operation on A corresponds to finding an
m ×m non-singular matrix U with entries in the field F and replacing A by UA. For example, the 1st operation we did to
the matrix in the example above was to replace (row 2) by (row 2 -2row1). This is achieved by multiplying the matrices
below:  1 0 0 0

−2 1 0 0
0 0 0 1

 2 1 0 2
1 0 0 2
1 0 0 0

 =

 2 1 0 2
0 1 0 1
1 0 0 0

 .

Example. Suppose the field is Z3 and the matrix is that of the previous example 2 1 0 2
1 0 0 2
1 0 0 0

 .

Then the corresponding system of equations is  2x1 + x2 + 2x4 = 0
x1 + 2x4 = 0
x1 = 0.

An equivalent system is that corresponding to the row reduced-echelon form matrix 1 0 0 0
0 1 0 0
0 0 0 1

 ,

which is  x1 = 0
x2 = 0
x4 = 0.

The result is that x1 = x2 = x4 = 0 and the other coordinate x3 is arbitrary (i.e., free to be whatever it wants to be in Z3.)
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Exercise. Over the field Z2 write down the homogeneous system of equations corresponding to the following matrix

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 .

From an earlier exercise, the row echelon form of G is G′ = (I4 A) . If H =

(
−A
I3

)
, solve xH = 0, for x ∈ Z72. How does

the set of such vectors x compare with the set of vectors y = uG, for u ∈ Z42?

Question. Does Gaussian elimination work over Euclidean domains D like Z and F [x]? The answer is that it does work
well. In fact, you could even allow D to be a principal ideal domain.

Elementary Row Operations over a Euclidean Domain D
1) permute row i and row j;
2) replace row i by a unit in D∗ times row i;
3) replace row i by row i plus an element of F times row j.

This allows one, for example, to put a square matrix of integers into the Smith normal form, meaning a diagonal matrix
such that if di is the ith diagonal entry then di divides di+1 for all i. The diagonal entries are called elementary divisors
and are unique up to multiplication by units in D. This result in turn can be used to prove the fundamental theorem of
finitely generated abelian groups stated below. It is also useful in computations of algebraic number theory and algebraic
topology.

Theorem 36 (The Fundamental Theorem of Abelian Groups). Any finitely generated abelian group G is isomorphic
to direct sum Za1 ⊕ · · · ⊕ Zan ⊕ Zr.

Similarly if two n × n matrices A,B have entries in F, where F is a field, one can use the Smith normal form (over the
polynomial ring F [x]) of A− xI and B − xI to decide whether A and B are similar matrices, meaning that B = UAU−1

for some invertible matrix U ∈ Fn×n. The Smith normal form is due to H. J. Smith (1826-1883).
Exercise. Put the following matrix of integers into its Smith normal form using only elementary row operations over Z : 1 2 3

4 5 6
7 8 9

 .

Exercise. Put the following 2 matrices in their Smith normal forms using only elementary row operations over Z3[x] :(
x− 1 1

0 x− 1

)
,

(
x− 1 0

1 x− 2

)
.

A Digression on Algebraically Closed Fields.
Some things in the later chapters of linear algebra texts (like eigenvalues) don’t work well for fields like R but instead

require the field to be a larger field like C where all polynomials factor completely into a product of degree 1 polynomials.
This is the fundamental theorem of algebra which says that C is an algebraically closed field. A field F is "algebraically
closed" means that all polynomials in F [x] factor completely into a product of degree 1 polynomials from F [x]. Given 2
algebraic closures of Fp, there is a field isomorphism from one algebraic closure to the other fixing every element of Fp.
The history of proofs of the fundamental theorem of algebra is very interesting. The first proofs (given by d’Alembert

in 1746 and C. F. Gauss in 1799) had flaws. Gauss later published 3 correct proofs. Some analysis is usually required and
thus we will not prove the theorem here. My favorite proof uses Liouville’s theorem from complex analysis. See Birkhoff
and MacLane, A Survey of Modern Algebra for a topological proof. Another reference is Courant and Robbins, What is
Mathematics?
Anyway, if we want to stick with finite fields, we have no analog of C. For any finite field F , there will be an irreducible

polynomial of degree n > 1 having coeffi cients in F.
Exercise. Prove this last statement. Hint. Look at the polynomial 1 +

∏
a∈F

(x− a) .
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When I am feeling finite, the preceding paragraph makes me very sad. Of course, you can keep adding roots of polynomials

to Fp. This may be done in various ways. For example, PlanetMath.org envisions taking Fp∞ =

∞⋃
n=1

Fpn! to get an

algebraically closed field containing Fp. The finite field Fpn can be constructed as the splitting field of the polynomial xp
n−x,

as we shall see in Section 11.

Definition 37 A set V (the vectors) is a vector space over a field F (the scalars) means that V is an abelian group
under addition and that there is a function from F × V into V sending (α, v) ∈ F × V to α · v = av (multiplication by
scalars) such that ∀v, w ∈ V and ∀α, β ∈ F we have the following 4 properties.
1) α(v + w) = αv + αw;
2) (α+ β)v = αv + βv;
3) α(βv) = (αβ)v;
4) 1v = v.

Example. The plane. R2 = {(x, y) | x, y ∈ R} is a vector space over the field R. Here addition is componentwise; i.e.,

(x, y) + (u, v) = (x+ u, y + v)

and multiplication by scalars is also componentwise; i.e.,

α(x, y) = (αx, αy),

for all x, y, α ∈ R. If you replace R by any field F , you make F 2 into a vector space with analogous definitions of addition
and multiplication by scalars.

Definition 38 The dimension of a finite dimensional vector space V over the field F is the size of a basis B of V. A basis
B of the finite dimensional vector space V over the field F means that B is a finite subset of V with 2 properties:
1) B spans V ; i.e. every vector v ∈ V is a linear combination of elements of B. That is, if B = {b1, ..., bn},

v =

n∑
i=1

αibi, for some scalars αi ∈ F.

2) B is a set of linearly independent vectors; i.e.,
n∑
i=1

αibi = 0 for some scalars αi ∈ F implies all αi = 0.

To show that the idea of dimension makes sense, one must prove that any 2 bases of a vector space have the same number
of elements. We leave this as an exercise. Hint. See Birkhoff and MacLane, A Survey of Modern Algebra or Dornhoff
and Hohn, Applied Modern Algebra. Or you can imitate the proof in Strang, Linear Algebra and its Applications, as follows.
If, by contradiction, the sets A = {u1, ..., um} and B = {v1, ..., vn} are 2 bases of the vector space V over the field F, and
m = |A| < n = |B| , we can write every element of B as an F -linear combination of elements of A; and then obtain m
equations in n unknowns expressing the linear dependence of the elements of B. Such a system has a non-trivial solution -
a contradiction.
We assume that all vector spaces considered here are finite dimensional.

Example. The plane. R2 is 2-dimensional with basis {(1, 0), (0, 1)} . This is the standard basis. Another basis of R2
is {(1, 1) , (2, 0)} .
Exercise. Prove the preceding statements and then the analog replacing R by Z3.
Exercise. Show that, for a matrix in row-echelon form, the set of non-0 rows is a linearly independent set.
Notation. We will view elements of Fn as row vectors (mostly). This means we need to write vM if M ∈ Fn×m. The
function v → vM composes badly with another matrix function since the function part, M, is on the right rather than the
left. That’s why I would really prefer to write column vectors. But they take up a lot of space on a page.

Definition 39 A subspace W of a vector space V over the field F is a non-empty subset W ⊂ V which is a vector space
under the same operations as those of V.
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Example 1. The plane. R2 has as subspace W = {(x, 0)|x ∈ R} , the real line. Similarly Z23 has as a subspace
W = {(x, 0) | x ∈ Z3} .
Example 2. A subfield F of a field E is a vector subspace of E, considering E and F as vector spaces over any subfield
of F .

We define the span of a set S of vectors in the vector space V over the field F to be

Span(S) = {finite F − linear combinations of vectors from S} .

Exercise. Prove that Span(S) is indeed a vector subspace of V.
Exercise. Prove that elementary row operations do not change the span of the set of rows of a matrix.

The (row) rank of a matrix A ∈ Fm×n is defined to be the dimension of the span of the set of row vectors of A. Thanks
to the following exercise, we just say "rank" rather than the row rank of a matrix.
Exercise. Prove that the row rank of a matrix is the same as the column rank (which is the dimension of the span of the
set of columns of the matrix).

Definition 40 If V and W are both vector spaces over the field F, then a mapping T : V → W is a vector space
isomorphism over F iff T is 1-1, onto, T (v + w) = T (v) + T (w), and T (αv) = αT (w), for all v, w ∈ V and all α ∈ F.
Then we write V ∼= W and say V is isomorphic to W. If we drop the 1-1 and onto requirement, we could call T a
vector space homomorphism, but instead we will call such a function a linear mapping (or linear transformation, or linear
operator).

Example 1. If B = {b1, ..., bm} is a basis of the vector space V over the field F, then V ∼= Fm. The mappingMB is defined

by writing v ∈ V in the form v =

m∑
i=1

αibi and then setting

MB(v) = (α1, ..., αm). (5)

We leave it as an exercise to check that MB is indeed a vector space isomorphism.
Example 2. Consider the linear mapping T : Z42 → Z72 defined by mapping a row vector v ∈ Z42 to the row vector
T (v) = vG, where

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 .

Show that the image space T
(
Z42
)
is a vector subspace of Z72. Find a basis for T

(
Z42
)
. What is the dimension of the image

space?

2 Methods to find a basis of a finite dimensional vector space V over a field F ?

Method 1. If you have a spanning set S of vectors in V you keep deleting any vectors that can be written as a (finite) linear
combination of other vectors from S.
Method 2. Start with one non-0 vector or any non-empty set of linearly independent vectors in V and keep adding vectors
from V that are not in the span of the vectors you already have.

Exercise. Prove that the 2 methods to find a basis of V actually work.
Exercise. Prove that if V is a vector space over the field F, then a linear mapping T : V → V is 1-1 iff it is onto.
Given that V and W are both (finite dimensional) vector spaces over the field F, then the matrix of a linear mapping

T : V → W with respect to the (ordered) bases B = {b1, ..., bm} of V and C = {c1, ..., cn} of W is defined to be the n ×m
array of scalars µij ∈ F defined by:

MatB,C(T ) = (µij) 1≤i≤n
1≤j≤m

, where T (bj) =

n∑
i=1

µijci, for j = 1, ...,m.

We have defined the matrix of a linear transformation this way in order that the composition of linear transformations
corresponds to product of matrices.
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Exercise. Suppose V,W are vector spaces over the field F and T : V → W, is a linear map. If B,C are (ordered) bases
of V,W, show that, using the definition of MB in formula (5) from Example 1 above, we have

TMC (T (v)) = Mat(T )B,C
TMB(v),

where if A = (αij) 1≤i≤n
1≤j≤m

, the transpose of A denoted TA is the matrix (αji)1≤j≤m
1≤i≤n

, where the rows and columns are

interchanged.
Hint. By the linearity of T, we have

T

 m∑
j=1

αjbj

 =

m∑
j=1

αjT (bj) =

m∑
j=1

αj

n∑
i=1

µijci.

Interchange the sums over i and j are you will have done the Exercise.
Exercise. Suppose V,W,U are vector spaces over the field F and T : V → W, S : W → U are both linear maps. Show
that the composition S ◦ T : V → U is also a linear map. Then show that if B,C,D are (ordered) bases of V,W,U ,
respectively, then

MatB,D(S ◦ T ) = MatC,D (S)MatB,C (T ) , (6)

where the product on the right is the usual matrix multiplication.
Given that V and W are both vector spaces over the field F, the rank of a linear map T : V →W is the dimension of

the image L(V ) = {Lv|v ∈ V } .
Exercise. a) Show that, assuming V and W are both vector spaces over the field F and T : V → W is linear, then the
image L(V ) is indeed a vector subspace of W.

b) Show that the rank of a linear transformation L is the same as the rank of a matrix of L using bases B of V
and C of W.
Exercise. Consider the field Z3[i], where i2 + 1 = 0.

a) Show that Z3[i] is a vector space over the field Z3.
b) Define the map F : Z3[i]→ Z3[i] by F (z) = z3. Show that F is linear. Then find a matrix of F using the

basis {1, i} for Z3[i].

Theorem 41 Given that V and W are both (finite dimensional) vector spaces over the field F, and T : V → W is a linear
map,

dim kerT + dimT (V ) = dimV.

Proof. Take a basis B = {b1, ..., bm} of kerT and extend it to a basis C = {b1, ..., bm, bm+1, ..., bn} . Then we claim that
{T (bm+1) , ..., T (bn)} is a basis for T (V ).
Exercise. Fill in the details in the preceding proof.
Exercise. Suppose that B = {b1, ..., bn} and C = {c1, ..., cn} are 2 (ordered) bases of the vector space V over the field F.
Let 1V (x) = x, ∀x ∈ V be the identity map (which is certainly linear).

a) Show that if M = MatB,C(1V ), then M is invertible.
b) Show that for any linear map L : V → V, we have

MatB,C(1V )MatB,B(L) = MatC,C(L)MatB,C(1V ).

Hint on b). Use formula (6) to see that both sides are MatB,C(T ).

Definition 42 If A and B are n × n matrices with entries in the field F, we say that A and B are similar iff there is an
invertible n× n matrix U such that B = U−1AU.

Exercise. a) Show that similarity is an equivalence relation on Fn×n.
b) Show that two different n× n matrices A and B over the field F are similar iff they are the matrices of the

same linear transformation T : Fn → Fn with respect to two different bases.

The Smith normal form allows one to obtain canonical forms of matrices (such as the Jordan form) so that any matrix
will be similar to only one matrix of a given canonical form. See Dornhoff and Hohn, Applied Modern Algebra, for more
details. This can be useful despite the reluctance of some applied books to consider the Jordan form of a matrix.
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For example if one needs to do Fourier analysis on the general linear group G = GL(n,Zp) of invertible 2 × 2 matrices
over the field Zp, p=prime, one must know the conjugacy classes {g} =

{
x−1gx | x ∈ G

}
. That is, one needs to know the

similarity classes.
These similarity (conjugacy) classes in GL(2,Zp) are

central
{(

r 0
0 r

)}
parabolic

{(
r 1
0 r

)}
hyperbolic

{(
r 0
0 s

)}
, where rs 6= 0

elliptic
{(

r sδ
s r

)}
, where δ is not a square in Zp.

See Terras, Fourier Analysis on Finite Groups and Applications, p. 366, for more information.

Recall that the characteristic p of a finite field F is a prime number p which is the order of 1 in the additive group of F.
It follows that if F is a finite field of characteristic p, then F contains Zp as a subfield, as we prove next.

Proposition 43 A finite field F of characteristic p (necessarily a prime) is a vector space over Zp.

Proof. Look at the additive subgroup H of F which is generated by 1. Then T : Z → H ⊂ F defined by T (n) = n · 1
is a ring homomorphism mapping Z onto H. By the definition of characteristic, we know that kerT = pZ. By the 1st
isomorphism theorem, we know that H is isomorphic to Z/pZ = Zp. This finishes the proof.

Corollary 44 A finite field F of characteristic p is a vector space over Zp which is necessarily finite dimensional. If the
dimension of F over Zp is n, then F ∼= Znp . This implies that F has pn elements.

Exercise. Show that there is no integral domain with exactly 6 elements.
Notation: We write Fpn for the field with pn elements since we will be able to show that there is only one such field up
to isomorphism.
Example. The Quaternions. Consider a 4-dimensional vector space H over R with basis 1, i, j, k. We define multiplica-
tion by first defining how to multiply the basis vectors as in the multiplication table for the quaternion group in Part I. That
is, i2 = j2 = k2 = ijk = −1. Then assume that the multiplication satisfies the usual associative and distributive laws plus
(αv)·w = α(v ·w) = v ·(αw) , for all α ∈ R and v, w ∈ H. This gives a non-commutative ring. It turns out that you can divide
by non-0 elements. That is because we have an analog of complex conjugate: α1 + α2i+ α3j + α4k = α1−α2i−α3j−α4k.
Then if v = α1 + α2i + α3j + α4k, for αn ∈ R, we have vv = α21 + α22 + α23 + α24. This means that when v 6= 0, we have
v−1 = v

vv ∈ H.
We told some of the story of Hamilton’s discovery of the quaternions in Section 19 of Part I where we introduced the

quaternion group. The quaternions have proved useful in physics and number theory. The construction has been generalized,
replacing R by other fields. Finite quaternions turn out not to be so interesting as they are full matrix algebras.
Exercise. Show that in the quaternions H, we have x · y = y · x
Exercise. Suppose we multiply two quaternions

(α1 + α2i+ α3j + α4k) (β1 + β2i+ β3j + β4k) = γ1 + γ2i+ γ3j + γ4k. (7)

Show that γ1 = α1β1 − α2β2 − α3β3 − α4β4. Obtain similar formulas for the rest of the γr, r = 1, 2, 3.
Exercise. Use what we know about quaternions to prove Lagrange’s identity which says that if the relationship of the γs
to the αs and βs is as in formula (7), then

(
α21 + α22 + α23 + α24

) (
β21 + β22 + β23 + β24

)
= γ21 + γ22 + γ23 + γ24.

Determinants
Hopefully everyone knows that det

(
a b
c d

)
= ad − bc and the analogous formula in 3 dimensions which has 6 terms.

What happens in n dimensions? There are n! terms - one term for every element of the symmetric group. In short, the
formula is:

det

 a11 · · · a1n
...

. . .
...

an1 · · · ann

 =
∑
σ∈Sn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n). (8)
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This formula is not so good for evaluating determinants. For that one needs to know the properties. Properties 2) and
3) combine to say that the determinant is a linear function of each row holding the rest of the rows fixed. Property 4) says
the determinant is an alternating multilinear function of its rows.

Proposition 45 (Properties of Determinants).
1) The determinant of an upper (or lower) triangular matrix is the product of the entries on the diagonal.
2) If all entries in 1 row of a matrix are multiplied by the scalar c then the determinant is multiplied by c.
3) If we write the ith row of a matrix A as v + w then the determinant of A is the sum of the determinant of matrix C

and matrix D, where matrix C is the same as A except that the ith row is vector v and matrix D is the same as A except
that the ith row is vector w.
4) If 2 rows of a matrix are interchanged the determinant is multiplied by -1.
5) det(A) = det(TA).
6) If 2 rows of a matrix are equal, then the determinant is 0.
7) A matrix is invertible (or nonsingular) iff its determinant is not 0.
8) det(AB) = det(A) det(B).

For the proofs, see Herstein, Topic in Algebra, Chapter 6. You could really do them as exercises. The modern way of
doing these things is called "Exterior Algebra" or alternating multilinear algebra. We do not have time to cover this subject
but if you dislike messy formulas with subscripts like formula (8), then this is for you. It is important in several variables
integral calculus for helping to understand why the Jacobean determinant appears in the change of variables formula for
multiple integrals and in helping to understand Stokes’theorem. See the end of Serge Lang, Undergraduate Analysis, or
Courant and John, Calculus, Vol. II, for an introduction.

11 Subfields and Field Extensions of Finite Fields

Next suppose that E is a finite field of characteristic p with subfield F. Then we say that E is a field extension of F. Both
E and F are extensions of Zp. We can view E as a vector space over F and then E ∼= F r, where r is the vector space
dimension of E over F. If the dimension of F over Zp is n, then |F | = pn and |E| = pnr.

Definition 46 The degree d of an extension F ⊂ E of finite fields is the dimension of E as a vector space over F. The
notation is d = [E : F ] .

Exercise. Show that if E = F [x]/ 〈f(x)〉 ∼= F [θ], where f(θ) = 0 and f is an irreducible polynomial in F [x] , then
[E : F ] = deg f.

Proposition 47 We have Fpk ⊂ Fpn ⇐⇒ k divides n.

Proof. =⇒ Fpk ⊂ Fpn says
(
pk
)r

= pn where r is the dimension of Fpn as a vector space over Fpk . If follows that n = kr
and thus k divides n.
⇐= We postpone this proof until we have proved that Fpn is the splitting field of xp

n − x, meaning the field where this
polynomial factors completely into degree 1 factors.

The preceding proposition quickly gives the following corollary.

Corollary 48 Subfields F of Fpn are the fields Fpk such that k divides n.

Example. We compute [F521 : F53 ] = 7 since 21 = 3 · 7.
In Figure 7 we draw the poset diagram for the subfields of F224 . It is the same as the poset diagram for the divisors of

24.

Definition 49 The splitting field of a polynomial f(x) ∈ F [x] over the field F is the smallest extension field E of F
such that f factors completely into linear factors from F [x]; i.e.,

f(x) = c

n∏
i=1

(x− ai), for ai, c ∈ E.
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Figure 7: The poset of subfields of F224

Example 1. The splitting field of x2+1 over R is C, the complex numbers.
Example 2. The splitting field of x2−2 over F5 is

F5
[√

2
]

=
{
a+ b

√
2
∣∣∣ a, b ∈ F5} ∼= F5 [x] /

〈
x2 − 2

〉
.

Exercise. Find the splitting field E of the polynomial x3 + x+ 1 over F2. What is the degree [E : F2]?

Theorem 50 Any polynomial f(x) ∈ F [x], where F is a field, has a splitting field E and this splitting field is unique up to
field isomorphism fixing elements of F.

Proof. Existence of E. (Induction on deg f). If deg f = 1, f is already in the desired form c(x − a). We know that
we can construct a field E1 containing F and a root θ of an irreducible factor g(x) of f ; namely, E1 = F [x]/ 〈g(x)〉 . So we
can factor f(x) = (x − θ)h(x) with h ∈ E1[x]. By induction on deg f we may assume that h(x) is completely factored into
linear factors in an extension field E of E1.
Uniqueness of E up to isomorphism. See Gallian, Contemporary Abstract Algebra.
Moral. Even though the splitting field of a polynomial f(x) over F is only unique up to isomorphism, we will still say

"the" splitting field.
If F is a field with pn elements, then F must be the splitting field of xp

n−x over Fp = Zp. Why? By Lagrange’s theorem
from Section 16 of Part I, any non-0 element of a field F with pn elements is a root of the polynomial xp

n−1 − 1, since the
order of the multiplicative group F ∗ is pn − 1. So the elements of F are roots of x

(
xp

n−1 − 1
)

= xp
n − x. Moreover the

polynomial xp
n − x has at most pn distinct roots in F, since by a corollary of the division algorithm it has pn roots counting

multiplicity. Therefore this polynomial has exactly pn roots in F and F is the splitting field of xp
n − x.

Next we want to know whether a general polynomial in F [x] has multiple roots. For this, one needs to take derivatives.
We don’t want to talk about limits since we usually thinking that F is a finite field, not the real numbers. So we define the
formal derivative of a polynomial by the formula that was proved from the limit definition in calculus.

Definition 51 Suppose that F is any field Then the formal derivative of f (x) = arx
r + ar−1x

r−1 + · · ·+ a1x+ a0, with
aj ∈ F is defined by f ′(x) = rarx

r−1 + (r − 1)ar−1x
r−2 + · · ·+ a1.

Example. Show that the formal derivative has the following familiar properties of derivatives, for any f, g ∈ F [x].
a) (f + g)

′
= f ′ + g′;

b) (fg)
′

= f ′g + fg′;
c) (f(x)n)

′
= n

(
f(x)n−1

)
f ′(x).

Lemma 52 A polynomial f ∈ F [x] does not have a multiple root in an extension field E of F iff gcd(f, f ′) = 1. Here f ′ is
the formal derivative of f.
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Proof. ⇐= Suppose that f(x) = (x− a)2g(x), with g(x) ∈ E[x] and a ∈ E. Then by the usual properties of derivatives, we
have f ′(x) = 2(x− a)g(x) + (x− a)2g′(x). It follows that (x− a) divides gcd(f, f ′).

=⇒ Suppose deg gcd(f, f ′) ≥ 1. Then gcd(f, f ′) is divisible by x− a for some a ∈ E. This means that a is a root of f
and f ′. So f(x) = (x− a)h(x) for some h ∈ E[x]. But then f ′(x) = h(x) + (x− a)h′(x) and 0 = f ′(a) = h(a). This means
h(x) = (x− a)k(x) for some k ∈ E[x] and thus (x− a)

2 divides f(x) and a is a multiple root of f.

Theorem 53 For every prime p and every n = 1, 2, 3, ..., there is a finite field with pn elements which is isomorphic to the
splitting field of xp

n − x over Fp.

Proof. The splitting field F of xp
n − x over Fp has pn distinct roots of f(x) = xp

n − x, since xpn − x cannot have multiple
roots using the preceding Lemma and the fact that gcd(f, f ′) = gcd(xp

n−x,−1) = 1. If we set K =
{
a ∈ F | apn = a

}
, we

can show that K is a subfield of F (Exercise. Hint. To see that K is closed under addition, note that (x+ y)
p

= xp + yp,
for all x, y in a field of characteristic p). We know that xp

n − x splits in K and thus F = K. Moreover, then F is a finite
field that has pn elements.
By the moral above, any other field E with pn elements must be a splitting field of xp

n − x over Fp. This makes E
isomorphic to F by an isomorphism which fixes Fp.

Examples. We have looked at F8, F9, and F25 in Sections 5 and 6. Next let’s consider F16 ∼= F2[x]/
〈
x4 + x+ 1

〉 ∼={
aθ3 + bθ2 + cθ + d

∣∣ a, b, c, d ∈ F2} , where θ4 + θ+ 1 = 0. Here the degree of F16 over F2 is 4 and
{
θ3, θ2, θ, 1

}
is vector

space basis of F16 as a vector space over F2.
Exercise. With the notation of the preceding example, show that
a) the polynomial x4 + x+ 1 is irreducible in F2[x];
b) the polynomial x4 + x+ 1 is primitive; i.e., θ generates the multiplicative group F∗16.
Hint. For part b) you need to make a table of powers θj = a3θ

3 + a2θ
2 + a1θ + a0, ai ∈ F2, using the feedback shift

register idea from Section 5.
Now we can pursue

the completion of the proof of Proposition 47.

Proof. of the fact that m divides n implies Fpm is a subfield of Fpn.
If n = m · r, then pm·r − 1 = (pm − 1)

(
pm(r−1) + pm(r−2) + · · ·+ pm + 1

)
. This says that (pm − 1) divides (pm·r − 1) =

(pn − 1) . It follows that
(
xp

m−1 − 1
)
divides

(
xp

n−1 − 1
)
in Fp[x]. Exercise. Prove this last statement. Hint. Use the

formula for a geometric progression in the form:

xm·k − 1

xm − 1
= (xm)

k−1
+ (xm)

k−2
+ · · ·+ xm + 1.

Since Fpr is the splitting field of xp
r − x over Fp, the proof is over.

There are still several topics to complete our theory of finite fields. The first is to prove something that we have found
to be true in the examples we have considered.

Theorem 54 The multiplicative group of a finite field is cyclic.

Proof. Let F be a finite field with q elements. Suppose that a is an element of maximal order in F ∗ with n = |a| . If
every element b ∈ F has order dividing n, then bn = 1 for all b ∈ F ∗. We know by a corollary to the division algorithm for
polynomials that xn − 1 has at most n roots in F. So n ≥ |F ∗| ≥ n and F ∗ = 〈a〉 .
So assume there is some b ∈ F of order k such that k does not divide n. We will derive a contradiction. Then k = ptk0,

n = pun0, where p is a prime s.t. p does not divide k0n0 and t > u ≥ 0. Set a0 = ap
u

and b0 = bk0 . Then a0 has order n0
and b0 has order pt. Since gcd(n0, p

t) = 1, we know that

〈a0〉 ∩ 〈b0〉 = {1} .

Then (a0b0)
k

= 1 =⇒ a−k0 = bk0 ∈ 〈a0〉 ∩ 〈b0〉 = {1} , which implies ak0 = 1 = bk0 . Thus both n0 and p
t must divide k. It

follows that a0b0 has order ≥ ptn0 > pun0 = n =order of a. This contradicts the maximality of the order of a which means
no such b can exist. The theorem is proved.
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Exercise. Find all the generators of the multiplicative group of F9 ∼= Z3[i], where i2 + 1 = 0.

There are lists of primitive polynomials in the books on finite fields such as R. Lidl and H. Niederreiter, Introduction
to finite fields and their applications. Here we give a short list containing one primitive polynomial over F2 for each small
degree.

Some Primitive Polynomials over F2

x+ 1, x2 + x+ 1, x3 + x+ 1, x4 + x+ 1, x5 + x2 + 1,

x6 + x+ 1, x7 + x3 + 1, x8 + x4 + x3 + x2 + 1, x9 + x4 + 1,

x10 + x4 + 1, x11 + x2 + 1

Exercise. Show that the fields F2[x]/
〈
x3 + x+ 1

〉
and F2[x]/

〈
x3 + x2 + 1

〉
and are isomorphic.

Exercise. Show that the mapping of Fpn onto itself defined by Tx = xp, is a field isomorphism (called the Frobenius
automorphism) fixing elements of Fp (viewing Fp as a subfield of Fpn).
Hint. Use Lemma 17 in Section 3.

The Galois group G(Fpn/Fp) (which is read as the Galois group of Fpn over Fp) is defined to be the set of field
automorphisms T : Fpn → Fpn such that T (x) = x, ∀x ∈ Fp (viewed as a subfield of Fpn). It turns out that G(Fpn/Fp) is
a cyclic group generated by the Frobenius automorphism T of the last exercise. For a proof and a full discussion of Galois
theory for finite fields, see L. Dornhoff and F. Hohn, Applied Modern Algebra. The fundamental theorem of Galois theory
basically says that there is a 1-1 correspondence between intermediate fields E s.t. Fp ⊂ E ⊂ Fpn and subgroups H of
G = G(Fpn/Fp). The subgroup H of G corresponding to E is H = {T ∈ G|Tx = x, ∀x ∈ E} . The intermediate field E
corresponding to a subgroup H of G is E = {x ∈ Fpn |Tx = x, ∀T ∈ H} . The fundamental theorem of Galois theory says
that the correspondence between intermediate fields and subgroups is 1-1, onto and inclusion reversing. Moreover the degree
of the extension n = [Fpn : Fp] is equal to the order of the Galois group G.
Example. What does Galois theory say about the extension F28/F2? What are the intermediate fields between F2 and F28?
They are F21 ,F22 ,F24 ,F28 . So the only non-trivial intermediate fields are F4 and F16. This implies that, if we believe the
fundamental theorem of Galois theory as well as the fact that Galois groups like this are cyclic generated by the Frobenius
automorphism F , the Galois group G = G (F28/F2) = 〈F 〉 is a cyclic group of order 8 which has only 2 non-trivial proper
subgroups

〈
F 2
〉
and

〈
F 4
〉
. which correspond to the 2 non-trivial intermediate fields.

The poset diagram for subfields of Fpn is the same as that for subgroups of G = G(Fpn/Fp), except that all inclusion lines
are reversed.
R. Dedekind gave the first formal lectures on Galois theory in 1857. It is much easier for finite field extensions than

for field extensions of other fields like Q. There are analogs of Galois theory for coverings of Riemann surfaces, topological
manifolds and graphs. See A. Terras, Zeta Functions of Graphs, for the graph theory version.

12 Random Number Generators

References for this section include:
D. E. Knuth, The Art of Computer Programming, Vol. II.
W. H. Press et al, Numerical Recipes.
D. Austin, "Random Numbers: Nothing Left to Chance," on the American Math. Society website under feature column.
G. Marsaglia, Random numbers fall mainly in the planes, Proc. Natl. Acad. Sciences, 61 (1968), 22-28.
R.P. Brent, Note on Marsaglia XOR Shift random number generators, J. Stat. Software, 11 (2004), 1-5.
H. Niederreiter, Random Number Generation and the Quasi-Monte Carlo Method.
P. Diaconis, Group Representations in Probability and Statistics.
B. Cipra, The best of the 20th Century. Editors name top 10 algorithms, SIAM News, Vol. 33, No. 4.
A. Terras, Fourier Analysis on Finite Groups and Applications.

There are many uses for sequences of random numbers; e.g., simulations of natural phenomena using "Monte Carlo"

methods, systems analysis, software testing. For example, you can approximate 1
V

∫
D

f(x)dx, where V is the volume of the
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domain D in Rn, by the average value of f on a "random" finite set of points in D. Sadly, the first use of Monte Carlo
methods seems to have been in work of Metropolis, Ulam and von Neumann that led to the atomic bomb.
Where do random numbers come from? In the old days there were tables (e.g., that of the RAND corporation from1950).

One can also get random sequences of 0’s and 1’s from tossing a fair coin or from times between clicks of a geiger counter
near some radioactive material.
Algebra gives us random numbers (technically, pseudo-random numbers) much more simply, as D.H. Lehmer found in

1949. Let’s consider a simple example. Take a random walk through the multiplicative group Z∗17 = 〈3(mod 17)〉 . In Figure
8 we list the elements in order of the powers 3j(mod 17). The figure is the directed Cayley graph X(Z∗17, {3(mod 17)}).This

Figure 8: The Cayley graph X(Z∗17, {3(mod 17)}).

is very non-random! If instead, we order the vertices according to the usual ordering of the elements of Z∗17, thinking of the
group as a set of integers {1, 2, 3, ..., 16}, then we get the view of the same directed graph that is found in Figure 9.This
second view of the same Cayley graph looks way more random. If you imagine doing the same thing with a truly large prime
p instead of 17, you would certainly expect to get a random listing of integers by taking the random walk.
The method of generating random numbers created by D.H. Lehmer in 1949 is called the linear congruential method.

To get a sequence {Xn}n≥1 of (pseudo-) random integers, you fix 4 numbers: m, the modulus; a, the multiplier; c, the
increment; and X0, the starting point. Then you generate the sequence recursively with the formula

Xn+1 = aXn + c(modm).

If m = 17, a = 3, c = 0, we get the sequence envisaged in Figures 8 and 9. In the old days, popular choices were
m = 231 − 1 (a Mersenne prime) and m = 231. There was an infamous random number generator RANDU, which was built
into the IBM mainframe computers of the 1960s. Randu took m = 231, a = 65539, c = 0. For many years Matlab took
m = 231 − 1, a = 75, c = 0.
What is the meaning of random? That is a question for statisticians who have devised tests to tell whether our lists

are reasonably random. This is not a statistics course and thus we refer you to some of the references listed at the beginning
of this section. Usually the applied mathematician wants a sequence of random real numbers in the interval [0, 1]. To get
these from Xn, you just divide by the modulus m which you used to generate them.
In 1968 or so applied mathematicians using random numbers for Monte Carlo methods began to get angry. For it was

discovered that if they used the linear congruential random integers Xn to produce vectors in [0, 1]n, for ṅ > 1, by writing
v = 1

m (X1, ..., Xn), they would have vectors lying in hyperplanes. Thus Marsaglia wrote his paper (see the references above)
proving that such vectors will fall into < (n!m)1/n hyperplanes. For example if the modulus m = 232 and n = 10, we get
< 41 hyperplanes. Of course no one had really tested the random vectors so produced for their uniform distribution in the
hypercubes. So perhaps it should not have been a shock.
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Figure 9: The same graph as in Figure 8 except that now the vertices are given the usual ordering 1,2,3,4,..., 16.
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Let’s do a simple experiment along these lines. Again we take a fairly small prime, namely p = 499 and note that
Z∗499 = 〈7(mod 499)〉 . We compute a vector v ∈ [0, 1]498 whose jth component is the real number 1

499 times 7j(mod 499),
identifying 7j(mod 499) as an integer between 1 and 498. Here we use Mathematica’s PowerMod as described in Part I, Section
21 on public-key cryptography. If we do Mathematica’s ListPlot[v] for this vector of points in [0, 1], we will get a fairly
random looking set of points in the plane. See Figure 10.

Figure 10: Plot of points Pj = (vj , j) whose 1st component is the real number 1
499 times 7j(mod 499), identifying 7j(mod 499)

as an integer between 1 and 498.

However, there is a pitfall in the method. We are really only allowed to think of this as a one dimensional thing. For if
we try to plot points (vj , vj+1) ∈ [0, 1]2, we get Figure 11
The same sort of thing happens in 3D, taking points (vj , vj+1, vj+2) ∈ [0, 1]3 to give Figure 12.
Suppose now we compute another random vector for a different prime modulus. We form w ∈ [0, 1], with wj being

the real number 1
503 times 5j(mod 503), identifying 5j(mod 503) as an integer between 1 and 502. Then we plot points

Pj = (vi, wi) ∈ [0, 1] in Figure 13
So the points formed using 2 random number generators look more random although connecting some dots might create

some creatures. We can do a 3D plot of points formed using a 3rd random number generator. That is we create another
vector z ∈ [0, 1], with zj being the real number 1

521 times 3j(mod 521), identifying 3j(mod 521) as an integer between 1 and
520. This gives us the Figure 14 plotting points Pj = (vi, wi, zi) ∈ [0, 1]3.
Now we have no obvious hyperplanes.
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Figure 11: Plot of points Pj = (vj , vj+1) whose 1st component is the real number 1
499 times 7j(mod 499), identifying

7j(mod 499) as an integer between 1 and 498.

Figure 12: Plot of points Pj = (vj , vj+1, vj+2) whose 1st component is the real number 1
499 times 7j(mod 499), identifying

7j(mod 499) as an integer between 1 and 498.
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Figure 13: Plot of points Pj = (vj , wj) whose 1st component is the real number 1
499 times 7j(mod 499), identifying 7j(mod 499)

as an integer between 1 and 498 and whose 2nd component is the analog with 499 replaced with 503.

Figure 14: points (vi, wi, zi) from 3 vectors v, w, z formed from powers of generators of F∗p for p = 499, 503, and 521.
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Applied mathematicians were in an uproar over the hyperplanes and did not want to use more than 1 generator, presumably
worrying about slowing down the whole process. So new methods for random numbers arose. In 1995 Matlab switched
to a Marsaglia generator. In the article listed at the beginning of the section, Brent noticed that the Marsaglia Xor Shift
generator can be viewed as a linear feedback shift register. W. H. Press et al spend many pages bad mouthing the linear
congruential generators and then list them as 2/3 of their methods. Mathematica gives 8 basic methods. Not surprisingly
Wolfram’s favorite - cellular automata - appear. You are also allowed to create your own generator.
Some of the generators come from generalizing the method we just illustrated in Fp to a method in Fpr where you take

a generator θ of the multiplicative group F∗q and create the list 1, θ, θ2, .... Writing θn =

n−1∑
j=0

cjθ
j , where cj ∈ Fp. Here

n∑
j=0

cjθ
j = 0 with cn = −1, is the irreducible primitive polynomial satisfied by θ.We can then look at the process via Feedback

Shift Registers. Each successive multiplication of θ takes the registers (a0, a1, ..., an−1) to the registers (a′0, a
′
1, ..., a

′
n−1) =

(an−1c0, a0 + an−1c1, ..., an−2 + an−1cn−1) . This is the same as the matrix equation: a′ = Ma, where our vectors are
written as column vectors now and the matrix is

M =


0 0 · · · 0 c0
1 0 · · · 0 c1
0 1 · · · 0 c2
...
...

. . .
...

...
0 0 · · · 1 cn−1

 .

Now you can generate vectors in Fnp and use them to produce vectors in [0, 1]n. In order to do this with big primes you
would need a bigger list of primitive polynomials than that of the preceding section. Mathematica actually does calculations
in finite fields. So perhaps it has a big list hidden somewhere.
Exercise. Do some experiments using finite fields to generate sequences of random vectors in [0, 1]3.

D. H. Lehmer (1905-1991) and his wife Emma were well known number theorists of the last century. Derrick’s father
was also a number theorist who had built a prime generating machine. Like his father, D.H. was on the U.C. Berkeley
faculty - except for that short time in the 1950s when he was fired for refusing to sign the U.C. Regents’loyalty oath, which
was ultimately declared unconstitutional. That was the era of Joe McCarthy’s un-American activity committee and the
blacklists. It was feared that communists were everywhere. During that period D.H. went to work for the National Bureau
of Standards. Emma, being a woman, was never allowed to join the U.C.B. faculty. Yes, it was the bad old days.
I remember the Lehmers as 2 of the principal organizers of the West Coast Number Theory conference, a conference

that I first attended as a young assistant professor in the 1970s. It is still meeting each year. Under their leadership this
conference, was about the only democratically run math. conference that I ever attended (except the one I helped to start
on automorphic forms). There was no elite bunch of organizers deciding who could speak and who couldn’t. Instead, at the
1st night of the conference, anyone who wanted to give a talk would put their title on a piece of paper and the conference
would be organized by putting talks on nearby subjects together. It was a great idea. Too bad more meetings are not more
democratic and less elitist.

13 Error-Correcting Codes

References for this section include L. Dornhoff and F. Hohn, Applied Modern Algebra, J. Gallian, Contemporary Abstract
Algebra; Vera Pless, An Introduction to the Theory of Error-Correcting Codes; Judy Walker, Codes and Curves; and A.
Terras, Fourier Analysis on Finite Groups and Applications.

Suppose that I must send a message of 0′s and 1′s from my computer on earth to Mr. Spock’s computer on Vulcan. No
doubt errors will be introduced by transmission over such a long distance and some random 1 will turn into a 0. In order
for Mr. Spock to figure out my message, there must be some redundancy built in. Error-correcting codes are created for
that purpose. The original signal s ∈ Fn2 will be encoded as x ∈ Fn+r2 . If errors are added in transmission of the encoded
signal, Mr. Spock will use a decoder to find the most likely original signal s′ ∈ Fn2 hoping that there is enough redundancy
to do so. Such methods are used in compact discs as well as communications with spacecraft. The goal of error correction
is really the opposite of the goal of cryptography. Here we want our message to be understood.
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Figure 15: sending a message of 0’s and 1’s to Mr. Spock

R. W. Hamming (1915-1998) of Bell Telephone Labs published his codes in 1950. He had been working on a computer
using punched cards. Whenever the machine detected an error, the computer would stop. Hamming got frustrated and
began work on a way to correct errors. Hamming also introduced the Hamming distance defined below to get an estimate
of the error in a signal. And he worked on the Manhattan project - doing simulations to model whether the atomic bomb
would ignite the atmosphere. We cannot resist including a quote from Hamming’s book Digital Filters: "... we will avoid
becoming too involved with mathematical rigor, which all too often tends to become rigor mortis."

Definition 55 A linear code C is a vector subspace C of Fnq .

Here Fq denotes the field with q elements. If the dimension of C as a vector space over Fq is k, we call C an [n, k]-code.
Since all codes we consider are linear, we will drop the word "linear" and just call them "codes". Here q will be 2 mostly.
Such codes are called "binary." If q = 3, the code is "ternary.“

Definition 56 The Hamming weight of a codeword x ∈ C is |x|= the number of components of x which are non-zero.
The distance between x, y ∈ C is defined to be d(x, y) = |x− y|.

Exercise. For the vector space V = Fnq , show that the Hamming distance d(x, y) has the following properties for all
x, y, u ∈ V :

a) d(x, y) = d(y, x);
b) d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y;
c) (triangle inequality) d(x, y) ≤ d(x, u) + d(u, y);
d) d(x, y) = d(x+ u, y + u).
e) d(x, y) ∈ Z+ ∪ {0} .

The first 3 properties of the Hamming distance in this exercise make it a metric on V . The 4th property makes it a
translation invariant metric on V .
Exercise. a) For the prime p, show that when p > n > 1, the Hamming weight on x ∈ Fnp satisfies

|x| ≡ xp−11 + · · ·+ xp−1n (mod p).
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b) Consider Fnp as a group under addition and form the Cayley graph X(Fnp , S), where S =
{
s ∈ Fnp

∣∣ |s| = 1
}
.

Draw some pictures for small values of p and n.

Definition 57 If C is an [n, k]-code such that the minimum distance of a non-zero code word from 0 is d, we say that C is
an [n, k, d]-code.

The following theorem assumes you decode a received vector as the nearest codeword using the Hamming distance.

Theorem 58 If d = 2e+ 1, an [n, k, d]-code C corrects e or fewer errors.

Proof. Suppose distinct x, y ∈ C are such that d(x, y) ≥ 2e+ 1. If the received word r has at most e errors, it cannot be in
the Hamming ball of radius e about both x and y, since that would imply 0 < |x− y| = d(x, y) ≤ d(x, r)+d(r, y) ≤ e+e = 2e.
So the code can correct e errors.

We need more definitions.
Since an [n, k] binary code C is a k-dimensional vector space over Fq, C has a k-element basis, we can form a matrix

whose rows are the basis vectors. This is called a generator matrix G of the code C. A generator matrix of an [n, k]-code
is a k × n matrix of rank k with elements in Fq. The code C is the image of the map sending the row vector v ∈ Fkq to
vG. Since C has more than one basis, it also has many generator matrices. The standard generator matrix has the
form G = (Ik A), where the first k columns form the k × k identity matrix Ik. If the generating matrix is in standard form,
with no errors, decoding is easy, just take the first k entries of the code word. We know that we can use elementary row
operations over Fq to put any generator matrix into row echelon form and that this must be the standard form (Ik A) since
this matrix must have rank k.
To describe the encoding envisioned here, we take the original message viewed as a row vector s ∈ Fkq and then we encode

the message as sG, adding redundancy to be able to correct errors.
A parity check matrix H of a [n, k]-code C is a matrix with n columns and rank n− k such that x ∈ C if and only if

xH = 0. (Most texts take transpose H instead). If G = (Ik A), then H =

(
−A
In−k

)
.

Exercise. For code C with generator matrix G = (Ik A) show that x ∈ C iff xH = 0.
Hint. It is easy to see that C lies in the kernel of the linear transformation L sending x ∈ Fnq to xH. Since

dim kerL+ dimL
(
Fnq
)

= n,

we find that the dimension of kerL is k and thus obtain the equality of the kernel of L and the code C.
The parity check matrix is quite useful for decoding. See Gallian, Contemporary Abstract Algebra for more information.
Our next question is: Where does all our theory of finite fields come in?

Definition 59 A linear cyclic code is a linear code C with the property that if c = (c0, c1, ..., cn−2, cn−1) is a code word
then so is (cn−1, c0, ..., cn−3, cn−2).

Let R denote the factor ring R = Fq[x]/ < xn − 1 >. Represent elements of R by polynomials with coeffi cients in Fq of
degree < n. Identify codeword c = (c0, c1, ..., cn−2, cn−1) with (the coset of) the polynomial c0 + c1x+ · · ·+ cn−1x

n−1.

Theorem 60 A linear code C in R is cyclic if and only if it is an ideal in the ring R = Fq[x]/ < xn − 1 > .

Proof. First note that a subspace W of R is an ideal if xW ⊂ W , because this implies xjW ⊂ W , for all j = 2, 3, .... Thus
RW ⊂W .
Now suppose that C is an ideal and c0 + c1x + · · · + cn−1x

n−1 ∈ C. Then C contains x
(
c0 + c1x+ · · ·+ cn−1x

n−1) =
c0x + c1x

2 + · · · + cn−1x
n = cn−1 + c0x + c1x

2 + · · · + cn−2x
n−1 (mod(xn − 1)) . The last happens because xn is congruent

to 1 modulo 〈xn − 1〉. So C is cyclic.
Question. What are the ideals A in the ring R = Fq[x]/ < xn − 1 >?
Answer. Just as we found in Section 4 for ideals in Z12 , they are principal ideals 〈g(x)〉, where g(x) divides xn − 1. We

call g(x) the generator of A. If g(x) = c0 + c1x + · · · + crx
r has degree r, then the corresponding code is an [n, n − r]-code

and a generator matrix for the code (as defined above) is the (n− r)× n matrix:
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c0 c1 c2 · · · cr 0 0 · · · 0
0 c0 c1 · · · cr−1 cr 0 · · · 0
0 0 c0 · · · cr−2 cr−1 cr · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · c0 c1 c2 · · · cr

 . (9)

Exercise. Show that the code described above has dimension n− r.
Hint. The cosets of the vectors g(x)xj , j = 0, ..., n− r − 1, are linearly independent in the ring R. These vectors span

the ideal A = 〈g(x)〉 since elements of A have the form f(x)g(x), for some polynomial f(x) of degree less than or equal to
n− r − 1.
Example 1. The Hamming [7, 4, 3]-code.
Note that the polynomial x7 − 1 can be completely factored into irreducibles over F2 as follows:

x7 − 1 = (x− 1)(x3 + x+ 1)(x3 + x2 + 1) in F2[x].

Take g(x) = x3 + x+ 1 to generate our ideal I in R corresponding to the code. The codewords in C in are listed below.

0 0 0 0 0 0 0
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

1 1 1 1 1 1 1
0 0 1 0 1 1 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0
0 1 1 1 0 0 1
1 0 1 1 1 0 0
0 1 0 1 1 1 0

A generator matrix corresponding to g(x) = x3 + x+ 1 as in formula (9) is

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 .

Exercise. a) Use elementary row operations to put the generator matrix G above into row-reduced echelon (standard) form.
b) Explain why the code words listed above are correct by making a table listing the 16 elements of x ∈ F42 (the possible

messages) in the 1st column and then listing the corresponding xG (the encodings of the messages) in the 2nd column.
Exercise. Imitate the preceding example except use the polynomial x3 + x2 + 1 to build the code instead of x3 + x+ 1.
Suppose g(x)h(x) = xn − 1, in F2[x], with g(x) of degree r, the generator polynomial of a code C and h(x) of degree

k = n− r. Then we get a parity check matrix for the code from the matrix of the polynomial h(x) = h0 + h1x+ · · ·+ hkx
k

as follows: 

hk 0 · · · 0
hk−1 hk · · · 0
...

...
. . .

...
h0 h1 · · · hk
0 h0 · · · hk−1
...

...
. . .

...
0 0 · · · h0


.

Exercise. a) Show that the preceding matrix is indeed a parity - check matrix for our code with generator polynomial g(x)
as described above.
b) Find the parity check matrix for the Hamming [7, 4, 3]-code above.
There is a method for constructing codes that correct lots of errors called BCH codes. See Dornhoff and Hohn, Applied

Modern Algebra, page 442, for the mathematical details. Let us sketch a bit of the theory.

47



Definition 61 Suppose that γ ∈ E and E ⊃ F are finite fields. Define the minimal polynomial of γ over F to be the
polynomial f ∈ F [x] of least degree such that f (γ) = 0.

Recall that we obtained the Hamming [7, 4, 3]-code by looking at the generator polynomial g(x) = x3 + x+ 1. This is the
minimal polynomial of an element γ of F8 whose other roots are γ2 and γ4. So we could say that any polynomial f(x) is in
our code C iff f(γj) = 0, j = 1, 2, 4. For any polynomial whose roots include the roots of g(x) must be divisible by g(x).

Definition 62 A primitive nth root of 1 in a field K is a solution γ to γn = 1 such that γm 6= 1, for 1 ≤ m < n.

Theorem 63 (Bose-Chaudhuri and Hoquenghem,1960) Suppose gcd(n, q) = 1. Let γ be a primitive nth root of 1 in an
extension field of Fq. Suppose the generator polynomial g(x) of a cyclic code of length n over Fq has γ, γ2, ..., γd−1 among its
roots. Then the minimum distance of a code element from 0 is at least d.

For a proof see Dornhoff and Hohn, pages 442-3.
A Reed-Solomon code is a BCH code with n = q − 1. These codes are used by the makers of CD players, NASA, ....

These can be used to correct amazing numbers of errors. If you suppose q = 28 so that n = 255, a 5-error-correcting code
has g(x) = (x− γ)(x− γ2) · · · (x− γ10) of degree 10. Elements of F28 are 8-dimensional vectors over F2. This code can be
used as a code of length 8 ∗ 255 = 2040 over F2, which can correct any "burst" of 33 consecutive errors. See Dornhoff and
Hohn, p. 444. For any 33 consecutive errors over F2 will affect at most 5 of the elements of F8.
Feedback shift registers are of use in encoding and decoding cyclic codes. See Dornhoff and Hohn, pp. 449 ff.

Example. Codes from the Hadamard Matrix.
The code used in the 1969 NASA Mariner 9 spacecraft which orbited Mars comes from the Hamming matrix H25 =(

(−1)
u·v)

u,v∈F52
, with u, v ordered as for the corresponding numbers in binary and u · v =

∑5
i=1 uivi. This matrix is pictured

in Figure 16.

Figure 16: The matrix H32 where the 1′s and -1′s have become purple and turquoise.

The code is found by forming the new matrix G = Φ

(
H25

−H25

)
, where Φ replaces 1s with 0s and -1s with 1s. The

rows of G are the codewords of the [32, 6, 16] biorthogonal Reed-Muller code used in the Mariner Mars probe.
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Exercise. Why is the [32, 6, 16] biorthogonal Reed-Muller code described above actually 6 dimensional with minimum
weight 16 and how many errors can it correct?

The general Hadamard matrix H2n =
(
(−1)

u·v)
u,v∈Fn2

has the recursive definition H2n =

(
H2n H2n

H2n −H2n

)
with

H2 =

(
1 1
1 −1

)
. The matrix Hm is defined to be a matrix of 1s and -1s such that Hm

tHm = mI, where I is the identity

matrix. For Hm to exist with m > 2, it is necessary that 4 divide m. The smallest values of m without a construction of Hm

are m = 428 and 668, according to K. H. Rosen and J. G. Michaels, Handbook of Discrete and Combinatorial Mathematics.
(1999).
Why did Hadamard study these matrices? He wanted a matrix such that Hm with entries hij such that |hij | ≤ 1 and

|det (Hm)| is maximal (i.e., mm/2). In Terras, Fourier Analysis on Finite Groups and Applications, p. 172, we note that the
Hadamard matrix H2n is the matrix of the Fourier Transform (or DFT) on the group Fn2 .
H. B. Mann (Ed.), Error Correcting Codes, gives more information on the code used in the Mariner Mars probe, as

well as on the history of error-correcting codes. In this book one finds a limerick inspired by the coding theorist Jessie
MacWilliams:

"Delight in your algebra dressy
But take heed from a lady named Jessie
Who spoke to us here of her primitive fear
That good codes just might be messy."

W. W. Rouse Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, give more recreational aspects of
Hadamard matrices. See also F. Jessie Mac Williams and N. J. A. Sloane, The Theory of Error-Correcting Codes.
Exercise. Consider the [12, 6] extended ternary Golay code with generator matrix (I6 A) , where

A =


0 1 1 1 1 1
1 0 1 2 2 1
1 1 0 1 2 2
1 2 1 0 1 2
1 2 2 1 0 1
1 1 2 2 1 0

 .

Show that the minimum Hamming weight of a codeword is 6.
This code was found by M. J. Golay in 1949. The ternary [11, 6] cyclic code can be found by factoring

x11 − 1 = (x− 1)
(
x5 − x3 + x2 − x− 1

) (
−x5 − x4 + x3 − x2 + 1

)
.

This is also a quadratic residue code. To obtain a ternary quadratic residue code we proceed as follows. Let p be a
prime such that 3 is a square mod p. Here p = 11. Suppose ζ is a primitive pth root of unity in some field containing F3.
Then let � denote the set of squares in F∗p and let �′ be the set of non-squares in F∗p. Define the polynomials

q(x) =
∏
j∈�

(
x− ζj

)
and n(x) =

∏
j∈�′

(
x− ζj

)
.

One can show that the polynomials q(x) and n(x) have coeffi cients in F3 and that

xp − 1 = (x− 1)q(x)n(x).
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14 Finite Upper Half Planes and Ramanujan Graphs

We imitate the real Poincaré upper half plane H consisting of points z = x+ iy, with x, y ∈ R and y > 0. It has a distance
ds2 = dx2+dy2

y2 which is invariant under fractional linear transformation z → az+b
cz+d , with ad− bc > 0. Moreover, the distance

minimizing curves or geodesics are half lines and half circles perpendicular to the real axis. Viewing these as the straight
lines of our geometry makes Euclid’s 5th postulate false. Thus we get Poincaré’s model of non-Euclidean geometry. See
Terras, Fourier Analysis on Symmetric Spaces, I, for more information. Number theorists are enamoured of functions on H
which have invariance properties under action of the modular group of fractional linear transformations with integer a, b, c, d
and ad− bc = 1.
Here we want to consider a finite analog of the Poincaré upper half plane. Suppose that Fq is a finite field of odd

characteristic p. This implies that q = pr. Suppose δ is a fixed non-square in Fq. The finite upper half plane over Fq is
defined to be

Hq =
{
z = x+ y

√
δ|x, y ∈ Fq, y 6= 0

}
.

We will write for z = x + y
√
δ ∈ x, y ∈ Fq

(√
δ
)
, with x, y ∈ Fq, real part of z = Re(z) = x, imaginary part of

z = Im(z) = y, Conjugate of z = z = z − y
√
δ = zq. Norm of z = Nz = zz.

Perhaps you will object to the use of the word "upper." Since we have no good notion of > for finite fields, we use the
word "upper" thinking, for example, if q = p, the y-coordinate of a point is in the set {1, 2, .., p− 1} of "positive" numbers.
That is perhaps a cheat and we should really view Hq as a union of an upper and a lower half plane, with the y− coordinate
of a point in the set

{
−p−12 , ...,−1, 1, ..., p−12

}
.

The general linear group GL(2,Fq) of matrices g =

(
a b
c d

)
with ad − bc 6= 0 acts on z ∈ Hq by fractional linear

transformation: gz = az+b
cz+d .

Exercise. Show that Im(gz) 6= 0, for any g ∈ GL(2,Fq) and any z ∈ Hq.
Exercise. a) Show that

K =
{
g ∈ GL(2,Fq) | g

√
δ =
√
δ
}

=

{(
a bδ
b a

) ∣∣∣∣ a, b ∈ Fq with a2 − δb2 6= 0

}
.

b) Show that K is a subgroup of G = GL(2,Fq) which is isomorphic to the multiplicative group Fq
(√

δ
)∗
.

Hint. The isomorphism is give by
(
a bδ
b a

)
→ a+ b

√
δ.

The subgroup K of GL(2,Fq) is analogous to the orthogonal subgroup of the general linear group GL(2,R), namely,
O(2,R) =

{
g ∈ GL(2,R) | T gg = I

}
consisting of rotation matrices.

The finite Poincaré distance on Hq is defined to be d(z, w) = N(z−w)
Im z Imw . The distance has values in Fq. Thus we are

not talking about a metric here. There is no possibility of a triangle inequality.
Exercise. Let z = x+ y

√
δ and w = u+ v

√
δ, with x, y, u, v ∈ Fq and yv 6= 0. Show that

d(z, w) =
(x− u)

2 − δ (y − v)
2

yv
.

Exercise. Show that d(gz, gw) = d(z, w) for all g ∈ GL(2,Fq) and all z, w ∈ Hq.

We can draw a contour map of the distance function by making a grid representing the finite upper half plane and coloring
the point x+ y

√
δ according to the value of d(z,

√
δ) = x2−δ(y−1)2

y . When q = 163 we get Figure 17. This figure should be
compared with the analogous figure obtained using an analog of the Euclidean distance on a finite plane given in Figure 1.
I see monsters in Figure 17.
Exercise. Make a figure analogous to Figure 17 using the distance d((x, y), (0, 0)) = x4 + y4, for (x, y) ∈ Fp × Fp, where
p is your favorite prime.

Next we want to define some graphs attached to this stuff.

Definition 64 Let a ∈ Fq and define the finite upper half plane graph Xq(δ, a) to have vertices the elements of Hq and
then draw an edge between 2 vertices z, w iff d(z, w) = a.
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Figure 17: color at point z = x+ y
√
δ in H163 is found by computing the Poincaré distance d(z,

√
δ).

Example. The Octahedron. Let q = 3, δ = −1 ≡ 2(mod 3). We will write i =
√
−1. To draw the graph X3(−1, 1) we

need to find the points adjacent to i for example. These are the points z = x + iy such that d(z, i) = N(z−i)
y = 1. This is

equivalent to solving x2 + (y − 1)2 = 1. Solutions are the 4 points 1 + i, 1− i,−1 + i,−1− i. To find the points adjacent to

any point a + bi ∈ H3, just apply the matrix
(
b a
0 1

)
to the points ±1 ± i that we just found. The graph X3(−1, 1) is

drawn on the left in Figure ?? It is an octahedron.

The adjacency matrix A of the octahedron graph is the 6× 6 matrix below of 0s and 1s where the i, j entry is 1 iff vertex
i is adjacent (i.e., joined by an edge) to vertex j.

A =


0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0

 .

The eigenvalues λ ∈ C of A are the solutions of det(A−λI) = 0. The set of eigenvalues is Spectrum(A) = {4,−2,−2, 0, 0, 0}.
Note that the 2nd largest eigenvalue in absolute value, which is |λ| = 2, satisfies |λ| ≤ 2

√
3 ∼= 3.46. This means that the

graph X3(−1, 1) is what is called a Ramanujan graph.
Figure ?? also shows X5(2, 1) on the right. The solid lines are the edges of the graph. The dotted lines are the edges

of a dodecahedron. We can view the graph X5(2, 1) as that which you get by putting a 5-pointed star on each face of a
dodecahedron.
A graph X is called k − regular if there are k edges coming out of every vertex. We say that a k-regular graph is

Ramanujan if for all eigenvalues λ of the adjacency matrix such that |λ| 6= k, we have |λ| ≤ 2
√
k − 1. This definition was

made by Lubotzky, Phillips and Sarnak in a paper from 1988. It turns out that such graphs provide good communication
networks as the random walk on them converges rapidly to uniform. In the 1980’s Margulis and independently Lubotzky,
Phillips and Sarnak found infinite families of Ramanujan graphs of fixed degree. See Guiliana Davidoff, Peter Sarnak, and
Alain Valette, Elementary number theory, group theory and Ramanujan graphs or A. Terras, Fourier Analysis on Finite
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Figure 18: The graphs on the left is X3(−1, 1), an octahedron, and that on the right is X5(2, 1) with the edges in green. The
red dashed lines on the right are the dodecahedron.

Groups and Applications. Denis Charles, Eyal Goren, and Kristin Lauter give applications of expanders to cryptography in
"Cryptographic hash functions from expander graphs."
Of course, one really wants infinite families of Ramanujan graphs of fixed small degree. The finite upper half plane graphs

Xq(δ, a) have degree q + 1 provided that a 6= 0 or 4δ. These finite upper half plane graphs were proved to be Ramanujan
by N. Katz using work of Soto-Andrade. Ramanujan graphs are also good expanders, meaning that if they form a gossip
network the gossip gets out fast. Sarnak says in his article "What is an expander?" from the Notices of the American Math.
Society, 51 (August 2004), pp. 762-3: "... it is in applications in theoretical computer science where expanders have had
their major impact. Among their applications are the design of explicit supereffi cient communication networks, constructions
of error-correcting codes with very effi cient encoding and decoding algorithms, derandomization of random algorithms, and
analysis of algorithms in computational group theory ...."
Now we can explain Figure 2 in Section 1. The picture is that of points (x, y), with x, y ∈ F121 and y 6= 0. Take δ ∈ F121

to be a non-square. View a point (x, y) as z = x+ y
√
δ ∈ H121 ⊂ F121[

√
δ]. Let 2× 2 matrices g =

(
a b
c d

)
∈ GL(2,F11)

act on z = x+ y
√
δ by fractional linear transformation gz = az+b

cz+d . Color 2 points z and w the same color if there is a matrix
g ∈ GL(2,F11) such that w = gz. This gives the picture in Figure 2. Figure 19 is another version of that figure. This
figure is reminiscent of tessellations of the real Poincaré upper half plane H obtained by translating a fundamental domain
D ∼= Γ\H around using elements of the modular group SL(2,Z). There are some beautiful tessellations on Helena Verrill’s
website: www.math.lsu/~verrill/.
Exercise. Apply Burnside’s Lemma from Section 20 of Part I to GL(2,Fp) acting on Hp2 to find out how many colors need
to be used in creating the analog of Figure for an arbitrary odd prime p.
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Figure 19: another version of Figure 2
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15 Eigenvalues, Random Walks on Graphs, and Google

Notation. All the vectors in this section will be column vectors in Cn. Thus our matrices A ∈ Cn×n will act on the left
taking v ∈ Cn to Av. For a matrix M ∈ Cn×n, the transpose of M is denoted TM.

Given an n×n matrix A whose entries are complex numbers, we say that λ ∈ C is an eigenvalue of A iff det(A−λI) = 0,
where I is the n× n identity matrix. This is the same thing as saying that the matrix A− λI is singular; or that Ax = λx
for some non-0 column vector x ∈ Cn. Then we say x is an eigenvector of A corresponding to the eigenvalue λ. The set of
all the eigenvalues of the matrix A is called the spectrum of A. We will denote it spec (A) . The name eigenvalue comes
from D. Hilbert in 1904. Many other words have been used. P. Halmos (in Finite Dimensional Vector Spaces, p. 102) said:
"Almost every combination of the adjectives proper, latent, characteristic, eigen, and secular, with the nouns root, number,
and value has been used in the literature ..."
Exercise. Find the eigenvalues of the following matrices:(

1 1
0 1

)
,

(
2 0
0 1

)
,

(
0 1
1 0

)
.

If the following exercises are too terrible, you can find them in most linear algebra books.
Exercise. a) Show that for any matrix A ∈ Cn×n there is a unitary matrix U (meaning that TU U = I) and an upper
triangular matrix T, with U, T ∈ Cn×n, such that A = TU TU. This is called the Schur decomposition of A. Since
TU = U−1, this says that the matrix A is similar to T .

b) Then show that if A = TU TU as in part a), the diagonal entries of T are the eigenvalues of A.
Hint on a). We know that det(A − λI) = 0 has a root λ1. Therefore there is a corresponding eigenvector v1 6= 0

such that Av1 = λ1v1. Upon multiplying v1 by a scalar, we may assume that ‖v1‖ = 1. Complete v1 to an orthonormal
basis {v1, v2, · · · , vn} of C4 using the Gram-Schmidt process. Then U1 = (v1v2 · · · vn) is a unitary matrix. And U−11 AU1 =(
λ1 ∗
0 A2

)
, where A2 ∈ C(n−1)×(n−1). Use induction on n to complete the proof.

Exercise. a) Suppose that the matrix A ∈ Cn×n is Hermitian meaning that TA = A. Show that then the upper triangular
matrix T in the Schur decomposition of A can be taken to be diagonal. This is the spectral theorem.
b) Show that the eigenvalues of a Hermitian matrix are real numbers.

There are many applications of these concepts to engineering, physics, chemistry, statistics, economics, music, even the
internet. Eigenvalues associated to structures can be used to analyze their stability under some kind of vibration such as that
caused by an earthquake. The word "spectroscopy" means the use of spectral lines to analyze chemicals. We will investigate
one such application in this section. References for this section include: Google’s website, G. Strang, Linear Algebra and
its Applications; C. D. Meyer, Matrix Algebra and Applied Linear Algebra; R. A. Horn and C. R. Johnson, Matrix Analysis;
Amy N. Langville and Carl D. Meyer, Google’s Pagerank and Beyond: the Science of Search Engine Rankings; D. Cvetkovíc,
M. Doob, and H. Sachs, Spectra of Graphs; A. Terras, Fourier Analysis on Finite Groups and Applications.
This section concerns real and complex linear algebra, the sort you learn as a beginning undergrad, for the most part,

except for the Perron-Frobenius theorem. We will not be thinking about matrices with elements in finite fields in this section.
Usually our matrices will have elements that are nonnegative real numbers. That’s because our matrices will be Markov
matrices from elementary probability theory. Markov invented this concept in 1907. Markov chains are random processes
that retain no memory of where it was in the past. An example is a random walk on the pentagon graph below. References
for the subject are J. C. Kemeny and J. L. Snell, Finite Markov Chains and J. R. Norris, Markov Chains.

AMarkov matrix M ∈ Rn×n means that the entries are in the interval [0, 1] and the columns sum to 1. From such a
matrix you get a Markov chain of probability vectors v, where probability vectormeans that the entries are in [0, 1] and sum
to 1. If we are given a probability vector v0 ∈ [0, 1]n then we get a Markov chain v0, v1 = Av0, v2 = Av1, ..., vn+1 = Avn.
All the vectors vn are probability vectors. At time n, the vector vn has jth component which should be interpreted as the
probability that the system is in its jth state at time n. In the example which follows of a random walk on a pentagon graph,
the jth component is the probability that the random walker is at vertex j of the graph. In the case of the Google Markov
matrix, the jth component is the probability that a websurfer is at the jth website.
Exercise. Show that if M is a Markov matrix and v is a probability vector, then Mv is also a probability vector.
Because, in general, a Markov matrix need not be symmetric, its eigenvalues need not be real numbers. That makes

the analysis of the behavior of the Markov chain a little more delicate. The spectral theorem of the Exercise above is not
suffi cient. One needs the Perron theorem (see Theorem 65 below) or more generally the Perron-Frobenius theorem.
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Figure 20: A random walk on a pentagon. At time t = 0, the big penguin is at vertex 1. At time t = 1 the penguin has
probability 1

2 of being at vertex 2 and probability 1
2 of being at vertex 5. So the penguins at these vertices are half size.

Example. A Random Walk on a Pentagon.
Consider the pentagon graph. This is the Cayley graph X(Z5, {±1(mod 5)}). It is undirected. The associated Markov

matrix for the random walk in which a creature moves from vertex x to vertex x + 1(mod 5) or x − 1(mod 5) with equal
probability is

M =


0 .5 0 0 .5
.5 0 .5 0 0
0 .5 0 .5 0
0 0 .5 0 .5
.5 0 0 .5 0

 .

See Figure 20. Note that M = TM ; i.e., M is real symmetric. Thus it has real eigenvalues which must include 1 since the
vector tw = (1, 1, 1, 1, 1) is satisfies Mv = v. Scientific Workplace tells me that the other eigenvalues are approximately :
−0.8090, 0.3090, each with multiplicity 2.

If we start our random walker at vertex 1, that corresponds to the probability vector T v0 = (1, 0, 0, 0, 0). Then at time
t = 1 the creature is either at vertex 2 or 5 with equal probability. That corresponds to the probability vector v1 = Mv0,
T v1 = (0, 0.5, 0, 0, 0.5). Then at time t = 2 we have the probability vector v2 = M2v0,

T v2 = (0.5000, 0, 0.2500, 0.2500, 0).
At time t = 3 we have v3 = M3v0,

T v3 = (0, 0.3750, 0.1250, 0.1250, 0.3750). Continue in this manner up to time t = 10
and you find that v10 = M10v0,

T v10 = (0.2480, 0.1611, 0.2148, 0.2148, 0.1611). Already we see that we are approaching the
eigenvector 1

5w = (.2, .2, .2, .2, .2) which is the probability that the poor creature is totally lost, also known as the uniform
probability distribution. The speed of convergence to the uniform probability vector is governed by the second largest
eigenvalue which is .8090 in this case. See my book, Fourier Analysis on Finite Groups and Applications, pp. 104-5, for a
proof. You need to be a time t such that .8090t is negligible (depending on what metric you use on the space of vectors in R5).
Anyway, for our example, at time t = 30, the probability vector is v30 = M30v0,

T v30 = (0.2007, 0.1994, 0.2002, 0.2002, 0.1994)
which is close enough to u = (.2, .2, .2, .2, .2) not to be able to notice the difference on a picture. Note that .809030 ∼= .00173.
The actual Euclidean distance between the 2 vectors is

‖v30 − u‖2 =

√
(.0007) + 2 (.0006)

2
+ 2 (.0002)

2 ∼= 0.03.
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If our graph were the web, we’d be saying all websites have the same rank since all the coeffi cients of the steady-state vector
u are equal.
Exercise. Prove that if M is a symmetric n× n Markov matrix and v1, ..., vn is an orthonormal basis of Rn consisting of
eigenvectors of M such that Mv1 = v1, then

lim
t→∞

M tv = u, where u = T

(
1

n
, ...,

1

n

)
, (10)

for any probability vector v.

Hint. Write v =

n∑
j=1

γjvj , for γj ∈ R. Apply M t to both sides and take the limit as t→∞.

Exercise. a) What happens if you replace the pentagon in the preceding example with a square?
b) More generally consider the random walk on the Cayley graph X(Zn, {±1(modn)}) in which the random walker

at vertex x has equal probability of moving to vertex x+ 1(modn) or to vertex x− 1(modn). If you want to see convergence
to the uniform probability vector u = T

(
1
n , ...,

1
n

)
, you will need to take n odd or change the random walk to allow the

walker to have 3 choices, one being to stay at vertex x.

Now we want to apply similar reasoning to a random walk on an extremely large directed graph. If you websurf to
www.google.com and type in some words such as "eigenvalues", you will get a long list of web sites, ordered according to
importance. How does Google produce the ordering? Google has to take all over 1 trillion websites and rank them. It
seemingly does this once a month. Google is a name close to googol which means 10100. Google was invented by 2 computer
science doctoral students (Brin and Page) at Stanford - in the mid-1990s. They only use ideas from a standard undergraduate
linear algebra course, plus a bit of elementary probability. They view the web as a directed graph with a web surfer randomly
hopping around. The main idea is that the more links a web site has to it, the more important it must be (these links are
called "inlinks"). Figure 21 shows a tiny web with only 5 web sites. The sites are the vertices of a directed graph. An arrow
from vertex x to vertex y means that vertex x contains a link to vertex y. So in the example of Figure 21 you might think
vertex 5 is the most important, since it has the most arrows going to it. In short, if xk is the number of links to site k, then
x = (1, 2, 1, 2, 3).

Figure 21: surfing a very small web
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On the other hand, node 5 is what is called a "deadend". It has no links to any other site. If we imagine a web surfer
bouncing around from web page to web page, that surfer will land at node 5 and have nowhere to go. Many web pages are
like this; e.g., pdfs, gifs, jpgs.
We want to make a Markov matrix to give the transition matrix for a random web surfer. Let us first ignore the problem

of node 5 and just look at the matrix H whose i, j entry is

hij =

{ 1
#(arrows going out from site j) , if there is an arrow from site j to site i

0, otherwise.
(11)

For the webgraph of Figure 21, we get

H =


0 1

2 0 0 0
1
3 0 1

2 0 0
0 0 0 1

2 0
1
3 0 1

2 0 0
1
3

1
2 0 1

2 0

 .

This is almost a Markov matrix except that the entries of the last column do not sum to 1. For the Google method
to work, it would be nice to have an actual positive Markov matrix. For we want it to satisfy the hypotheses of Theorem
65 below that the largest eigenvalue is λ1 = 1 and that λ1 is an eigenvalue with a non-negative probability eigenvector
corresponding to the steady state (i.e., limiting) behavior of the associated Markov chain. This theorem says that the other
eigenvalues of M satisfy |λj | < 1.

You may want to use Matlab or Mathematica or Scientific Workplace (or whatever) to do the matrix computations in the
following exercises.
Exercise. a) Find the largest eigenvalue and a corresponding positive eigenvector for the matrix H above. Since H is not a
Markov matrix, don’t expect λ1 = 1.

b) What is the interpretation of this as far as ranking the websites? Which site is most important?
c) Follow a websurfer who starts at site 1 through 20 iterations. That is, compute Hkv, v = T (1, 0, 0, 0, 0),

k = 1, 2, 3 . . . , 10.
d) What seems to be happening to the vector Hkv in the limit as k →∞?
e) Can you use the eigenvalues of H to explain what is happening in d) ?

Exercise. To produce a Markov matrix, one Google idea is to replace the last column in H by a column with 1/5 in each
row. Call the new matrix S. Now it comes closer to satisfying the hypothesis of the Theorem 65 below.

a) Write down the matrix S. Does some Sk have all positive entries?
b) Compute a probability eigenvector of S corresponding to the eigenvalue 1. Which site does this eigenvector say is

the most important?
c) Follow a websurfer who starts at site 1 through 20 iterations. What is the limit of Skv, v =T (1, 0, 0, 0, 0), as

k →∞? Compare answers in b) and c).

Google has one more trick. The matrix S obtained need not be such that all its entries are positive which is the hypothesis
of Perron’s Theorem 65 below (although the weaker hypothesis that Sk has all positive entries will also work but is harder
to check on a matrix which is 1 trillion × 1 trillion). The new Google trick will also affect the second largest eigenvalue in
absolute value. The new matrix is given, for 0 < α < 1, by setting

G = αS + (1− α)
1

n
J, (12)

where n = 5 and J is an n× n matrix all of whose entries are 1.
Exercise. a) Write down G in formula (12) for α = .9 and then compute a probability eigenvector for G corresponding to
the eigenvalue 1. Note that the entries of G are all positive. Which site does this eigenvector say is the most important?

b) Follow a websurfer who starts at site 1 through 20 iterations. What is the limit of Gkv, v = T (1, 0, 0, 0, 0), as
k →∞ ? Compare answers in a) and b).

Notes. In the formula for G, Google chooses α = .85. It could be any number between 0 and 1. If α = .85, it means that
85% of the time the web surfer follows the hyperlink structure of the web and the other 15% of the time the web surfer jumps
(teleports) to a random web page. Since 1/(1 trillion) is small, the alteration in the entries of the matrix H is not enormous.
Of course the Google version of this matrix will be 1trillion x 1 trillion. How does Google find the dominant eigenvector of
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G? It uses a very old method called the power method which works well for sparse matrices (meaning matrices most of
whose entries are 0). That is, Google uses the fact that we noticed in the preceding problems. If you just keep multiplying
some fixed probability vector v by G; in effect, computing Gkv, this should converge to the probability eigenvector for the
eigenvalue 1.
In the case that the Markov matrix M is symmetric, the power method basically takes advantage of formula (10) which

says that for arbitrary probability vectors v, the vectors Mnv approach u = T ( 1n , · · · ,
1
n ), the steady-state of the Markov

chain as n→∞. For a non-symmetric positive Markov matrix M, an analogous result comes from Theorem 65 below. But
in the case of a non-symmetric Markov matrix the stationary state vector will not have all entries equal and that will of
course give the web site rankings. The power method was published by R. von Mises in 1929.
Exercise. Suppose that the matrix A ∈ Rn×n has n linearly independent eigenvectors vj ∈ Rn with Avj = λjvj . Suppose
that |λ1| > |λ2| ≥ · · · ≥ |λn| . Show that for any vector w ∈ Rn,

lim
k→∞

1

|λ1|k
Akw = αv1,

for some scalar α ∈ R.

Hint. Write w =

n∑
j=1

γjvj , for γj ∈ R. Apply Ak to both sides and take the limit.

However the power method is “notoriously slow” for non-sparse matrices like G. So why does it work for Google? The
first part of the answer has to do with the fact that is proved in the following problem. Google only needs to compute the
iterates of sparse matrices and not G itself.
The second part of the answer says that this method requires only about 50 iterations for the huge matrix Google is

dealing with? Why should this be? This has to do with the size of the 2nd largest eigenvalue λ2 of G in absolute value. It
turns out that for the Google matrix, |λ2| ∼= α.

Choosing α = .85, one finds that .8550 ∼= .000296. This means that Google can expect about 2-3 places of accuracy in
the Page Rank vector after about 50 iterations of replacing v by Gv.
Exercise. Here we are trying to understand part of the second to last paragraph. Consider a web with n sites. Let H be
the matrix whose i, j entry is defined by formula (11). Write e=the column vector of 1’s. Let b be the column vector whose
jth component is

bj =

{
1, if site j has no arrows going out (i.e., it’s a dead end),
0, otherwise.

(13)

Using formulas (11) and (13), define

S = H +
1

n
e T b, and G = αS + (1− α)

1

n
e T e, for 0 < α < 1. (14)

Show that if the Google matrix G is defined by formula (12) and if v is any probability (column) vector, meaning its
entries are ≥ 0 and sum to 1 (which implies T e v = 1), we have

Gv = αHv +
1

n
(α T b v + 1− α)e. (15)

Note that H is sparse (with on average only about 10 non-zero elements in a column) and the scalar T b v is easy to compute.
It follows that iterating Gv will be quickly computed.
The next exercise is an attempt to explain "Google bombing." To do this, people are paid to set up link farms to fool

Google into thinking a web page is more important than it otherwise would appear to be. Google attempts to find such
occurrences and then give such pages lower ranks. It was sued for doing so in 2002. The lawsuit was dismissed in 2003.
See the book of Langville and Meyer for more information. Now Google claims to be using many (200) factors to rank sites
- not just the pagerank.
Exercise. In the example of the small web in Figure 21, suppose the site 1 people are angry to be rated below site 5. To
increase the rating of site 1, they create a new site 6 with 3 links to site 1. Site 1 will also link to site 6. Does this help site
1’s ranking?
a) Find the new H matrix from formula (11). Then form the S matrix in formula (14). Finally form the G matrix as in

formula (15).
b) Then you need to find the probability eigenvector of the G matrix corresponding to the eigenvalue 1.
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c) Would it help if site 1 created another new site with links to site 1?
d) What can Google do to minimize the effect of this sort of thing?

The Perron theorem was proved by Perron in 1907 and later generalized by Frobenius in 1912. The general version is
called the Perron-Frobenius theorem. We given only a special case. To see the general version, look at Horn and Johnson,
Matrix Analysis.

Theorem 65 (Perron). Suppose that the n× n Markov matrix M has all positive entries. Then
a) 1 is an eigenvalue of M and the corresponding vector space of eigenvectors is 1−dimensional.
b) If the eigenvalues of M are listed as λ1 = 1, λ2, ..., λn, then 1 = |λ1| > |λj | , for all j = 2, ..., n.
c) There is an eigenvector v1 corresponding to the eigenvalue 1 which is such that all its entries are > 0 and they sum to

1.
d) The vector v1 is the steady state of the Markov chain with transition matrix M ; i.e.,

lim
r→∞

Mrx = v1, for any probability vector x.

It is easy to see that if M is a Markov matrix, 1 is an eigenvalue of the transpose, TM, with eigenvector T (1, 1, ..., 1).
That’s because the columns of M sum to 1. The eigenvalues of TM are the same as the eigenvalues of M, since the
determinant of a matrix is the same as the determinant of its transpose. For the rest of the proof, see C. D. Meyer, Matrix
Algebra and Applied Linear Algebra, Chapter 8, or the last chapter of R. A. Horn and C. R. Johnson, Matrix Analysis.
Exercise. Prove the Perron theorem in the case that the positive Markov matrix M is 2× 2.
Exercise. a) If a real matrix A has non-negative entries, write A ≥ 0. If A has positive entries write A > 0. Prove that if
A > 0 and x ≥ 0, x 6= 0, then Ax > 0.

b) If A−B ≥ 0, write A ≥ B. Show that if N ≥ 0 and u ≥ v ≥ 0, then Nu ≥ Nv ≥ 0.
c) What are the properties of this inequality on matrices? Does it satisfy the properties listed in our list of facts

about orders on Z in Section 3 of Part I of these lectures?

Define the spectral radius of A ∈ Cn×n to be ρ(A) = max {|λ| | λ ∈ spec (A)} . The following exercise is worked out
in the book of Meyer, for example.
Exercise. a) Show that if A ∈ Rn×n and A > 0, then the spectral radius ρ(A) is positive.
b) Show that under the same hypotheses as in part a), ρ(A) ∈ spec (A) and there is a positive eigenvector corresponding

to the eigenvalue ρ(A). In this case we call ρ(A) the Perron eigenvalue.

Many proofs have been given of the Perron-Frobenius theorem. One uses the Brouwer fixed point theorem from analysis.
Others come from H. Wielandt who shows that the Perron eigenvalue ρ(A) of a matrix A ∈ Rn×n such that A > 0 can be
expressed as

ρ(A) = max
x∈Rn,x≥0,x 6=0

 min
1 ≤ i ≤ n
xi 6= 0

(Ax)i
xi

 .

You might still ask how Google finds the webpages with the words you typed. Google answers on its website that it has
a large number of computers to "crawl" the web and "fetch" the pages and then form a humongous index of all the words it
sees. So when we type in "eigenvalue" Google’s computers search their index for that word and the pagerank of the websites
containing that word among "200 factors."

16 Elliptic Curve Cryptography

See Ramanujachary Kumanduri and Cristina Romero, Number Theory with Computer Applications, Chapter 19, on elliptic
curves. Another reference which also does cryptography is Neal Koblitz, A Course in Number Theory and Cryptography.
Google.com gave us many hits when we typed in "elliptic curve cryptography."
What is an elliptic curve? First it is not an ellipse. According to the website of Jeff Miller which gives the origins of

mathematical terms, the name "elliptic curve" comes from a poem to Isaac Newton by James Thompson. Here is a quote
from the poem.
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"He, first of Men, with awful Wing pursu’d The Comet thro’the long Elliptic Curve."

Let K be any field, for example K = R, C, or Q or Z/pZ, p=prime. We will mostly be interested in finite fields here.

Definition 66 An elliptic curve E = E(K) is the set of points (x, y) with x, y in K such that y2 = x3 + ax2 + bx+ c.

We omit some technical conditions, which we will soon be forced to consider. You can also replace the y2 on the left with
some other quadratic function of y.

The real points on E(R) are of interest. They will help us to visualize what we are doing over finite fields. So let’s use
draw some pictures of possible elliptic curves in the plane. Figure 22 shows the real points (x, y) on the elliptic curve
y2 = x3 + x2. Figure 23 shows the real points (x, y) on the elliptic curve y2 = x3 + 2. Figure 24 plots the real points (x, y)
on the elliptic curve y2 = x3 − x.

Figure 22: The real points (x, y) on the elliptic curve y2 = x3 + x2.

Exercise. Plot the real points (x, y) on the elliptic curve y2 = x3 + x and any other curves you find interesting.
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Figure 23: real points (x, y) on the elliptic curve y2 = x3 + 2.

Figure 24: The elliptic curve y2 = x3 − x over the reals.
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It is useful to replace the plane with the projective plane. In general if K is some field, projective n-space is obtained by
looking at points x = (x0, x1, x2, ..., xn) ∈ Kn+1 with x 6= 0, and setting up an equivalence relation x ∼ t iff x = αt, for
some α ∈ K. Here we mean the usual multiplication of a vector by a scalar.

Projective n-space over K is the set of equivalence classes of Kn+1 − 0 under this equivalence relation; i.e., Pn(K) =
(Kn+1 − 0)/ ∼. This allows us to replace our elliptic curve E(K) with a curve in the projective plane P2(K):

y2 = x3 + ax2 + bx+ c becomes (y/z)2 = (x/z)3 + a(x/z)2 + bx/z + c or y2z = x3 + ax2z + bxz2 + cz3. (16)

We will identify (x, y, 1) in P2(K) with (x, y) in K2. So we view K2 as a subspace of the projective plane called affi ne
space. The line at infinity in P2(K) consists of the equivalence classes of points (x, y, 0) in P2(K). The intersection of this
line with the elliptic curve of formula (16) has x = 0. Then the equivalence class in P2(K) containing the point (0, 1, 0) is
called the point at infinity. View it as a point on the intersection of the y−axis and the line at infinity in P2(K).

Definition 67 Suppose a, b, c ∈ C. If f(x) = x3 + ax2 + bx + c = (x − r1)(x − r2)(x − r3), then the discriminant of f is
∆f = (r1 − r2)2(r2 − r3)2(r1 − r3)2. One can show that ∆f = a2b2 + 18abc− 27c2 − 4a3c− 4b3.

An extra factors of 16 appears in the discriminant of an elliptic curve. See, for example N. Koblitz, Introduction to
Elliptic Curves and Modular Forms, p. 26 or the extensive tables of J. E. Cremona, Algorithms for Modular Elliptic Curves
(www.warwick.ac.uk/staff/J.E.Cremona/book/fulltext/index.html or the new website http://l-functions.org).
In order to create a group associated with our elliptic curve, we need to be able to draw tangents to our elliptic curves.

The tangent lines to the curve y = f(x) will be undefined at points r where both f(r) and f ′(x) vanish. That is, when r
is a double root of f and thus the discriminant vanishes. An elliptic curve for which the discriminant is non-zero is called
nonsingular. For example, the curve y2 = x3 + x2 in Figure 22 does not have a well defined tangent at the origin and its
discriminant is 0.

What is the group of an elliptic curve? To associate an abelian group G to an elliptic curve E(K) where K is any
field, usually Q or Fq, the simplest way is to say that 3 points p, q, r on E(K) add to 0 iff they lie on a straight line. See
Figure 25. We define the identity 0 to be the point at infinity on the curve. Then if p = (x, y), we see that −p = (x,−y).
Think of 0 as a point infinitely far up any vertical line. If you need to compute 2p = p + p, then define the intersection of
the curve and its tangent at p to be −2p. Of course, this makes sense over R. To figure out what is happening over a finite
field, we just use the formulas derived from those over the real field. We will make this more precise in the examples below.
The curve will have to have a well defined tangent at every point for our construction to work. Thus the curve in Figure 22
is a bad one, since there is no well defined tangent at the origin.

62



Figure 25: picture of the addition A+B = C on the elliptic curve y2 = x3 − x where the field is R.

63



Theorem 68 The preceding definition makes the nonsingular elliptic curve into an abelian group.

A proof sketch is given in Kumanduri and Romero, Number Theory with Computer Applications, p. 496.

Example. Look at y2 + y = x3 − x2 over the field Q. This curve has 5 rational points a = (0, 0), b = (1,−1), c = (1, 0), d =
(0,−1) and 0. Can you prove it? The real points are shown in Figure 26.

Figure 26: The rational points on the curve y2 + y = x3 − x2 are a, b, c, d and the point at ∞.

The group G of this curve over Q turns out to be the cyclic group of order 5 generated by a. For you can see that 2a = b.
In this case you just need to see that the tangent to the curve at a (which is the x-axis) intersects the curve at c. So that
means a + a + c = 0 and thus a + a = −c = b. And b + c = 0 = the point at ∞, since the line through b and c is vertical
and thus goes through the point at ∞.
Exercise. Compute the addition table for the group G = {0, a, b, c, d} of the curve y2 + y = x3−x2. The group G is a cyclic
group generated by a. Assume that we have found all the rational points on the curve.
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Theorem 69 (Mordell). The group G associated to an elliptic curve E(Q) is finitely generated (not necessarily finite)
abelian.

Thus, by the fundamental theorem of abelian groups, the group G of E(Q) is isomorphic to a direct sum Za1⊕· · ·⊕Zan⊕Zr.
Here r is called the rank of G. The finite part of G is called the torsion subgroup. Kumanduri and Romero, Number
Theory with Computer Applications, finds the torsion subgroup in Section 19.5. The rank is harder.
The rank of an elliptic curve is connected to the congruent number problem which is still open. The congruent number

problem asks which positive integers n are such that there a right triangle with rational sides whose area equals n. More
precisely, the following 2 questions are equivalent:
Question A. For every n ∈ Z+ does there exist a right triangle with rational sides whose area equals n?
Question B. Is the rank of y2 = x3 − n2x positive?

Remarks on Elliptic Curves over the Field C.
To study elliptic curves over the complex numbers, one needs the theory of the Weierstrass ℘-function. The function

℘(z) is a holomorphic function of z in the complex plane except for a double pole at each point of a lattice L = w1Z+w2Z.
Moreover one has the differential equation:

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.

This implies that the point (℘(z), ℘
′
(z)) lies on an elliptic curve E(C). The "curve" is a subset of C2 ∼= R4 which has

1 complex parameter and thus 2 real parameters. The graph would have to be drawn in 4 real dimensions. If you need to
know, the numbers g2, g3 are given by (Eisenstein) series:

g2 = 60
∑
m,n∈Z

(m,n) 6=(0,0)

1

(mw1 + nw2)
4 and g3 = 140

∑
m,n∈Z

(m,n) 6=(0,0)

1

(mw1 + nw2)
6 .

Mathematica knows ℘(z) as WeierstrassP[z,{g1,g2}]. This gives a one-to-one correspondence from z to (℘(z), ℘′(z))
which takes the torus C/L (where we identify points in C which differ by a lattice point in L = w1Z+w2Z) to the elliptic curve
E(C). The mapping is an isomorphism of abelian groups. The Weierstrass ℘-function is not usually covered in undergraduate
analysis. However you can find a discussion in Koblitz, Introduction to Elliptic Curves and Modular Forms.

Elliptic Curves over the Field Fq
In order to do cryptography, we need to discuss elliptic curves over finite fields Fq. Mostly let’s consider the special case

that q = p =prime. How do we add points on a curve E = E(Zp)

y2 = x3 + ax2 + bx+ c(mod p)? (17)

Here we assume the prime p > 3, a, b, c ∈ Z, and p does not divide the discriminant a2b2 + 18abc− 27c2 − 4a3c− 4b3. We
imitate the construction over R. Now the "curve" is just a finite set of points.
See Figure 27 for an example mod 29. The purple points on the 29×29 grid correspond to (x, y) such that y2 = x3−x+1

(mod 29) and they look pretty random, though the pink line segments do look like lines.
In general, let P = (x1, y1) and Q = (x2, y2), P + Q = (x3, y3), with x1 6= x2. Let y − y1 = µ(x − x1) be the line L

through P and Q. Points y on the "line" L must satisfy

y = µx+ β (mod p), where µ =
y2 − y1
x2 − x1

(mod p) and β = y1 − µx1(mod p). (18)

In equation (18), you have to find the inverse (mod p) to find the "slope" µ of the line L.
To find the 3rd point on L and E, which is −(P +Q), we plug equation (18) into formula (17) for the elliptic curve E(Zp).

You get a cubic equation for x:
(µx+ β)2 = x3 + ax2 + bx+ c (mod p).

So we can find our point −(P +Q) by solving the cubic:

f(x) = x3 + (a− µ2)x2 + (b− 2µβ)x+ c− β2(mod p). (19)
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We already have 2 roots of f(x), namely x1 and x2. This means that

f(x) = (x− x1)(x− x2)(x− x3) = x3 − (x1 + x2 + x3)x
2 + (x1x2 + x1x3 + x2x3)x− x1x2x3 (mod p). (20)

Therefore if x1 6= x2, P = (x1, y1) and Q = (x2, y2), we have P +Q = (x3,−y3), with

x3 ≡ µ2 − a− x1 − x2(mod p), y3 ≡ µ(x3 − x1) + y1(mod p), where µ =
y2 − y1
x2 − x1

(mod p). (21)

Again in the formula for µ, you must divide mod p. When x1 = x2 but P 6= Q, the sum is 0, the point at infinity.
To figure out the rule when P = Q, look at the tangent to E at P . This is found by recalling that the "derivative" is the

"slope" to the "tangent" and thus formally we have

2y
dy

dx
= 3x2 + 2ax+ b (mod p).

It follows that the slope dy
dx of the "tangent" to E at the point (x1, y1) is

µ =
3x21 + 2ax1 + b

2y1
(mod p).

If y1 = 0, the "tangent" is vertical and the third point on the curve is 0, the point at infinity. Once more, to find the sum
P +Q, substitute the equation y = µx+ β into equation (17) for the elliptic curve. This time we have a double root at x1.
So instead of (20) we see that

f(x) = (x− x1)2(x− x3) = x3 − (2x1 + x3)x
2 + (x21 + 2x1x3)x− x21x3 (mod p). (22)

This implies 2P = P + P = (x3,−y3) where

x3 ≡ µ2 − a− 2x1 (mod p), y3 ≡ µ(x3 − x1) + y1 (mod p), µ =
3x21 + 2ax1 + b

2y1
(mod p). (23)

Note that equation (23) is just (21) with x1 = x2, except for finding µ with formal derivatives.

Example. Consider the elliptic curve in Figure 27. We plot the points as purple squares in a grid of (x, y) ∈ F229. Point
A is (6, 22). Point B is (10, 24). The "line" through them is y = µx + β, where we find µ = 15 = 2−1(mod 29) and
β = 19(mod 29). Then we find −C = (17, 28). It follows that C = (17, 1) = A+B. Of course the lines mod p are not always
so easily seen. But mercifully all we really need is formula (18). Again, the 3rd point on the line through C and −C is the
point at ∞ which is viewed as infinitely far up the vertical line through C and −C.
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Figure 27: The purple squares indicate the points (x, y) on the elliptic curve y2 = x3 − x+ 1 mod 29. The line through the
points A = (6, 22), B = (10, 24),−C = (17, 28) is indicated. Then A+B = C = (17, 1).
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Exercise. Compute the discriminant of the elliptic curve in Figure 27.
Exercise. Visually try to find 3 more points in a line in Figure 27. Then compute the sum of any 2 of the points using
formula (18).
Example. Compute the group table for the elliptic curve E given by y2 = x3 + 1 (mod 5).

It is now easy to find the points. Substitute x = 0, 1, 2, 3, 4 and solve for y (mod 5). You find

a = (0, 1), b = (0,−1), c = (2, 3), d = (2,−3), e = (4, 0) and 0 = point at ∞ .

We can use formulas (21) and (23) to compute the group table for the group G of points on E. First note that a = (0, 1)
and b = (0,−1). Thus a+ b = 0=the point at infinity.
To find a+c, note that a = (0, 1) and c = (2, 3). So, in this case, the slope of the line L through a and c is µ ≡ 3−1

2−0 (mod 5).
So µ ≡ 1 (mod 5). Then, using (21), we see that

x3 ≡ µ2 − a− x1 − x2 ≡ 1− 0− 0− 2 ≡ −1 ≡ 4(mod 5).

y3 ≡ µ(x3 − x1) + y1 ≡ 1(4− 0) + 1 ≡ 5 ≡ 0(mod 5).

Thus a+ c = (4, 0) = e.
To find c+ c, use equation (23) and note that in this case µ = 3∗4

2∗3 ≡ 3 ∗ 4 ≡ 2(mod 5).

x3 ≡ µ2 − a− 2x1 ≡ 4− 0− 4 ≡ 0(mod 5).

y3 ≡ µ(x3 − x1) + y1 ≡ 2(0− 2) + 3 ≡ −1(mod 5).

It follows that 2c = a.
Exercise. Compute the rest of the group table for the group G of the preceding example. Is G cyclic?

Remarks on the number of points on an Elliptic Curve Mod p.
Define the Legendre symbol by(

n

p

)
=

{
0, if p divides n,
1, if p does not divide m and n ≡ x2(mod p) has a solution x.

Exercise. a) Let f(x) = x3 + ax2 + bx+ c. Show that

1 +

(
f(x)

p

)
= the number of solutions y to the congruence y2 ≡ x3 + ax2 + bx+ c(mod p).

b) Then prove that the number of points on the elliptic curve y2 ≡ x3 + ax2 + bx+ c(mod p) is

Np = p+ 1 +

p−1∑
x=0

(
f(x)

p

)
.

c) For our example from the preceding problem, use this formula to see that there are 6 points on the curve.

Theorem 70 (H. Hasse, 1933). If Np is the number of points on an elliptic curve mod p, set ap = p + 1 − Np. Then
|ap| ≤ 2

√
p.

To prove this theorem, one must bound the sum
p−1∑
x=0

(
f(x)
p

)
. One expects the Legendre symbols to be randomly +1 or

-1. That leads to the heuristic reason for the bound. If you want a real proof, see S. Lang, Elliptic Curves: Diophantine
Analysis.

Much is known about elliptic curves. For example, it has also been proved that the group G of points on an elliptic
curve (mod p) is a product of at most two cyclic groups. More references on the subject are: Jeff Hoffstein, Jill Pipher and
J. H. Silverman, Introduction to mathematical cryptography ; Kristin Lauter, The advantages of elliptic curve cryptography
for wireless security, IEEE Wireless Communications, February 2004, 2-7; Karl Rubin and Alice Silverberg, Ranks of elliptic
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curves, Bull. Amer. Math. Soc., 39 (2002), 455-474; Alice Silverberg, Introduction to Elliptic Curves, in IAS/Park City
Math. Series, to appear; J. Silverman, The Arithmetic of Elliptic Curves.
Exercise. Find the number of points on the curve y2 = x3 − 1(mod p) for all odd primes p ≤ 30.

Elliptic Curves over Finite Fields and Cryptography.
In Section 21 of Part I we saw how to get public key secret codes from the multiplicative group (Z/pqZ)∗, when p and

q are large primes. The usefulness of such codes derives from the diffi culty of factoring pq when p and q are 2 large primes.
Elliptic curve cryptography makes use of the group G of an elliptic curve mod p. It seems that one can use smaller public
keys and still have secure messages using elliptic curve cryptography.
Note that our analog of raising an element a in (Z/pqZ)∗ to the kth power in G is multiplying an element a in G by k,

or adding a to itself k times to get
a+ · · ·+ a
k times

= ka.

To do this fast, one can proceed in an analogous way to that with powers. For example,

100 = 26 + 25 + 22

The result is that in order to compute 100a, we need 6 doublings and 2 additions.
We will want to encode our plaintext m as a point Pm on an elliptic curve E so that it will be easy to get m from Pm.

Remarks.
1) There does not exist an algorithm for writing down lots of points on E(Z/pZ) in log p time.
2) It is not suffi cient to generate random points on E(Z/pZ) anyway.

A Probabilistic Method to Encode Plaintext m as Pm on an elliptic curve E(Z/pZ).
We will illustrate the method with an example from Koblitz, A Course in Number Theory and Cryptography. The curve

is
y2 + y ≡ x3 − x(mod 751).

This curve has 727 points.
Exercise. Check the last statement.
Take a number κ = 20 (or larger). The number κ is chosen so that a failure rate of 1

2κ is OK when seeking our point.
We will need to represent numbers m between 0 and 35 (meaning the usual alphabet plus the digits from 0 to 9):

0, 1, 2, ..., 9, A,B,C,D, ...,X, Y, Z.

So we want p > M ∗ κ = 700. Our p = 751 so that is O.K.
Write x between 0 and 700 in the form x = m ∗ 20 + j, where 1 ≤ j ≤ 20. Then compute y′ = y + 376 so that

2 ∗ 376 ≡ 1(mod 751) and 3762 ≡ 188(mod 751).

y′2 ≡ (y + 376)2 ≡ y2 + y + 188 ≡ x3 − x+ 188(mod 751).

Thus we need a fast way to do square roots mod p. Luckily Mathematica does square roots mod p. So we do not need to
program this algorithm (unless we hate Mathematica). Of course programs like SAGE actually know about elliptic curves.
If we can solve for y then set Px = (x, y). Otherwise replace j by j+ 1 in the formula for x and try again. Since our curve

has 727 points, probability says we shouldn’t have to increment more than 20 times. Set f(x) ≡ x3−x+188(mod 751). There
is a ( 12 )20 chance that f(m∗20+j) will not be a square for any j = 1, 2, ..., 20; assuming that the events f(m∗20+j) =square
and f(m ∗ 20 + j + 1) =square are independent.

Here’s our alphabet table.

0 1 2 3 4 5 6 7 8 9 A B C D E F G I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18

J K L M N O P Q R S T U V W X Y Z
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
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Let’s find some points on the curve corresponding to our alphabet entries.

1) First m = 0 gives P0. We look at x = 0 ∗ 20 + 1 and plug that into

y′2 ≡ (y + 376)2 ≡ x3 − x+ 188 ≡ 1− 1 + 188 ≡ 188 ≡ (376)2(mod 751).

Clearly the solution is y = 0. So P0 = (1, 0).
2) Next we look at m = 1, and form x = 1 ∗ 20 + j, with j = 1, ..., 20. For j = 1, we have x = 21 and solve

y′2 ≡ (y + 376)2 ≡ x3 − x+ 188 ≡ 213 − 21x+ 188 ≡ 416 ≡ (618)2(mod 751).

Then y′2 ≡ (618)2(mod 751) has two solutions. We take y′ ≡ 618(mod 751). Then y ≡ y′ − 376 ≡ 212(mod 751). The other
solution is y ≡ 508(mod 751). We’ll ignore it. So we get the point P1 = (21, 242). We could have equally well said (21, 508).
3) Similarly we find P2 = (41, 101).
4) The next case is more interesting. If we set m = 3 and form x = 3 ∗ 20 + j, with j = 1, we see that when x = 61, we

cannot solve the congruence

y′2 ≡ (y + 376)2 ≡ x3 − x+ 188 ≡ 613 − 61x+ 188 ≡ 306(mod 751).

So we must increment j to 2 and look at x = 62. Luckily this guy is a square mod 751 and we find that P2 = (62, 214).
5) Corresponding to the letter S is the number m = 28 (from our alphabet table). Then we find the point P28 = (562, 576)

on the curve E. It again takes 2 tries.
Of course we are using Mathematica to do this. Here is part of our Mathematica notebook.
_____________________________________________________________
In versions of Mathematica from 2001, we needed to include the package <<NumberTheory‘NumberTheoryFunctions‘

in order to take square roots mod n. Now we just use PowerMod[a,1/2,n].
For example, to do the Mathematica calculation for the 2nd point on the curve mod 751, we define the following Mathe-

matica functions f,g,h,k and perform the calculations.
f[x_]:=f[x]=Mod[PowerMod[x,3,751] - x + 188,751]
g[x_]:=g[x]=PowerMod[x,1/2,751]
h[x_]:=h[x]=Mod[x-376,751]
k[x_]:=k[x]=Mod[-x-376,751]
f[21]=416
g[416] =618
h[618]= 242
k[618]=508
______________________________________________________________

Exercise. a) Write the message

THEIR LANGUAGE IS THE LANGUAGE OF NUMBERS AND THEY HAVE NO NEED TO SMILE

as a sequence of points on the curve
y2 + y ≡ x3 − x(mod 751).

using the method described above. This is a quote from the Dr. Who episode Logopolis.
b) Translate the following sequence of points on the curve in part a)

(421, 737)(361, 383)(621, 220)(283, 321)(421, 737)(484, 214)(461, 467)(324, 416)(201, 380)

(461, 467)(261, 663)(501, 220)(543, 436)(484, 214)(562, 576)(501, 220)(283, 321)(543, 436)

Hints. a) The answer to part a) is not unique.
b)We set up the mapping from m to Pm so that the inverse is easy to find.

A Few Remarks on Public Key Cryptography
Now we should discuss public key codes. Let’s just say a little about the analog of the Diffi e-Helman key exchange. Two

other methods are also given in Koblitz, A Course in Number Theory and Cryptography.
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Suppose that Delenn is on Minbari and John is on Babylon 5. They want to send messages to each other without having
the shadows understand these messages. They publicly choose an elliptic curve E(Z/pZ). Their key will be built out of a
point z = (x, y) on E(Z/pZ). They must choose z such that all communication with each other is public and yet they are
the only ones who know z.

1) Delenn and John choose g in E(Z/pZ) to be their base (not necessarily a generator of the group G of the elliptic curve,
since G may not be cyclic). In fact, it may be hard to show g generates G even if it does, and it is even hard to find the
order of G. But we do want the subgroup < g > generated by g to be large (near the order of G). One also wants the order
of G to be different from p.

2) To create a key, Delenn chooses an integer a near the order of G. She then computes ag in G which she makes public.
John chooses an integer b near the order of G and makes bg in G public. The secret key they use is then z = abg in G. Both
users can compute z. For example, Delenn knows bg, which is public and her secret a. But a shadow creature knows only ag
and bg. It should not be able to find abg, assuming it cannot find a and b.
3) One way to guarantee that g generates the group G is to make sure that the order of G is a prime. Any subgroup has

order dividing the order of G and thus < g > must equal G if g is not the identity in G.
4) What is the advantage of elliptic curve cryptography over RSA described in Chapter 21 of Part I of these Lectures?

The public keys can be much smaller than those for RSA.
6) Actually one uses finite fields of prime power order as well.

To end this section, which is really the end of this set of lectures, we include Figures 28 and 29 which are 2 pictures of
level "curves" of y2 − x3 + x(mod 29).

Figure 28: level "curves" of y2 − x3 + x(mod 29)

Figure 30 is a rotated version of x4 + y4(mod p).
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Figure 29: smoothed level "curves" of y2 − x3 + x(mod 29)
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Figure 30: level "curves" of (y + 2x)4 + (x− 2y)4(mod 37).
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