To send a message of 0’s and 1’s from my computer on Earth to Mr. Spock’s computer on the planet Vulcan we use codes which include redundancy to correct errors.
Definition. A linear code C is a vector subspace C of \mathbb{F}_q^n.

Here \mathbb{F}_q denotes the field with q elements. If the dimension of C as a vector space over \mathbb{F}_q is k, we call C an $[n,k]$-code.

Since all codes we consider are linear, we will drop the word "linear" and just call them "codes".

Here q will be 2 mostly. Such codes are called "binary." If $q=3$, the code is "ternary."

Definition. The Hamming weight of a codeword x is $|x| = \text{the number of components of } x \text{ which are non-zero}$. The distance between is defined to be $|x-y|$.
Definition. If C is an $[n,k]$ code such that the minimum distance of a non-zero code word from 0 is d, we say that C is an $[n,k,d]$-code.

The following is part of Theorem 31.2, Gallian, p. 525. It assumes you decode a received vector as the nearest codeword using the Hamming distance.

Theorem. If $d = 2e+1$, an $[n,k,d]$-code C corrects e or fewer errors.

Proof. If $x \in C$ is sent and u received, with at most e errors made, then u is closer to x than any other codeword $y \in C$. Here u is in the big vector space, not necessarily in the code C. It has errors. To prove u closer to x than y:

$$e + d(u,y) \geq d(u,x) + d(u,y) \geq d(x,y) \geq 2e+1,$$

which implies $d(u,y) \geq e+1$.

1st \geq true since: u has distance at most e from x.

2nd \geq is triangle inequality for Hamming distance (Gallian, p.524)

Last \geq true since $2e+1 = $ minimum distance between any 2 codeword in C.

As $d(u,x) \leq e$, we see x is closer to u than any other codeword y with $y \neq x$, as we just showed that $d(u,y) \geq e+1$. So we decode u as x, the correct answer.
More Definitions.

Since an \([n,k]\) binary code \(C\) is a \(k\)-dimensional vector space over \(\mathbb{F}_2\), \(C\) has a \(k\)-element basis, we can form a matrix whose rows are the basis vectors. This is called a **generator matrix** \(G\) of the code \(C\). A generator matrix of an \([n,k]\) code is a \(k \times n\) matrix with elements in \(\mathbb{F}_2\).

Codewords in \(C\) have the form \(vG\), where \(v\) is a row vector with its \(k\) entries from \(\mathbb{F}_2\).

Since \(C\) has more than one basis, it also has many generator matrices.

The **standard generator matrix** has the form \(G = (I_k \ A)\), where the first \(k\) columns are the \(k \times k\) identity matrix \(I_k\).

With the generating matrix in standard form, with no errors, decoding is easy, just take the first \(k\) entries of the code word.
A parity check matrix \(H \) of a \([n,k]\) code \(C \) is a matrix with \(n \) columns and rank \(n-k \) such that \(x \in C \) if and only if \(x \, H = 0 \).

(Most texts take transpose \(H \) instead.)

If \(G = (I_k \, A) \), then

\[
H = \begin{pmatrix}
-A \\
I_{n-k}
\end{pmatrix}.
\]

Parity check decoding is described in our text, pages 528-553.

Next: Where does all our theory of finite fields come in?
Defn. A linear cyclic code is a linear code \(C \) with the property that if \(c = (c_0, c_1, \ldots, c_{n-2}, c_{n-1}) \) is a code word then so is \((c_{n-1}, c_0, \ldots, c_{n-3}, c_{n-2}) \).

Let \(R \) denote the factor ring
\[
R = \mathbb{F}_q \langle x \rangle / \langle x^n - 1 \rangle.
\]
Represent elements of \(R \) by polynomials with coefficients in \(\mathbb{F}_q \) of degree < \(n \).
Identify codeword \(c = (c_0, c_1, \ldots, c_{n-2}, c_{n-1}) \) with \(c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \).

Theorem. A linear code \(C \) in \(R \) is cyclic if and only if it is an ideal in the ring \(R = \mathbb{F}_q \langle x \rangle / \langle x^n - 1 \rangle \).

Proof.
First note that a subspace \(W \) of \(R \) is an ideal if \(xW \subseteq W \), because this \(\implies \)
\[
x^j W \subseteq W, \text{ for all } j=2,3,\ldots.
\]
Thus \(RW \subseteq W \).

Now suppose that \(C \) is an ideal and \(c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \in C \). Then \(C \) contains
\[
x(c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}) = c_0 x + c_1 x^2 + \cdots + c_{n-1} x^n
\]
\[
= c_{n-1} + c_0 x + \cdots + c_{n-2} x^{n-1} \pmod{\langle x^n - 1 \rangle}.
\]
The last happens because \(x^n \) is congruent to 1 modulo \(\langle x^n - 1 \rangle \).
So \(C \) is cyclic.

Problem A. Suppose that \(C \) is cyclic, and show that \(C \) is an ideal.
Question. What are the ideals \(A \) in the ring \(R = \mathbb{F}_q[x]/<x^n - 1> \)?

Answer. They are principal ideals \(<g(x)>\), where \(g(x) \) divides \(x^n - 1 \). We call \(g(x) \) the generator of \(A \).

If
\[
g(x) = c_0 + c_1x + \cdots + c_rx^r
\]
has degree \(r \), then the corresponding code is an \([n,n-r]\)-code and a generator matrix for the code (as defined above) is the \((n-r)\times n\) matrix:
\[
\begin{pmatrix}
 c_0 & c_1 & c_2 & \cdots & c_r & 0 & 0 & \cdots & 0 \\
 0 & c_0 & c_1 & \cdots & c_{r-1} & c_r & 0 & \cdots & 0 \\
 0 & 0 & c_0 & \cdots & c_{r-2} & c_{r-1} & c_r & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & c_0 & c_1 & c_2 & \cdots & c_r
\end{pmatrix}
\]

Problem B. Show that the code above has dimension \(n-r \).

Hint. The cosets of the vectors \(g(x)x^j, j=0,\ldots,n-r-1, \) are linearly independent in the ring \(R \). These vectors span the ideal \(A = <g(x)> \) since elements of \(A \) have the form \(f(x)g(x) \), for some polynomial \(f(x) \) of degree less than or equal to \(n-r-1 \).
Example 1. The Hamming [7, 4, 3]-code.

\[x^7 - 1 = (x - 1)(x^3 + x + 1)(x^3 + x^2 + 1) \text{ in } \mathbb{F}_2[x]. \]

Take \(g(x) = x^3 + x + 1 \) to generate our ideal I in R corresponding to the code.

The codewords in C in \(\mathbb{F}_2^7 \) are listed below:

\[
\begin{array}{cccccccc}
0 0 0 0 0 0 0 & 1 1 1 1 1 1 1 \\
1 1 0 1 0 0 0 & 0 0 1 0 1 1 1 \\
0 1 1 0 1 0 0 & 1 0 0 1 0 1 1 \\
0 0 1 1 0 1 0 & 1 1 0 0 1 0 1 \\
0 0 0 1 1 0 1 & 1 1 1 0 0 1 0 \\
1 0 0 0 1 1 0 & 0 1 1 1 0 0 1 \\
0 1 0 0 0 1 1 & 1 0 1 1 1 0 0 \\
1 0 1 0 0 0 1 & 0 1 0 1 1 1 0 \\
\end{array}
\]

Problem C. Explain why the listed code words are correct.

A generator matrix of the preceding code is

\[
\begin{pmatrix}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
\end{pmatrix}.
\]

This is not the same as that used by Gallian, in Examples 1 and 9 pages 522 and 531.
Problem D. Explain why our Hamming [7,4,3] code is the same as that of Gallian, Examples 1 and 9, pages 522 and 531.

Suppose \(g(x)h(x) = x^{n-1} \), in \(\mathbb{F}_2[x] \), with \(g(x) \) of degree \(r \), the generator polynomial of a code \(C \) and \(h(x) \) of degree \(k=n-r \). Then we get a parity check matrix for the code from the matrix of the polynomial \(h(x) = h_0 + h_1x + \cdots + h_kx^k \) as follows

\[
\begin{pmatrix}
 h_k & 0 & \cdots & 0 \\
h_{k-1} & h_k & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
h_0 & h_1 & \cdots & h_k \\
 0 & h_0 & \cdots & h_{k-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & h_0
\end{pmatrix}
\]

Problem E. i) Show that the preceding matrix is indeed a parity - check matrix for our code with generator polynomial \(g(x) \) as described above. ii) Find the parity check matrix for the Hamming [7,4,3] code above.
There is a method for constructing codes that correct lots of errors called BCH codes. See Dornhoff and Hohn, *Applied Modern Algebra*, page 442 for the mathematical details.

Gallian includes some history of the subject on pages 537 ff.

Another reference is Vera Pless, *Introduction to the Theory of Error-Correcting Codes*.

Recall that we obtained the Hamming $[7,4,3]$ code by looking at the generator polynomial $g(x) = x^3 + x + 1$. This is the minimal polynomial of an element g of \mathbb{F}_8 whose other roots are g^2 and g^4. So we could say that any polynomial $f(x)$ is in our code C iff $f(g^j) = 0$, $j = 1, 2, 4$. For any polynomial whose roots include the roots of $g(x)$ must be divisible by $g(x)$.

Definition. A primitive nth root of 1 in a field K is a solution g to $g^n = 1$ such that $g^m \neq 1$, for $1 \leq m < n$.

Theorem. (Bose-Chaudhuri and Hoquenghem - around 1960)
Suppose $g.c.d.(n,q)=1$. Let g be a primitive nth root of 1 in \mathbb{F}_{q^m}. Suppose the generator polynomial $g(x)$ of a cyclic code of length n over \mathbb{F}_q has $g, g^2, ..., g^{d-1}$ among its roots.
Then the minimum distance of a code element from 0 is at least d.
For a proof see Dornhoff and Hohn, pages 442-3.
A Reed-Solomon code is a BCH code with \(n=q-1 \).

These codes are used by the makers of CD players, NASA,

These can be used to correct amazing numbers of errors. If you suppose \(q=2^8 \) so that \(n=255 \), a 5-error-correcting code has
\[
g(x) = (x-g)(x-g^2) \cdots (x-g^{10}) \text{ of degree 10.}
\]

Elements of \(\mathbb{F}_8 \) are 8-dimensional vectors over \(\mathbb{F}_2 \).
This code can be used as a code of length
\[
8*255=2040 \text{ over } \mathbb{F}_2,
\]
which can correct any 33 consecutive errors.

See Dornhoff and Hohn, p. 444.

Feedback shift registers are of use in encoding and decoding cyclic codes.