1) Suppose that R, S are rings, A is a subring of R, B is an ideal of S. Let $\phi: R \rightarrow S$ be a ring homomorphism.
 a) Show that for all r in R and all n in \mathbb{Z}^+, we have $\phi(nr) = n \phi(r)$ and $\phi(r^n) = \phi(r)^n$.
 b) Show that $\phi(A)$ is a subring of S. Here the image of A is $\phi(A) = \{ \phi(a) | a \in A \}$.
 c) Show that if A is an ideal in R and $\phi(R) = S$, then $\phi(A)$ is an ideal of S.

2) Under the same hypotheses as in 1) prove:
 a) $\phi^{-1}(B)$ is an ideal of R. Here the inverse image of B is $\phi^{-1}(B) = \{ a \in A | \phi(a) \in B \}$. We are not assuming the inverse function of ϕ exists.
 b) If R has an identity 1 for multiplication, $S \neq \{0\}$, and $\phi(R) = S$, then $\phi(1)$ is the identity for multiplication in S.
 b) If ϕ is a isomorphism of R onto S, then ϕ^{-1} is an isomorphism of S onto R.

3) a) Show that $\phi: \mathbb{Z}_5 \rightarrow \mathbb{Z}_{10}$ defined by $\phi(x) = 5x$ does not preserve addition.
 b) Show that $\phi: \mathbb{Z}_4 \rightarrow \mathbb{Z}_{12}$ defined by $\phi(x) = 3x$ does not preserve multiplication.
 c) Show that every homomorphism $\phi: \mathbb{Z}_n \rightarrow \mathbb{Z}_n$ has the form $\phi(x) = ax$ for some fixed a in \mathbb{Z}_n with $a^2 = a$.

4) a) Show that the ring of complex numbers \mathbb{C} is isomorphic to the factor ring $\mathbb{R}[x]/<x^2+1>$. Here $\mathbb{R}[x]$ is the ring of polynomials in 1 indeterminate x.
 b) Show that complex conjugation $\phi(a+ib) = a-ib$, for a, b in \mathbb{R} and $i^2 = -1$, defines a ring isomorphism from \mathbb{C} onto \mathbb{C}.
 c) Show that \mathbb{C} is not isomorphic to \mathbb{R}.
 d) Show that \mathbb{C} is isomorphic to the ring $\left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} | a, b \in \mathbb{R} \right\}$.

5) a) Find all ring homomorphisms from the rationals \mathbb{Q} to \mathbb{Q}.
 b) Show that the only ring isomorphism mapping the reals \mathbb{R} onto \mathbb{R} is the identity map.