We are interested in these rings thanks to their applications in error-correcting codes. Usually our field \(F \) of coefficients will be finite.

Beware

Don't confuse polynomials with functions.

For example, look at:

- \(f(x) = x^2 + x + 1 \in \mathbb{Z}_3[x] \)
- \(g(x) = x^4 + x + 1 \in \mathbb{Z}_3[x] \).

Note that these 2 polynomials represent the same function — even though the 2 polynomials are different. The function maps \(\mathbb{Z}_3 \to \mathbb{Z}_3 \).

Proof: Plug in the elements of \(\mathbb{Z}_3 \):

\[
\begin{align*}
f(0) &= 1, \\
f(1) &= 0, \\
f(-1) &= 1,
\end{align*}
\]
\[
\begin{align*}
g(0) &= 1, \\
g(1) &= 0, \\
g(-1) &= 1.
\end{align*}
\]

Note: There are \(3 \cdot 3 \cdot 3 = 27 \) functions \(\mathbb{Z}_3 \to \mathbb{Z}_3 \) and \(\mathbb{Z}_3[x] \) is infinite (\(F = \text{field} \)).

We know that \(F[x] \) is a ring (in fact, an integral domain (see Gallian, p. 290)).

Addition: in \(\mathbb{Z}_3[x] \)

\[
(x^2 + 2x + 1) + (x^3 + 2) = x^3 + x^2 + 2x
\]

Multiplication: in \(\mathbb{Z}_3[x] \)

\[
\begin{align*}
\frac{x^2 + 2x + 1}{x^3 + 2} &= \frac{2x^2 + 4x + 2}{x^3 + 2x^4 + x^3 + 2x^2 + x + 2} \\
4 &\equiv 1 \pmod{3}
\end{align*}
\]
So, in $\mathbb{Z}_3[x]$

$$(x^3 + 2)(x^2 + 2x + 1) = x^5 + 2x^4 + x^3 + 2x^2 + x + 2$$

Defn. $F = \text{field}$

$f(x) \in F[x]$ of degree > 0 is **irreducible** if

- $f(x) \neq g(x) \cdot h(x)$ for $g(x), h(x) \in F[x]$ implies either $g(x)$ or $h(x)$ is of degree 0 (a constant polynomial).

Note: $F[x]$ is very much like \mathbb{Z}

The units are the non-0, constant polynomials.
The primes are the irreducible polynomials.

Example Finding irreducible polynomials in $\mathbb{Z}_2[x]$

Degree 1

- x, $x+1$ Both are irreducible.

Degree 2

The polynomials of degree 2 (reducible + irreducible) are

- x^2, $x^2 + 1$, $x^2 + x$, $x^2 + x + 1$

Note that $x^2 = x \cdot x$ reducible

- $x^2 + 1 = (x+1)^2$ reducible

- $x^2 + x = x(x+1)$ reducible.

What about $x^2 + x + 1$? Is it irreducible?

Does x or $x + 1$ divide it?

No!

$$x^2 + x + 1 = x(x+1) + 1$$

If x (or $x+1$) were to divide $x^2 + x + 1$, then x (or $x+1$) would divide 1, impossible as degree 1 = 0 \Rightarrow no non-constant polynomial can divide it.

So $x^2 + x + 1$ is the only irreducible polynomial of degree 2 in $\mathbb{Z}_2[x]$.
degree 3 The degree 3 reducible + irreducible polynomials in \(\mathbb{Z}_2[x] \) are
\[
\begin{align*}
&x^3,
&x^3 + 1,
&x^3 + x,
&x^3 + x^2,
&x^3 + x^2 + x,
&x^3 + x^2 + x + 1.
\end{align*}
\]
Which of these are irreducible?
To answer this question it helps to know that for \(a \in \mathbb{Z}_2 \),
\[(x-a) \text{ divides } f(x) \in \mathbb{Z}_2[x] \iff f(a) = 0.\]
We prove this in a few pages.

\[\begin{align*}
&\{\text{So } f(x) \text{ of degree 3 reducible } \iff \text{ has a degree 1 factor } \iff f(a) = 0 \text{ for some } a \in \mathbb{Z}_2.\}
\end{align*}\]
Clearly 5 of our polynomials are reducible:
\[
\begin{align*}
x^3 &= x \cdot x \cdot x \\
x^3 + x &= x(x^2 + 1) \\
x^3 + x^2 &= x^2(x + 1) \\
x^3 + x^2 + x + 1 &= (x+1)(x^2 + 1) \\
x^3 + x^2 + x &= x(x^2 + x + 1)
\end{align*}
\]
What of the rest? Use \(\bigcirc \)
\[
\begin{align*}
&f(x) = x^3 + 1 \iff f(1) = 0 \iff f(x) \text{ reducible} \\
&f(x) = x^3 + x + 1 \iff f(1) = 1 = f(0) \iff f(x) \text{ irreducible} \\
&f(x) = x^3 + x^2 + 1 \iff f(1) = 1 = f(0) \iff f(x) \text{ irreducible}
\end{align*}
\]
So the only irreducible degree 3 polynomials in \(\mathbb{Z}_2[x] \) are
\[
\begin{align*}
&x^3 + x + 1, \\
&x^3 + x^2 + 1.
\end{align*}
\]
So \(\mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle \cong \{a \theta^2 + b \theta + c \mid a,b,c \in \mathbb{Z}_2\} \)
where \(\theta^3 + \theta + 1 = 0 \).

This is the finite field with 8 elements.
It will turn out that replacing \(x^3 + x + 1 \)
by \(x^3 + x^2 + 1 \) yields an isomorphic field.
In order to understand polynomial rings \(F[x] \), where \(F = \text{field} \), we need the division algorithm. Then we will be able to prove polynomial versions of \(\mathbb{Z} \) - theorems; e.g. the fundamental theorem of arithmetic, Euclid's algorithm, lemma, ...

The division algorithm works just as it did in high school - more or less:

Example In \(\mathbb{Z}_2[x] \)

\[
\frac{x^2 + x + 1}{x^5 + x^4 + x^3 + x^2 + x + 1} = \frac{x^3 + 1}{x^5 + x^4 + x^3}
\]

\[
x^2 + x + 1
\]

\[
x^2 + x + 1
\]

\[
0
\]

So \(x^5 + x^4 + x^3 + x^2 + x + 1 = (x^2 + x + 1)(x^3 + 1) \).

Example In \(\mathbb{Z}_3[x] \)

\[
\frac{2x + 1}{2x + 1} = \frac{x^2 + x + 2}{4x^2 + 2x}
\]

\[
-x + 2
\]

\[
2x + 1
\]

\[
1
\]

\[
x^2 + x + 2 = (2x + 1)^2 + 1
\]

Note: We are definitely using the fact that \(\mathbb{Z}_3 \) is a field and

\[
2^{-1} = 2 \pmod{3}
\]

i.e.

\[
2 \cdot 2 = 1 \pmod{3}
\]
Division Algorithm for $F[x]$, $F = \text{field}$

Given $f(x)$ and $g(x) \in F[x]$, there are $r(x)$ and $q(x) \in F[x]$ such that

$$f(x) = g(x)q(x) + r(x)$$

and degree $r < \text{degree } g$

or $r(x)$ is the 0-polynomial

For the proof, see Gallian, p. 296.

For $a_n \neq 0$, $m \geq n$

$$g(x) = (a_n x^n + \cdots) \bigg/ \left(b_m x^m + \cdots \right) = f(x)$$

or lower degree than m

If $m < n$, let $r = f$

Corollary 1. $F = \text{field}$, $a \in F$, $f(x) \in F[x]$

$$f(a) = 0 \iff \left(f(x) = (x-a)g(x), \text{ for some } g(x) \in F[x] \right)$$

Proof \Rightarrow By the division algorithm

$$f(x) = (x-a)g(x) + r$$

degree $r = 0$ or $r = 0$

So $r \in F$ and plugging $x = a$ yields $0 = f(a) = r$

$\Rightarrow f(x) = (x-a)g(x)$.

\Leftarrow clear.
Corollary 2. \(f(x) \in F[x], \) degree \(f = n \Rightarrow \)

\(f(x) \) has at most \(n \) roots counting multiplicity (This means \((x-1)^2\) has 2 roots counting 1 twice).

Proof

By Corollary 1, \(f(a) = 0 \Rightarrow f(x) = (x-a)g(x). \)
Here \(\deg f = \deg g + 1 \Rightarrow \deg g = \deg f - 1. \)
So we finish the proof by induction on the degree of \(f. \)

Corollary 3. Every ideal in \(F[x] \) is principal.

Let \(I \) be an ideal in \(F[x]. \) If \(I = \{0\}, \) we're done. So assume \(I \neq \{0\}. \) Let \(f(x) \) be an element of \(I \) with minimal degree.

Then

\[\text{Claim: } I = \langle f(x) \rangle = \{ g(x) f(x) | g(x) \in F[x] \}. \]

Proof:

Let \(h(x) \in I. \) Use the division algorithm to see \(\exists q(x), r(x) \in F[x] \) such that

\[h(x) = q(x)f(x) + r(x), \quad \{ \deg r < \deg f \text{ or } r = 0 \}. \]

Then

\[r(x) = h(x) - q(x)f(x) \in I \]

\[I \subseteq F[x]. \text{ } I \in I \]

By the minimality of degree \(f, \) then

\[r = 0 \text{ and } h(x) \in \langle f(x) \rangle. \]
Problems from Gallian

33, p. 250

Recall Gallian #58, p. 250

This problem \(\Rightarrow \) since \(\mathbb{Z}_p = \text{finite field} \)

if \(p = \text{prime} \), So \(\text{p/a} \Rightarrow a^{p-1} \equiv 1 \pmod{p} \)

Proof

\(\text{a} \in U(p) \), \(|U(p)| = p-1 \)

Use Lagrange's thm, Cor. 4, p. 143

This means every \(a \in \mathbb{Z}_p \) is a root of \(x^{p-1} - 1 \). Thus \((x-a) \) divides \((x^{p-1} - 1) \) for all \(a \in U(p) \) Moreover \((x-a) \) and \((x-b) \) are relatively prime polynomials if \(a \neq b \) in \(U(p) \)

So \((x-a)(x-b) \) divides \((x^{p-1} - 1) \), \(a \neq b \in U(p) \)

By induction \(g(x) = \prod_{a=1}^{p-1} (x-a) \) divides \((x^{p-1} - 1) = f(x) \)

Since degree \(g = \text{degree} f = p-1 \)

the polynomials \(f \) and \(g \) must be equal up to a constant multiple.

But since the lead coefficients are both 1, the constant multiple must be 1 and \(f = g \).

34, p. 302

From #38, note that the constant term in \(x^{p-1} - 1 \) is \(-1\)

while that of \(\prod_{a=1}^{p-1} (x-a) \)

is \((p-1)! \)

Thus \((p-1)! \equiv -1 \pmod{p} \)

if \(p = \text{prime} \).

For the converse, note that when \(p = ab \), \(1 < a, b < p \) we have \(a \) divides \(p \) and \(a \) divides \((p-1)! \).

So if \((p-1)! \equiv -1 \pmod{p} \) we'd have \(a \mid 1 \) impossible
Factoring Polynomials

\[F = \text{field} \]

Thm. \(p(x) \in F[x] \)
\(p(x) \) irreducible \(\iff \langle p(x) \rangle = \text{maximal ideal in } F[x] \)

Proof. (same as for \(\mathbb{Z} \))

\(p(x) \) irreducible
\(I = \text{ideal in } F[x] \) such that
\(\langle p(x) \rangle \subset I \subset F[x] \).

We know \(I = \langle g(x) \rangle \) for some \(g(x) \in F[x] \)

\(\implies p(x) = g(x) \cdot h(x) \) for some \(h(x) \in F[x] \)

\(p(x) \) irreducible \(\implies \) either \(g \) or \(h \) is constant

If \(g \) is constant \(I = F[x] \)
If \(h \) is constant \(I = \langle p(x) \rangle \)

Thus \(\langle p(x) \rangle \) is maximal

\(\iff \) Suppose \(\langle p(x) \rangle \) maximal.

Then if \(p(x) = g(x) \cdot h(x) \) for some \(g(x), h(x) \in F[x] \)
with degree \(g \) + degree \(h \) both non-zero,

\(\langle p(x) \rangle \subsetneq \langle g(x) \rangle \subsetneq F[x] \)

Contradicts \(\langle p(x) \rangle \) maximal

Cor. \(p(x) \) irreducible in \(F[x] \)

\[F[x]/\langle p(x) \rangle = \bigoplus \text{field} \]

Proof. Use Thm 14.4 on p. 254 of Gallian

(Ideal in \(\text{Ring with 1} \)) \(R/I = \text{field} \iff I \) maximal

Examples Abound

\[F_8 = \mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle = \text{(field with 8 elements)} \]
\[\mathbb{F}_8 = \mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle \]

The elements of \(\mathbb{F}_8 \) can be viewed as
\[
\alpha = a_0 + a_1 \theta + a_2 \theta^2, \quad a_j \in \mathbb{Z}_2
\]

\(\theta \) a root of \(x^3 + x + 1 = 0 \).

Some people call \(\mathbb{F}_8 = GF(8) \) "GF" stands for Galois field.

Note that \(a_0 + a_1 \theta + a_2 \theta^2 = r(\theta) \)
is a polynomial of degree \(\leq 3 = \deg(x^3 + x + 1) \).

Thus the elements \(r(x) \) represent the
remainders of polynomials in \(\mathbb{Z}_2[x] \)
upon division by \(x^3 + x + 1 \).

This is analogous to saying \(\mathbb{Z}/163\mathbb{Z} \)
consists of remainders of integers upon division by 163.

If you know what a vector space is, then note
\(\mathbb{F}_8 \) is a vector space over \(\mathbb{Z}_2 \). It is 3-dimensional
and \(\{1, \theta, \theta^2\} \) is a basis.

Writing elements of \(\mathbb{F}_8 \) in the form
\[
a_0 + a_1 \theta + a_2 \theta^2, \quad a_j \in \mathbb{Z}_2
\]

makes it easy to add but hard to multiply. So we seek a generator
of the multiplicative group \(\mathbb{F}_8^* = \mathbb{F}_8 \setminus \{0\} \).

It turns out that \(\langle \theta \rangle = \mathbb{F}_8^* \).
Table of Powers of \(\Theta \)

\[
\Theta^3 + \Theta + 1 = 0 \implies \Theta^3 = -\Theta - 1 = \Theta + 1
\]
as \(-1 = 1 \pmod{2} \)

\[
\Theta \left(a_0 + a_1 \Theta + a_2 \Theta^3 \right) = a_0 \Theta + a_1 \Theta^2 + a_2 \Theta^3
\]

\[
= a_0 \Theta + a_1 \Theta^2 + a_2 (\Theta + 1)
\]

\[
= a_2 + (a_0 + a_2) \Theta + a_1 \Theta^2
\]

So multiplication by \(\Theta \) sends the coefficients

\[
(a_0, a_1, a_2) \rightarrow (a_2, a_0 + a_2, a_1)
\]

This is a feedback shift register.

<table>
<thead>
<tr>
<th>Element of (\mathbb{F}_8)</th>
<th>(a_0)</th>
<th>(a_1)</th>
<th>(a_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\Theta^2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\Theta^3)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\Theta^4)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\Theta^5)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\Theta^6)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(1 = \Theta^7)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Thus we have a cyclic group

\[\langle \Theta \rangle = \mathbb{F}_8^* = \mathbb{F}_8 - \{0\} \]

We call \(x^3 + x + 1 \) a primitive polynomial.

It is easy to multiply elements once you write them as powers of \(\Theta \).

Feedback Shift Register

\[a_0 \xrightarrow{\oplus} a_1 \rightarrow a_2 \]

Here's the picture

You can use primitive polynomials to construct these. Cycles through \(2^n - 1 \) states before repeat. Useful for codes.