1) a) Assuming the derivative of e^x is e^x, find the derivative of $\log(x)=\log_e(x)=\ln(x)$ using the theorem about derivatives of inverse functions. (In this course, e is the only base we use.)

 b) Compute the derivative of the following function using properties of derivatives such as the chain rule: $f(x)=x^{1/x}$. Hint: Recall that the definition of x^a for $x>0$ is $x^a=e^{a \log x}$.

2) Assume that f and g are functions on the open interval (a,b). Assume that both f and g are differentiable at $x \in (a,b)$. Suppose c is a real constant. Prove using the definition of derivative that:

 a) $(f+g)'(x)=f'(x)+g'(x)$.

 b) Using mathematical induction, prove the formula for the derivative of x^n, for $n=1,2,3,...$.

3) a) Define $f(x) = x \sin(1/x)$ if $x \neq 0$ and $f(0)=0$. Show that $f(x)$ is not differentiable at $x=0$ but $f(x)$ is continuous at $x=0$.

 b) Discuss the differentiability of the floor function $[x]=\lfloor x \rfloor$=the largest integer $\leq x$, for all real numbers x.

4) a) Suppose that a continuous function f on $[a,b]$ is differentiable on (a,b) and that the derivative $f'(x)$ is bounded (above and below) on (a,b). Prove that then f is uniformly continuous on $[a,b]$.

 Hint. Use the mean value theorem.

 b) First Derivative Test. Consider the function $f(x)=x^{1/x}$ from problem 1b). Find all relative and absolute extrema for this function on $(0,\infty)$. Also find the glb and lub of $\{f(x)|x\}$, if possible. Sketch the function.