1) Suppose that $\langle \cdot, \cdot \rangle$ is a scalar product on a vector space V and suppose that we have a subset S of V with a vector a adherent to S. Let f and g be functions mapping S into V such that the two following limits exist
$$\lim_{x \to a} f(x) = L \quad \text{and} \quad \lim_{x \to a} g(x) = M.$$ Prove that then $\lim_{x \to a} \langle f(x), g(x) \rangle = \langle L, M \rangle$.

2) Define $C[a,b]$ to be the space of continuous real valued functions on the finite interval $[a,b]$. Define the mapping $I: C[a,b] \to \mathbb{R}$ by $I(f) = \int_a^b f(x)\,dx$ for $f \in C[a,b]$.

 a) Is I continuous when we use the $\| \cdot \|_\infty$ norm on $C[a,b]$ and ordinary absolute value as our norm on \mathbb{R}? Why?

 b) What if we use the $\| \cdot \|_1$ norm on $C[a,b]$? Why?

3) Consider the following functions on \mathbb{R}^2
$$f(x,y) = \begin{cases} \frac{2x^2y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases} \quad g(x,y) = \begin{cases} \frac{(y^2-x^2)^2}{x^4+y^4}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

 a) Does $\lim_{x \to 0} \lim_{y \to 0} h(x,y) = \lim_{y \to 0} \lim_{x \to 0} h(x,y) = L$ when $h = f$ or $h = g$?

 b) Do the repeated limits in part a) equal the limit as $(x,y) \to (0,0)$ using any of the favorite norms on \mathbb{R}^2? That is, does $\lim_{(x,y) \to (0,0)} h(x,y) = L$?

 c) Are either of the functions f, g continuous at the origin?

4) Let ℓ^2 denote the set of all sequences $a=\{a_n\}_{n=1}^\infty$ of real numbers such that $\sum_{n=1}^\infty a_n^2$ converges.

 a) Show that you can define addition and scalar multiplication to make ℓ^2 a vector space.

 b) Define for $a=\{a_n\}_{n=1}^\infty$ and $b=\{b_n\}_{n=1}^\infty$ in ℓ^2, $\langle a, b \rangle = \sum_{n=1}^\infty a_n b_n$. Show that this series converges and has the properties of a scalar product. You will need to use the Cauchy-Schwarz inequality on the partial sums.