1) \(x \in A \implies \forall \delta > 0 \exists a \in A \text{ s.t. } ||a-x|| < \delta \).

Since \(a \in A \subset B \) this \(\implies a \in B \) and so \(x \in B \).

2) Proof by Picture: \(A = \{ (x, y) \in \mathbb{R}^2 | x < y \} \)

 If \(x < y \) then \((x, y) \in A \)

 If \(x = y \), then \(\forall \delta > 0 \)

 \((x, x) - (x, x)\) \in A s.t.

 Every point of \(A \) is distance \(r \) to \((p, q)\).

 Every point of \(A \) is distance \(r \) to \((p, q)\).

 So a circle about \((p, q)\) of radius \(r \) has no points of \(A \).

 Thus such points \((p, q)\) are not in the closure of \(A \). It follows that the closure of \(A \) is the points \((x, y)\) with \(x \leq y \).

3) \(f(x) = x^2 \).

\[
\int_0^1 x^2 \, dx = 0.1(\sqrt{1}-0) + 0.2(\sqrt{2}-\sqrt{1}) + 0.3(\sqrt{3}-\sqrt{2}) + 0.4(\sqrt{4}-\sqrt{3}) + 0.5(\sqrt{5}-\sqrt{4}) + 0.6(\sqrt{6}-\sqrt{5}) + 0.7(\sqrt{7}-\sqrt{6}) + 0.8(\sqrt{8}-\sqrt{7}) + 0.9(\sqrt{9}-\sqrt{8}) + 1(1-\sqrt{9})
\]
4) \(f(x) = x \sin \frac{1}{x}, \quad x \neq 0 \), \(f(0) = 0 \)

\[g(x) = 1 \quad \text{if} \quad x > 0, \quad g(x) = -1 \quad \text{if} \quad x < 0 \]

\(h(x) = g(f(x)) \) is a uniform limit of a sequence of step functions on \([0,1]\).

The idea is that near \(x=0 \) a step function will be constant while \(h \) will be alternating madly between \(-1\) and \(+1\).

So we should find \(\| s - h \|_\infty \geq 1 \) for any step function \(s \).

More precisely, on any interval \((a, b)\), suppose \(s(x) = c \) for all \(x \in (a, b) \).

As \(x \to 0^+ \), \(\frac{1}{x} \to \infty \). So \(\exists \alpha, \beta \in (a, b) \)

\[\sin \left(\frac{1}{\alpha} \right) = 1, \quad \sin \left(\frac{1}{\beta} \right) = -1 \]

Then \(s(\alpha) = 1 \) and \(s(\beta) = -1 \).

So \(\| s - h \|_\infty \geq \max \{ |s(\alpha) - h(\alpha)|, |s(\beta) - h(\beta)| \} \)

\[= \max \{ |c - 1|, |c + 1| \} \geq 1 \]

\[\begin{cases} \frac{1}{x} & x > 0 \\ \frac{1}{-x} & x < 0 \end{cases} \]

The max \(c \) would be 1, but \(\boxed{a = 1 - \frac{1}{1 + 1} < 1} \)

see picture