1) Since \(f \) is continuous on \([a, b]\), Weierstrass tells us it attains a max \(M \) and a min \(m \).
So \(m \leq f(x) \leq M \) \(\forall x \in [a, b] \).
Since \(g(x) > 0 \), this \(\Rightarrow \)
\[mg(x) \leq (fg)(x) \leq Mg(x) \quad \forall x \in [a, b], \]
Since integrals preserve \(\leq \), this \(\Rightarrow \) \(m \int_a^b g(x) \, dx \leq \int_a^b (fg)(x) \, dx \leq \int_a^b Mg(x) \, dx = M \int_a^b g(x) \, dx \)
using the linearity of the integral.
(We know \(f, g \) continuous on \([a, b]\) \(\Rightarrow \) \(fg \) continuous on \([a, b]\).
It follows that all the functions we are trying to integrate are really integrable.)
If \(\int_a^b g = 0 \) then by \(\bigstar \) \(\int_a^b fg = 0 \)
and our mean value thm is true.
So assume \(\int_a^b g \neq 0 \), so \(\int_a^b g > 0 \) as
integrals preserve \(\geq \). Thus we can divide \(\bigstar \) by \(\int_a^b g \) and get
\[m \leq \frac{\int_a^b fg}{\int_a^b g} \leq M \]
Now use the intermediate value thm to see \(\exists c \in (a, b) \) s.t.
\[\frac{\int_a^b fg}{\int_a^b g} = f(c) \]
This \(\Rightarrow \) our mean value thm.
b) Suppose \([a, b] = [-1, 1]\) and \(g(x) = x = f(x)\).

Then
\[
\int_a^b f \, dx = \int_a^1 x^2 \, dx = \frac{x^3}{3} \bigg|_1^1 = \frac{2}{3}
\]
\[
\int_a^b g \, dx = \int_a^1 x \, dx = \frac{x^2}{2} \bigg|_1^1 = 0
\]

Our mean value thm \(\Rightarrow\)
\[
\frac{2}{b-a} = \frac{\int_a^b f \, dx}{\int_a^b g \, dx} = f(c) \int_a^b g \, dx = 0 \Rightarrow \frac{2}{b-a} = 0
\]
impossible

(1) \(a \leq c \leq b \Rightarrow \int_a^b f \, dx = \int_a^c f \, dx + \int_c^b f \, dx\) an axiom for integrals.

(23) \(a \leq b \leq c \Rightarrow \int_a^c f \, dx + \int_b^c f \, dx = (\int_a^c f \, dx + \int_b^c f \, dx) + \int_b^c f \, dx
\]
\[
= \int_a^c f \, dx + \int_b^c f \, dx - \int_c^b f \, dx = \int_a^b f \, dx
\]

(12) \(c \leq a \leq b \Rightarrow \int_a^c f \, dx + \int_b^c f \, dx = -\int_c^a f \, dx + \int_c^b f \, dx
\]
\[
= \int_a^b f \, dx
\]

(13) \(b \leq c \leq a \Rightarrow \int_a^c f \, dx + \int_b^c f \, dx = -\int_c^b f \, dx - \int_c^a f \, dx
\]
\[
= -\int_c^a f \, dx + \int_b^c f \, dx = \int_a^b f \, dx
\]

(123) \(b \leq a \leq c \Rightarrow \int_a^c f \, dx + \int_b^c f \, dx = \int_a^c f \, dx - \int_b^c f \, dx
\]
\[
= \int_a^c f \, dx - (\int_b^c f \, dx + \int_a^c f \, dx)
\]
\[
= -\int_a^c f \, dx + \int_b^c f \, dx = \int_a^b f \, dx
\]

(132) \(c \leq b \leq a \Rightarrow \int_a^c f \, dx + \int_b^c f \, dx = -\int_c^b f \, dx + \int_c^a f \, dx
\]
\[
= -\int_c^b f \, dx + \int_b^c f \, dx - \int_c^a f \, dx = \int_a^b f \, dx
\]
3) Proof by Contradiction

Suppose \(g(c) > 0 \) for \(c \in [a, b] \), \(\exists \delta > 0 \)

since \(g \) continuous on \([a, b] \).

But then \(\frac{g(c)}{2} > g(x) - g(c) > -\frac{g(c)}{2} \)

\[\Rightarrow g(x) > \frac{g(c)}{2} \quad \forall x \in [a, b] \cap (c-\delta, c+\delta) \]

\[\Rightarrow 0 = \int_{a}^{b} g(x) \, dx \geq \frac{g(c)}{2} \cdot \delta > 0 \]

This is a contradiction

So we're done

4) \(F(1) - F(0) = -1 \)

\[\int_{0}^{1} x \, dx = \left[\frac{x^2}{2} \right]_{0}^{1} = \frac{1}{2} \neq -1 = F(1) - F(0) \]

The problem is \(f(x) \) is not continuous on \([0, 1] \) and we needed that to prove the fundamental thm of calculus