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1 Why worry about in�nite dimensional normed vector spaces?

We want to understand the integral from Lang�s perspective rather than that of your calculus book. Secondly we want to
understand convergence of series of functions - something that proved problematic for Cauchy in the 1800s. These things are
important for many applications in physics, engineering, statistics. We will be able to study vibrating things such as violin
strings, drums, buildings, bridges, spheres, planets, stock values. Quantum physics, for example, involves Hilbert space,
which is a type of normed vector space with a scalar product where all Cauchy sequences of vectors converge.
The theory of such normed vector spaces was created at the same time as quantum mechanics - the 1920s and 1930s.

So with this chapter of Lang you are moving ahead hundreds of years from Newton and Leibnitz, perhaps 70 years from
Riemann.
Fourier series involve orthogonal sets of vectors in an in�nite dimensional normed vector space:

C[a; b] = ff : [a; b]! R jf continuousg :

The L2�norm of a continuous function f in C[a; b] is

kfk2 =

0@ bZ
a

jf(x)j2 dx

1A1=2

:

This is an analog of the usual idea of length of a vector f = (f(1); :::; (f(n)) 2 Rn :

kfk2 =

0@ nX
j=1

jf(j)j2
1A1=2

:

There are other natural norms for f 2 C[a; b] such as:

kfk1 =
bZ
a

jf(x)j dx:

kfk1 = max
a�x�b

jf(x)j :

On �nite dimensional vector spaces such as Rn it does not matter what norm you use when you are trying to �gure out
whether a sequence of vectors has a limit. However, in in�nite dimensional normed vector spaces convergence can disappear
if a di¤erent norm is used. Not all norms are equivalent in in�nite dimensions. See Homework 9, problem 6.
Note that C[a; b] is in�nite dimensional since the set f1; x; x2; x3; :::; xn; :::g is an in�nite set of linearly independent

vectors. Prove this as follows. Suppose that we have a linear dependence relation
nX
j=0

cjx
j = 0; for all x in [a; b]. This

implies all the constants cj = 0: Why? Extra Credit. Prove this.
In�nite dimensional vector spaces are thus more interesting than �nite dimensional ones. Each (inequivalent) norm leads

to a di¤erent notion of convergence of sequences of vectors.
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2 What is a Normed Vector Space?

In what follows we de�ne normed vector space by 5 axioms. We will not put arrows on our vectors. We will try to keep
vectors and scalars apart by using Greek letters for scalars. Our scalars will be real. Maybe by the end of next quarter we
may allow complex scalars. It simpli�es Fourier series.

De�nition 1 A vector space V is a set of vectors v 2 V which is closed under addition and closed under multiplication
by scalars � 2 R. This means u + v 2 V and �v 2 V and the following 5 axioms must hold for all u; v; w 2 V and all
�; � 2 R:
VS1. u+ (v + w) = (u+ v) + w
VS2. 9 0 2 V s.t. 0 + v = v
VS3. 8 v 2 V 9 v0 2 V s.t. v + v0 = 0:
VS4. v + u = u+ v
VS5. 1v = v; �(�v) = (��)v; (�+ �)v = �v + �v; �(u+ v) = �u+ �v

You may say we cheated by putting 4 axioms into VS5.

De�nition 2 A vector space V is a normed vector space if there is a norm function mapping V to the non-negative real
numbers, written kvk ; for v 2 V; and satisfying the following 3 axioms:

N1: kvk � 0 8v 2 V and kvk = 0 if and only if v = 0:

N2: k�vk = j�j kvk ; 8v 2 V and8� 2 R: Here j�j = absolute value of �:
N3: ku+ vk � kuk+ kvk ; 8u; v 2 V: Triangle Inequality:

De�nition 3 The distance between 2 vectors u; v in a normed vector space V is de�ned by
d(u; v) = ku� vk :

Example 1. 3-Space.

R3 =

8<:
0@ x1
x2
x3

1A������x1; x2; x3 2 R
9=; :

De�ne addition and multiplication by scalars as usual:0@ x1
x2
x3

1A+
0@ y1
y2
y3

1A =

0@ x1 + y1
x2 + y2
x3 + y3

1A :
�

0@ x1
x2
x3

1A =

0@ �x1
�x2
�x3

1A ; 8 � 2 R:
The usual norm is

kxk2 =
q
x21 + x

2
2 + x

2
3 ifx =

0@ x1
x2
x3

1A :
Other norms are possible:

kxk2 = jx1j+ jx2j+ jx3j or kxk1 = max fjx1j ; jx3j ; jx3jg :

The proof that these de�nitions make R3 a normed vector space is tedious. No doubt we will make it a homework
problem.
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Example 2. The space of continuous functions on an interval.

C[a; b] = ff : [a; b]! R jf continuousg :

For f; g 2 C[a; b]; de�ne (f + g)(x) = f(x) + g(x) for all x 2 [a; b] and de�ne for � 2 R (�f)(x) = �f(x) for all
x 2 [a; b]: We leave it as an Exercise (see Homework 9) to check the axioms for a vector space. The most non-trivial one is
the one that says f + g and �f are both continuous functions on [a; b].
Again there are many possible norms. We will look at 3:

kfk2 =

0@ bZ
a

jf(x)j2 dx

1A1=2

:

kfk1 =
bZ
a

jf(x)j dx:

kfk1 = max
a�x�b

jf(x)j :

Most of the axioms for norms are easy to check. Let�s do it for the kfk1 norm.
N1. kvk � 0 8 v 2 V and kvk = 0 if and only if v = 0.
N2. k�vk = j�j kvk ; 8 v 2 V and 8� 2 R .
N3. Triangle Inequality. ku+ vk � kuk+ kvk ; 8 u; v 2 V:
Proof of N1.
Since jf(x)j � 0 for all x we know that the integral is � 0; because the integral preserves inequalities (Lang, Thm. 2.1,

p. 104 or earlier in these notes). Suppose that

bZ
a

jf(x)j dx = 0: Since f is continuous by Theorem 2.4 of Lang, p. 104 or

these notes near Figure 1, this implies f(x) = 0 for all x 2 [a; b]:

Proof of N2.

Also for any � 2 R and f 2 C[a; b]; we have k�fk1 =
bZ
a

j�f(x)j dx =
bZ
a

j�j jf(x)j dx = j�j
bZ
a

jf(x)j dx = j�j kfk1 : This

proves N2 for norms. Here we used the multiplicative property of absolute value as well as the linearity of the integral (i.e.,
scalars come out of the integral lecture notes p. 80).

Proof of N3. Using the de�nition of the 1-norm, and the triangle inequality for real numbers as well
as the fact that the integral preserves �; we see that

kf + gk1 =
bZ
a

jf(x) + g(x)j dx �
bZ
a

(jf(x)j+ jg(x)j) dx:

To �nish the proof, use the linearity of the integral to see that

bZ
a

(jf(x)j+ jg(x)j) dx =
bZ
a

jf(x)j dx+
bZ
a

jg(x)j dx = kfk1 + kgk1 :

Putting it all together gives kf + gk1 � kfk1 + kgk1 :
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3 Scalar Products.

You have seen the dot (or scalar or inner) product in R3: It is0@ x1
x2
x3

1A �
0@ y1
y2
y3

1A = x1y1 + x2y2 + x3y3:

It turns out there is a similar thing for C[a; b]: First let�s de�ne the scalar product on a vector space and see how to get
a norm if in addition the scalar product is positive de�nite.

De�nition 4 A (positive de�nite) scalar product < v;w > for vectors v; w in a vector space V is a real number < v;w >
such that the following axioms hold:

SP1: < v;w >=< w; v >; 8 v; w 2 V (symmetry)

SP2: < u; v + w >=< u; v > + < u;w >; 8 u; v; w 2 V
SP3: < �v;w >= � < v;w >; 8 v; w 2 V and 8��R
SP4: < v; v > � 0;8 v 2 V and < v; v >= 0 () v = 0 (positive de�nite)

Axioms SP1,2,3 say < v;w > is linear in each variable holding the other variable �xed. Axiom SP4 says the scalar
product is positive de�nite. We will always want to assume SP4 because we want to be able to get a norm out of the
scalar product.

De�nition 5 If V is a vector space with a (positive de�nite) scalar product < v;w > for v; w 2 V; de�ne the associated
norm by kvk = p< v; v >; for all v 2 V

Before proving that this really gives a norm, let�s look at some examples.
Example 1. In R3 the scalar product is

< x; y >=

0@ x1
x2
x3

1A �
0@ y1
y2
y3

1A = x1y1 + x2y2 + x3y3:

It is easy to check the axioms. For example, the positive de�niteness follows from the fact that squares of real numbers are
� 0 and sums of non-negative numbers are non-negative:

< x; x >= x21 + x
2
2 + x

2
3 � 0:

And 0 =< x; x > � x2i implies xi = 0 for all i and thus x = 0.

Example 2.
C[a; b] = ff : [a; b]! R j f is continuousg

For f; g in C[a; b], de�ne the scalar product by

< f; g >=

bZ
a

fg:

Once more, it is not hard to use the properties of the integral to check axioms SP1,SP2,SP3 (extra credit exercise). To
see SP4, note that f(x)2 � 0 for all x 2 [a; b] implies by the fact that integrals preserve � that

< f; f >=

bZ
a

f(x)2dx � 0:
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Now suppose that < f; f >= 0. Then by the positivity property of the integral, we know that f(x)2 = 0 for all x 2 [a; b]
which says that f is the 0 function (the identity for addition in our vector space C[a; b]).

Then the norm associated to this scalar product is kfk2 =

0@ bZ
a

jf(x)j2 dx

1A1=2

:

The following theorem is so useful people from lots of countries got their names attached.

Theorem 6 Cauchy-Schwarz (Bunyakovsky) Inequality
Suppose that V is a vector space with scalar product < v;w >. Then using our de�nition of the norm kvk = p< v; v > ,

we have for all v; w 2 V :
j< v;w >j � kvk kwk :

Proof. (Compare Problem 8 in Homework 8).
Let t 2 R and look at

f(t) =< v + tw; v + tw > :

By properties of the scalar product, we have 0 � f(t) =< v; v > +2t < v;w > +t2 < w;w > :
As a function of f; we see that f(t) = At2 + Bt + C; where A =< w;w >; B = 2 < v;w > and C =< v; v > : So

the graph of f(t) is that of a parabola above or touching the t-axis. For example, we have drawn a parabola touching the
t-axis at one point.

Recall the quadratic formula for the roots r� of f(t) = At2 +Bt+ C = 0;

r� =
B �

p
B2 � 4AC
2A

:

Since we have at most one real root it follows that

B2 � 4AC � 0:

Now plug in A =< w;w >; B = 2 < v;w > and C =< v; v > : This gives the Cauchy-Schwarz inequality.

Corollary 7 Under the hypotheses of the preceding theorem, kvk = p< v; v > de�nes a norm on V .

Proof. We must prove:
N1. kvk � 0 8 v 2 V and kvk = 0 if and only if v = 0.
N2. k�vk = j�j kvk ; 8 v 2 V and 8� 2 R .
N3. Triangle Inequality. ku+ vk � kuk+ kvk ; 8 u; v 2 V:
We get N2 from SP3:For then k�vk2 =< �v; �v >= �2 < v; v >= j�j2 kvk2 ; 8 v 2 V and 8��R .
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We get N1 from SP4: This says kvk2 =< v; v >� 0;8 v 2 V and kvk2 =< v; v >= 0 () v = 0.
To prove the triangle inequality N3, we need to use the Cauchy-Schwarz inequality. This proof goes as follows. By the

linearity and symmetry of the scalar product we see that

ku+ vk2 = < u+ v; u+ v >=< u; u > +2 < u; v > + < v; v >

= kuk2 + 2 < u; v > + kvk2

� kuk2 + 2 j< u; v >j+ kvk2 as x � jxj
� kuk2 + 2 kuk kvk+ kvk2 by Cauchy � Schwarz
= (kuk+ kvk)2 :

Now use the fact that the square root p preserves inequalities to �nish the proof of the triangle inequality.

What�s the good of all this? Now we can happily de�nite limits of sequences of vectors fvngin our normed vector space
V . Can you guess the de�nition of lim

n!1
vn = L 2 V ?

Answer: 8" > 0; 9N" 2 Z+ s.t. n � N" implies kvn � Lk < ": That is, just replace absolute value in the old
de�nition of limit with the norm.
Similarly we can de�ne a Cauchy sequence fvng in the normed vector space V .

Another use of the scalar product is to de�ne orthogonal vectors in a vector space V with a scalar product.

De�nition 8 Two vectors v; w 2 V; a vector space V with scalar product <;>, are de�ned to be orthogonal if the scalar
product < v;w >= 0.

In a vector space with scalar product, you can also de�ne the angle � between 2 vectors v; w 2 V; by

< v;w >= kvk kwk cos �:

You can draw the same picture you would draw in the plane since 2 vectors determine a plane and then use the cosine law
from high school trig to see this.
What is the cosine law? Using the triangles in Figure 2, it says

kv � wk2 = kvk2 � 2 kvk kwk cos � + kwk2 :

You also need to see, using the axioms for scalar product, that

kv � wk2 =< v � w; v � w >= kvk2 � 2 < v;w > + kwk2 :
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Figure 1: Visualizing vectors in a normed vector space and the angle between them.
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4 Comparison of Norms

De�nition 9 Suppose fvng is a sequence in a normed vector space V with norm kk ; We say

lim
n!1

vn = L

and "vn converges to L 2 V " ()
lim
n!1

kvn � Lk = 0:

Note that the last limit is a sequence of real numbers.
Question. We know that there are lots of norms on V . How can we guarantee that 2 di¤erent norms kk� and kk�

produce the same convergent sequences in V ?
The answer is that equivalent norms produce the same convergent sequences where we de�ne equivalent as follows.

De�nition 10 2 norms kk� and kk� on the vector space V are equivalent i¤ there are constants A;B > 0 such that for all
v 2 V we have

A kvk� � kvk� � B kvk� :

In the preceding de�nition we are assuming that the constants A and B are independent of v 2 V:
Why do equivalent norms lead to the same convergent sequences?
Answer. Suppose fvng is a convergent sequence for the kk�-norm; i.e., for some L 2 V we have lim

n!1
kvn � Lk� = 0:

And suppose kk� is an equivalent norm. Then

A kvn � Lk� � kvn � Lk� � B kvn � Lk� :

Since the outside sequences go to 0 as n!1; it follows by the squeeze lemma that the guy in the middle has to go to 0
as well. For limits preserve inequalities and we would have

0 � lim
n!1

kvn � Lk� � 0:

which implies lim
n!1

kvn � Lk� = 0:
Similarly lim

n!1
kvn � Lk� = 0 implies lim

n!1
kvn � Lk = 0:

Moral. It does not matter which of 2 equivalent norms you use to test a sequence for convergence.

Theorem 11 All norms on Rn are equivalent.

Proof. See Lang p. 145.

Thus, for our purposes, it does not matter which norm you use on �nite dimensional vector spaces. You get the same
de�nition of convergence of sequences. However, things are very di¤erent for in�nite dimensional vector spaces. Look at
Exercise 6 in Homework 9 for example. There you see a sequence of functions fn in C[0; 1] such that

lim
n!1

kfn � 0k1 = 0 using the norm kfk1 =
1Z
0

jf(x)j dx:

but
kfn � 0k1 = 1 for all n, using the norm kfk1 = max

a�x�b
jf(x)j :

It follows that the norms kk1 and kk1 on C[0; 1] are not equivalent.

Extra Credit Exercise. Using the same example, show that lim
n!1

kfn � 0k2 = 0 using the norm kfk2 =

0@ 1Z
0

jf(x)j2 dx

1A1=2

:

It follows that the norms kk2 and kk1 on C[0; 1] are not equivalent.
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Proposition 12 The norms kfk1 =
bZ
a

jf(x)j dx and kfk2 =

0@ bZ
a

f(x)2dx

1A1=2

are not equivalent. However, we do have

the inequality
kfk1 �

p
b� a kfk2 :

Proof. To prove the inequality, use the Cauchy-Schwarz inequality on the functions jf j and g(x) = 1 for all x 2 [a; b]: This
gives

j< f; g >j � kfk2 kgk2 :

So we have j< jf j ; 1 >j � kjf jk2 k1k2 : Now this really means

kfk1 =

bZ
a

jf(x)j dx �

0@ bZ
a

f(x)2dx

1A1=20@ bZ
a

1dx

1A1=2

=
p
b� a

0@ bZ
a

f(x)2dx

1A1=2

=
p
b� a kfk2 :

To see that kk1 and kk2 are not equivalent norms, we take a = 0 and b = 1. Then we look at the following example.
De�ne as in Lang, p. 147:

gn(x) =

� p
n; for 0 � x � 1

n ;
1p
x
; for 1

n � x � 1:

Note that gn is continuous. Why? Extra Credit Exercise. Show

kgnk1 = 2�
1p
n

and
kgnk2 =

p
1 + log n:

It follows that there cannot be a constant C > 0 such that kvk2 � C kvk1 at least on the interval [0; 1]. Can you extend
this idea to arbitrary intervals [a; b]?
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