1) Define and give an example:
 a) norm; b) scalar product; c) equivalent norms;
 d) limit of a sequence \(\{v_n\} \) in a normed vector space; e) Cauchy sequence in a normed vector space;
 f) complete normed vector space; g) adherent point to a set in a normed vector space;
 h) \[\lim_{x \to c} f(x) = L \] for \(c \) adherent to domain of \(f \) in a normed vector space;
 i) continuous function \(f \) mapping a set in normed vector space \(V \) to another normed vector space;
 j) uniform convergence of a sequence \(\{f_n\} \) of functions \(f_n \in C[a,b], \) the space of continuous real-valued functions on an interval \([a,b]\)
 k) \(\| f \|_\infty, \| f \|_1, \| f \|_2 \) for \(f \in C[a,b] = \{ \text{continuous real valued functions on the interval } [a,b] \} \)
 l) the cosine of the angle between 2 non-0 vectors \(v, w \) in a vector space \(V \) with a scalar product

2) True - False. Tell whether the following statements are true or false. Give a brief reason for your answer.
 a) \(C[a,b] \) the space of continuous real-valued functions on an interval \([a,b]\), is a finite dimensional vector space.
 b) For \(\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in \mathbb{R}^2, \quad \| \mathbf{v} \| = v_1^2 + v_2^2 \) defines a norm on vectors in the plane.
 c) The function \(f(x,y) = \frac{x^2}{x^2 + y^2} \), for \((x,y) \neq (0,0)\) and \(f(0,0)=0 \) is continuous on the plane \(\mathbb{R}^2 \).
 d) Suppose that \(f_n \) is a sequence of continuous functions on the interval \([a,b]\). Suppose for every \(x \) in \([a,b]\) we have \(\lim_{n \to \infty} f_n(x) = f(x) \). Then \(f(x) \) is continuous on \([a,b]\).
 e) \(\mathbb{R}^2 \) is a complete normed vector space.

3) State and prove the Cauchy-Schwarz inequality. What norm is being used in this inequality? Would it still be true if we replaced that norm with some other one?

4) Suppose that \(\| \|_\alpha \) and \(\| \|_\beta \) are equivalent norms on a vector space \(V \). Show that if \(\{v_n\} \) is a sequence of vectors in \(V \) and \(L \in V \), we have
 \[\lim_{n \to \infty} \| v_n - L \|_\alpha \iff \lim_{n \to \infty} \| v_n - L \|_\beta . \]

5) Suppose that \(\langle v, w \rangle \) denotes a scalar product of 2 vectors \(v, w \) in the vector space \(V \). Show that \(\langle v, w \rangle \) is a continuous function of \(v \), holding \(w \) fixed. Is it uniformly continuous?
6) Suppose that \(L:\mathbb{R}^2 \to \mathbb{R}^2 \) is a linear map. Show that it is continuous.

7) Show that \(f:U \to W \), where \(U \) is a subset of a normed vector space \(V \) and \(W \) is a normed vector space, is continuous at a point \(a \in U \) if and only if for every sequence \(v_n \) in \(U \) such that \(\lim_{n \to \infty} v_n = a \) we have \(\lim_{n \to \infty} f(v_n) = f(a) \).

8) The function \(I \) mapping \(C[a,b] \), the space of continuous real valued functions on the interval \([a,b] \) into \(\mathbb{R} \) defined by \(I(f) = \int_a^b f \) is continuous with respect to the \(\| \cdot \|_\infty \) norm on \(C[a,b] \) and the usual absolute value on \(\mathbb{R} \).

9) Show that the norms \(\| \cdot \|_\infty \) and \(\| \cdot \|_1 \) on the space \(C[a,b] \), the space of continuous real valued functions on the interval \([a,b] \) into \(\mathbb{R} \) are not equivalent.

10) Explain how the picture below can be used to see the difference between \(\| f-g \|_\infty \) and \(\| f-g \|_1 \) assuming that \(f \) is the purple function which starts at the top and \(g \) is the blue function which starts at the bottom.