a stroll through the zeta garden Lecture 2: Ruelle Zeta and Prime Number Theorem for Graphs Audrey Terras CRM Montreal, 2009

Ihara Zeta Function
$$\zeta_{V}(u, X) = \prod_{\substack{[C] \\ prime in X}} (1 - u^{V(C)})^{-1}$$

Ihara's Theorem (Bass, Hashimoto, etc.)
A = adjacency matrix of X (|V|×|V| matrix of 0s and 1s
ij entry is 1 iff vertex i adjacent to vertex j)
Q = diagonal matrix jth diagonal entry = degree jth vertex -1;
r = rank fundamental group = |E|-|V|+1

$$\zeta(u, X)^{-1} = (1 - u^{2})^{r-1} det(I - Au + Qu^{2})$$
For K₄
r=|E|-|V|+1=6-4+1=3

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}, Q = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$\zeta(u, K_{4})^{-1} = (1 - u^{2})^{2}(1 - u)(1 - 2u)(1 + u + 2u^{2})^{3}$$

Ruelle's motivation for his definition came partially from Artin and Mazur, Annals of Math., 81 (1965). They based their zeta on the zeta function of a projective non-singular algebraic variety V of dimension n over a finite field k with q elements. If N_m is the number of points of V with coordinates in the degree m extension field of k, the zeta function of V is: $Z_V(u) = \exp\left(\sum_{m\geq 1} \frac{N_m u^m}{m}\right).$ N_m=[Fix(F^m)], where F is the Frobenius map taking a point with coordinates x_i to the point with coordinates (x_i)^q.

Note: $I^{\mathbb{Z}}$ is compact and so is the closed subset

$$\Lambda = \left\{ \left(\xi_k \right)_{k \in \mathbb{Z}} \middle| t_{\xi_k \xi_{k+1}} = 1, \forall k \right\}.$$

In the graph case $\xi \in \Lambda$ corresponds to a path without backtracking. A continuous function $\tau: \Lambda \rightarrow \Lambda$ such that $\tau(\xi)_k = \xi_{k+1}$

is called a subshift of finite type. Prop. 1. (Bowen & Lanford). As the Ruelle zeta of a subshift of finite type, the Ihara zeta is the

reciprocal of a polynomial:

ζ(

t=W₁

for graphs

$(u) = \exp(u)$	$\left(\sum_{m\geq 1}\frac{u^m}{m}Tr(t^m)\right)$
$= \det(I - ut)^{-1}.$	

