Example 1. Quadratic Extension

<table>
<thead>
<tr>
<th>field</th>
<th>ring</th>
<th>prime ideal</th>
<th>finite field</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K = \mathbb{F}(\sqrt{m})$</td>
<td>$O_K = \mathbb{Z}[[\sqrt{m}]]$</td>
<td>$\mathfrak{p} \supset O_K$</td>
<td>O_K / \mathfrak{p}</td>
</tr>
<tr>
<td>$\mathbb{F} = \mathbb{Q}$</td>
<td>$O_F = \mathbb{Z}$</td>
<td>$p\mathbb{Z}$</td>
<td>$\mathbb{Z} / p\mathbb{Z}$</td>
</tr>
</tbody>
</table>

$g = \#$ of such \mathfrak{p}, $f =$ degree of O_K / \mathfrak{p} over O_F / pO_F, $p^e \supset pO_K \not\subset p^{e+1}$

$efg = 2$

Assume, m is a square-free integer congruent to 2 or 3 (mod 4).

Decomposition of Primes in Quadratic Extensions

3 CASES

1) **p inert:** $f=2$.
$p_{OK} = \text{prime ideal in } K, \quad m \not\equiv x^2 \pmod{p}$

2) **p splits:** $g=2$.
$p_{OK} = p \cdot p', \quad p \neq p', \quad m \equiv x^2 \pmod{p}$

3) **p ramifies:** $e=2$.
$p_{OK} = p^2, \quad p \text{ divides } 4m$

$Gal(K/F) = \{1,-1\}$

Frobenius automorphism

$\sigma = \tfrac{4m}{p}$

<table>
<thead>
<tr>
<th>$\tfrac{4m}{p}$</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 \quad \text{ in case 1}</td>
<td>1 \quad \text{ in case 2}</td>
<td>0 \quad \text{ in case 3}</td>
<td></td>
</tr>
</tbody>
</table>

$p \text{ does not divide } 4m$ implies p has 50% chance of being in Case 1 (and 50% chance of being in case 2)

Assume, m is a square-free integer $\equiv 2$ or $3 \pmod{4}$.

Artin L-Functions

$K \supset F$ number fields with K/F Galois

$O_K \supset O_F$ rings of integers

$\mathfrak{P} \supset \mathfrak{p}$ prime ideals (\mathfrak{p} unramified, i.e., $\mathfrak{p} \not\subset \mathfrak{P}^2$)

Frobenius Automorphism when \mathfrak{p} is unramified.

$\left(\frac{K/F}{\mathfrak{p}}\right) = \sigma_{\mathfrak{p}} \in Gal(K/F), \quad \sigma_{\mathfrak{p}}(x) \equiv x^{\mathfrak{p}^f/\mathfrak{p}^e} \pmod{\mathfrak{P}^r}$, for $x \in O_K$

$\sigma_{\mathfrak{p}}$ induces generator of finite Galois group, $Gal((O_K/\mathfrak{P})/(O_F/\mathfrak{p}))$ determined by \mathfrak{p} up to conjugation if $\mathfrak{P}/\mathfrak{p}$ unramified $f (\mathfrak{P}/\mathfrak{p}) = \text{order of } \sigma_{\mathfrak{p}} = [O_K/\mathfrak{P} : O_F/\mathfrak{p}]$

$g (\mathfrak{P}/\mathfrak{p}) = \text{number of } \text{primes of } K \text{ dividing } \mathfrak{p}$

Artin L-Function for $s \in \mathbb{C}$, π a representation of $Gal(K/F)$.

Give only the formula for unramified primes \mathfrak{p} of F.

Pick \mathfrak{P} a prime in O_K dividing \mathfrak{p}.

$L(s, \pi)'' = \prod_{\mathfrak{p}} \det \left(1 - \pi \left(\frac{K/F}{\mathfrak{P}}\right)^N \mathfrak{p}^{-s}\right)^{-1}$
For a set S of primes of F, define the analytic density of S.

$$\delta(S) = \lim_{s \to 1^+} \left(\frac{\sum_{p \in S} p^{-s}}{-\log(s-1)} \right)$$

Theorem. Set $C(p)$ = the conjugacy class of the Frobenius automorphism of prime ideals P of K above p. Then, for every conjugacy class C in $G = \text{Gal}(K/F)$,

$$\delta\{ p \mid C(p) = C \} = \frac{|C|}{|G|}.$$

The proof requires the facts that $L(s,\pi)$ continues to $s=1$ with no pole or zero if $\pi \neq 1$, while $L(s,1) = \zeta_F(s)$ has a simple pole at $s=1$.

Graph Galois Theory

Graph Y an unramified covering of Graph X means (assuming no loops or multiple edges)

$$\exists \, \pi: Y \to X \text{ is an onto graph map such that for every } x \in X \text{ & for every } y \in \pi^{-1}(x),$$

$$\pi \text{ maps the points } z \in Y \text{ adjacent to } y 1-1, \text{ onto the points } w \in X \text{ adjacent to } x.$$

Normal d-sheeted Covering means:

$$\exists d \text{ graph isomorphisms } g_1, \ldots, g_d \text{ mapping } Y \to Y$$

such that

$$\pi \circ g_i (y) = \pi (y) \quad \forall \, y \in Y$$

The Galois group

$$G(Y/X) = \{ g_1, \ldots, g_d \}.$$

This is an analog of coverings of manifolds, Riemann surfaces, etc.
First pick a spanning tree T_X in X (no cycles, connected, includes all vertices of X).

Second make $n=|G|$ copies of the tree T_X in X. These are the sheets of Y. Label the sheets with $g \in G$. The vertices of Y are (x, g) for x vertex of $X, g \in G$.

G action on Y:
- on sheets: $g(\text{sheet } h) = \text{sheet}(gh)$
- on vertices: $g(x, h) = (x, gh)$
- on paths: $g(\text{path from } (v, h) \text{ to } (w, j)) = \text{path from } (v, gh) \text{ to } (w, gj)$

Given G, get examples Y by giving permutation representation of generators of G to lift edges of X left out of T_X.

Example 1. Quadratic Cover

Cube covers Tetrahedron

Spanning Tree in X is red. Corresponding sheets of Y are also red
Example of Splitting of Primes in Quadratic Cover

Example of Splitting of Primes in Quadratic Cover

Picture of Splitting of Prime which is inert; i.e., $f=2$, $g=1$, $e=1$
1 prime cycle D above, & D is lift of C^2.

Picture of Splitting of Prime which splits completely; i.e., $f=1$, $g=2$, $e=1$
2 primes cycles above
Frobenius Automorphism

\(Frob(D) = \left(\frac{Y/X}{D} \right) = ji^{-1} \in G = \text{Gal}(Y/X) \)

where \(ji^{-1} \) maps sheet \(i \) to sheet \(j \)

\(\tilde{C} = \) the unique lift of \(C \) in \(Y \) starting at \((v,i)\) ending at \((v,j)\)

\(\tilde{C} \) is not necessarily closed

\(\text{length} (\tilde{C}) = \text{length} (C) \)

(\(D \) a prime above \(C \) is closed and is obtained by \(f \) liftings like \(\tilde{C} \))

Exercise: Compute \(Frob(D) \) on preceding pages, \(G = \{e, g\} \).

Galois Group=\(\{e, g\} \): Label cube vertices

\((x,e) \rightarrow x' \) and \((x,g) \rightarrow x'' \), \(x \) in \(K_4 \)

Frobenius of prime in \(X \) = non-trivial element of Galois group since

if we lift path on \(X \) once, we get to the other sheet of the cover
Properties of Frobenius

1) Replace \((v,i)\) with \((v,hi)\). Then \(\text{Frob}(D) = ji^{-1}\) is replaced with \(hji^{-1}h^{-1}\). Or replace \(D\) with different prime above \(C\) and see that Conjugacy class of \(\text{Frob}(D) \in \text{Gal}(Y/X)\) unchanged.

2) Varying start vertex \(v\) of \(C\) in \(X\) does not change \(\text{Frob}(D)\).

3) \(\text{Frob}(D)^i = \text{Frob}(D^i)\).

Artin L-Function

\[L(u, \rho, Y/X) = \prod_{[C]} \det \left(1 - \rho \left(\frac{Y/X}{D} \right) u^{v(C)} \right)^{-1} \]

\([C]=\text{equivalence class of primes of } X\]

\(v(C)=\text{length } C, \ D \text{ a prime in } Y \text{ over } C\)

Question: How does the Frobenius depend on the labeling, choice of spanning tree, etc.?

Answer: You can identify the Galois group \(G(Y/X)\) with a quotient \(\Gamma/H\), \(\Gamma\) the fundamental group of \(X\), a group which can be viewed as generated by the edges left out of a spanning tree.
Properties of Artin L-Functions

1) $L(u, 1, Y/X) = \zeta(u, X)$ = Ihara zeta function of X (our analog of the Dedekind zeta function, also Selberg zeta)

Proof by Defn.

2) $\zeta(u, Y) = \prod_{\rho \in \hat{G}} L(u, \rho, Y / X)^{d_{\rho}}$

product over all irreducible reps of G, $d_{\rho}=$degree ρ.

Proof uses induced representations and decomposition

$\text{Ind}_{\{e\}}^G 1 = \sum_{\pi \in \hat{G}} d_{\pi} \pi$

See A. T., Fourier Analysis on Finite Groups and Applications.

Det(I-uW_1) formula for Artin L-Functions

Set $B=W_1$ and call the Frobenius automorphism of an edge $\text{Frob}(e)$. Define the blocks of the matrix $2|E|d_{\rho} \times 2|E|d_{\rho}$ matrix B_{ρ} as follows, for each pair of oriented edges e,f in X:

$\left(B_{\rho} \right)_{ef} = (b_{ef} \rho(\text{Frob}(e)))$

$L(u, \rho, Y / X)^{-1} = \det(I - uB_{\rho})$
For the cube over K_4 we have 2 degree 1 representations of the Galois group. The only interesting matrix is that for the non-trivial representation: 12x12 matrix. It is too big to put on a Power Point talk or blackboard.

Ihara Theorem for L-Functions

$$L(u, \rho, Y / X)^{-1} = (1 - u^2)^{(r-1)d} \det(I' - A'_\rho u + Q'u^2)$$

- $r=$ rank fundamental group of $X = |E| - |V| + 1$
- $\rho=$ representation of $G = \text{Gal}(Y/X)$, $d = d_\rho =$ degree ρ

Definitions. $n \times n$ matrices A', Q', I', $n = |X|$, $n \times n$ matrix $A(g)$, $g \in \text{Gal}(Y/X)$, entry for a,b vertices in X $(A(g))_{a,b} = \#\{\text{edges in } Y \text{ from } (a,e) \text{ to } (b,g)\}$, $e=$identity $\in G$.

$$A'_\rho = \sum_{g \in G} A(g) \otimes \rho(g)$$

- $Q =$ diagonal matrix, jth diagonal entry $q_j = (\text{degree of } j\text{th vertex in } X)^{-1}$
- $Q' = Q \otimes I_d$, $I' = I_{nd} =$ identity matrix.
\[B \otimes C = \begin{pmatrix} b_{11}C & \cdots & b_{1p}C \\ \vdots & \ddots & \vdots \\ b_{p1}C & \cdots & b_{pp}C \end{pmatrix}. \]

B is pxp and C is qxq

\[B \otimes C \text{ is } pqxpq \]

Y=cube, X=tetrahedron: \(G = \{e, g\} \)

representations of \(G \) are 1 and \(\rho \):
\[
\rho(e) = 1, \quad \rho(g) = -1
\]

\[A(e)_{u,v} = \#\{ \text{length 1 paths } u' \text{ to } v' \text{ in } Y\} \]
\[A(g)_{u,v} = \#\{ \text{length 1 paths } u' \text{ to } v'' \text{ in } Y\} \]

\[A'_{1} = A = \text{adjacency matrix of } X = A(e) + A(g) \]

\[A(e) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad A(g) = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \]

\[A'_{\rho} = A(e) - A(g) = \begin{pmatrix} 0 & 1 & -1 & -1 \\ 1 & 0 & 1 & 1 \\ -1 & 1 & 0 & -1 \\ -1 & 1 & -1 & 0 \end{pmatrix} \]

EXAMPLE

\[(u,e)=u', \quad (u,g) \]

\[A_{e} \]
Zeta and L-Functions of Cube & Tetrahedron

\(X = K_4\) and \(Y = \text{cube}\)

\[\zeta(u,X)^{-1} = (1-u^2)^2 (1-u)(1-2u) (1+u+2u^2)^3\]

\[L(u,\rho,Y/X)^{-1} = (1-u^2) (1+u) (1+2u) (1-u+2u^2)^3\]

\[\zeta(u,Y)^{-1} = L(u,\rho,Y/X)^{-1} \zeta(u,X)^{-1}\]

Get L function of \(\zeta(u,X)\) by replacing \(u\) by \(-u\) for this example.

Example

Galois Cover of Non-Normal Cubic

\(G = S_3,\ H = \{(1),(23)\}\) fixes \(Y_3\).

\(a^{(1)} = (a,(1)),\ a^{(2)} = (a,(13)),\ a^{(3)} = (a,(132))\)

\(a^{(4)} = (a,(23)), a^{(5)} = (a,(123)), a^{(6)} = (a,(12)).\)

Here we use standard cycle notation for elements of the symmetric group.
Prime Splitting Completely

path in X (list vertices) 14312412431

f=1, g=3 3 lifts to Y₃

Frobenius trivial \Rightarrow density 1/6

This is an analog of the prime 31 for \(\mathbb{Q}(2^{1/3}) \) in Stark's article in From Number Theory to Physics, M. Waldschmidt et al (Eds.), Springer-Verlag, Berlin, 1992, pages 313-393.

Ihara Zeta Functions

\[\zeta(u,X)^{-1} = (1-u^2)(1-u)(1+u^2)(1+u+2u^2)(1-u^2-2u^3) \]

\[\zeta(u,Y_3)^{-1} = \zeta(u,X)^{-1} * (1-u^2)^2(1-u-u^3+2u^4) * (1+u+2u^2+u^3+2u^4)(1-u+2u^2-u^3+2u^4)(1+u^3+2u^4) \]

\[\zeta(u,Y_6)^{-1} = \zeta(u,Y_3)^{-1} (1-u^2)^3 (1+u)(1+u^2)(1-u+2u^2)(1-u+2u^3) * (1-u^3+2u^4) (1-u+2u^2-u^3+2u^4) * (1+u+u^3+2u^4)(1+u+2u^2+u^3+2u^4) \]

It follows that, as in number theory

\[\zeta(u,X)^2 \zeta(u,Y_6) = \zeta(u,Y_2) \zeta(u,Y_3)^2 \]

\(Y_2 \) is an intermediate quadratic extension between \(Y_6 \) and \(X \).

See Stark & Terras, Adv. in Math., 154 (2000), Fig. 13, for more info.
You can't hear the shape of a graph.

2 connected regular graphs (without loops & multiple edges) which are isospectral but not isomorphic

See A.T. & Stark in Adv. in Math., Vol. 154 (2000) for the details. The method goes back to algebraic number theorists who found number fields \(K \), which are non-isomorphic but have the same Dedekind zeta.

Robert Perlis and Aubi Mellein have used the same methods to find many examples of isospectral non-isomorphic graphs with multiple edges and components. 2 such are on the right.
There are nice constructions of isospectral non-isomorphic graphs in paper of Lubotzky, Samuels and Vishne.

Homework Problems

What are ramified coverings of graphs? Do the zetas⁻¹ divide?

Is there a graph analog of regulator, Stark Conjectures, class field theory for abelian graph coverings? Or more simply a quadratic reciprocity law, fundamental units? The ideal class group is the Jacobian of a graph and has order = number of spanning trees (paper of Roland Bacher, Pierre de la Harpe and Tatiana Nagnibeda). There is an analog of Brauer-Siegel theory (see H.S. and A.T. , Part III).

Beth Malmskog & Michelle Manes, Almost divisibility in the Ihara zeta functions of certain ramified covers of q+1-regular graphs, preprint.