

Assume, m is a square-free integer congruent to 2 or $3(\bmod 4)$.
A reference: H. Stark's article in From Number Theory to Physics, M. Waldschmidt et al (Eds.), Springer- Verlag, Berlin, 1992, pages 313393.

Decomposition of Primes in Quadratic Extensions
3 CASES

$$
K=F(\sqrt{ } m) / F, \quad F=\mathbb{Q}
$$

1) p inert: $f=2 . \quad p O_{K}=$ prime ideal in $K, \quad m \neq X^{2}(\bmod p)$
2) \mathfrak{p} splits: $\quad \mathbf{g}=2 . \quad \mathrm{pO}_{\mathrm{K}}=\mathfrak{p} \mathfrak{p}^{\prime}, \quad \mathfrak{p} \neq \mathfrak{p}^{\prime}, \quad \quad \mathrm{m} \equiv \mathrm{x}^{2}(\bmod \mathrm{p})$
3) p ramifies: $e=2 . \quad \mathrm{pO}_{\mathrm{K}}=\mathfrak{p}^{2}$,
p divides $4 m$

$\operatorname{Gal}(\mathrm{K} / \mathrm{F})=\{1,-1\}$

$\begin{gathered}\text { Frobenius automorphism } \\ =\text { Legendre Symbol }=\end{gathered} \quad\left(\frac{4 m}{p}\right)= \begin{cases}-1, & \text { in case } 1 \\ 1, & \text { in case } 2 \\ 0, & \text { in case } 3\end{cases}$
p does not divide 4 m implies p has 50% chance of being in Case 1 (and 50\% chance of being in case 2)

Assume, m is a square-free integer $\equiv 2$ or $\mathbf{3}(\bmod 4)$.

$$
\begin{array}{ll}
\quad \text { Artin } & \text { L-Functions } \\
\mathrm{K} \supset \mathrm{~F} & \text { number fields with KIF Galois } \\
\mathrm{O}_{\mathrm{K}} \supset \mathrm{O}_{\mathrm{F}} & \text { rings of integers } \\
\mathfrak{P} \supset \mathfrak{p} & \text { prime ideals (} \left.\mathfrak{p} \text { unramified, i.e., } \mathfrak{p} \not \subset \mathfrak{P}^{2}\right) \\
\text { Frobenius Automorphism when } \mathfrak{p} \text { is unramified. }
\end{array}
$$

$$
\left(\frac{K / F}{\mathfrak{P}}\right)=\sigma_{\mathfrak{P}} \in \operatorname{Gal}(K / F), \quad \sigma_{\mathfrak{P}}(x) \equiv x^{\mid O_{F} / p l}(\bmod \mathfrak{P}), \text { for } x \in O_{K}
$$

$\sigma_{\mathfrak{P}}$ induces generator of finite Galois group, $\operatorname{Gal}\left(\left(\mathrm{O}_{\mathrm{K}} / \mathfrak{\Re}\right) /\left(\mathrm{O}_{\mathrm{F}} / \mathfrak{p}\right)\right)$ determined by \mathfrak{p} up to conjugation if $\mathfrak{P} / \mathfrak{p}$ unramified $\mathrm{f}(\mathfrak{P} / \mathfrak{p})=$ order of $\sigma_{\mathfrak{F}}=\left[\mathrm{O}_{\mathrm{K}} / \mathfrak{P}: \mathrm{O}_{\mathrm{F}} / \mathfrak{p}\right]$ $g(\mathfrak{P} / \mathfrak{p})=$ number of primes of K dividing \mathfrak{p}
Artin L-Function for $\mathbf{s} \in \mathbb{C}, \pi$ a representation of $\mathbf{G a l}($ KIF $)$. Give only the formula for unramified primes \mathfrak{p} of F.
Pick \mathfrak{x} a prime in O_{K} dividing \mathfrak{p}.

$$
L(s, \pi) "=" \prod_{p} \operatorname{det}\left(1-\pi\left(\frac{K / F}{\mathfrak{P}}\right) N p^{-s}\right)^{-1}
$$

Chebotarev Density Theorem

For a set S of primes of F, define the analytic density of S.

$$
\delta(S)=\lim _{s \rightarrow 1+}\left(\frac{\sum_{p \in S} p^{-s}}{-\log (s-1)}\right)
$$

Theorem. Set C(p)=the conjugacy class of the Frobenius automorphism of prime ideals \mathfrak{P} of K above p. Then, for every conjugacy class C in $\mathrm{G}=\mathrm{Gal}(\mathrm{KIF})$,

$$
\delta\{p \mid C(p)=C\}=\frac{|C|}{|G|}
$$

The proof requires the facts that $L(s, \pi)$ continues to $s=1$ with no pole or zero if $\pi \neq 1$, while $L(s, 1)=\zeta_{F}(s)$ has a simple pole at $s=1$.

Graph Galois Theory

Graph Y an unramified covering of Graph X means

(assuming no loops or multiple edges)
$\exists \pi: Y \rightarrow \mathbf{X}$ is an onto graph map such that for every $x \in X$ \& for every $y \in \pi^{-1}(x)$, π maps the points $z \in \mathbf{Y}$ adjacent to y $\mathbf{1 - 1}$, onto the points $\mathbf{w} \in \mathbf{X}$ adjacent to x .

Normal d-sheeted Covering means:
\exists d graph isomorphisms g_{1}, \ldots, g_{d} mapping $Y \rightarrow Y$ such that
The Galois group
$\pi g_{j}(y)=\pi(y) \quad \forall y \in Y$ $\mathbf{G}(\mathrm{Y} / \mathrm{X})=\left\{\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{d}}\right\}$.

This is an analog of coverings of manifolds, Riemann surfaces, etc.

Picture of Splitting of Prime which is inert:

$$
\text { i.e., } f=2, g=1, e=1
$$

1 prime cycle D above, \& D is lift of C^{2}.

Example of Splitting of Primes in Quadratic Cover

Picture of Splitting of Prime which splits completely; i.e., $f=1, g=2, e=1$ 2 primes cycles above

Frobenius of prime in $X=$ non-trivial element of Galois group since
if we lift path on X once, we get to the other sheet of the cover

Properties of Frobenius

1) Replace (v, i) with ($v, h i$). Then $\operatorname{Frob}(D)=j i^{-1}$ is replaced with $\mathrm{hji}^{-1} \mathrm{~h}^{-1}$. Or replace D with different prime above C and see that
Conjugacy class of $\operatorname{Frob}(D) \in \operatorname{Gal}(Y / X)$ unchanged.
2) Varying start vertex v of C in X does not change Frob(D).
3) $\operatorname{Frob}(D)^{j}=\operatorname{Frob}\left(D^{j}\right)$.

Artin L-Function

$\rho=$ representation of $G=\operatorname{Gal}(Y / X), u \in \mathbb{C},|u|$ small

$$
L(u, \rho, Y / X)=\prod_{[C]} \operatorname{det}\left(1-\rho\left(\frac{Y / X}{D}\right) u^{v(C)}\right)^{-1}
$$

[C]=equivalence class of primes of X $v(C)=$ length C, D a prime in Y over C

Question: How does the Frobenius depend on the labeling, choice of spanning tree, etc.?

Answer: You can identify the Galois group $G(Y / X)$ with a quotient $\Gamma / \mathrm{H}, \Gamma=$ the fundamental group of X, a group which can be viewed as generated by the edges left out of a spanning tree.

Properties of Artin L-Functions

Copy from Lang, Algebraic Number Theory

1) $L(u, 1, Y / X)=\zeta(u, X)=$ Ihara zeta function of X (our analog of the Dedekind zeta function, also Selberg zeta)
Proof by Defn.
2) $\zeta(u, Y)=\prod_{\rho \in \hat{G}} L(u, \rho, Y / X)^{d_{\rho}}$
product over all irreducible reps of $G, d_{\rho}=$ degree ρ.
Proof uses induced representations and decomposition

$$
\operatorname{In} d_{\{e\}}^{G} 1=\sum_{\pi \in \hat{G}}^{\oplus} d_{\pi} \pi
$$

See A. T., Fourier Analysis on Finite Groups and Applications.

$\operatorname{Det}\left(I-u W_{1}\right)$ formula for Artin L-Functions

Set $B=W_{1}$ and call the Frobenius automorphism of an edge Frob(e). Define the blocks of the matrix $2|E|^{*} d_{\rho} \times 2|E|^{*} d_{\rho}$ matrix B_{ρ} as follows, for each pair of oriented edges e,f in X :

$$
\begin{gathered}
\left(B_{\rho}\right)_{e f}=\left(b_{e f} \rho(\operatorname{Frob}(e))\right) \\
L(u, \rho, Y / X)^{-1}=\operatorname{det}\left(I-u B_{\rho}\right)
\end{gathered}
$$

For the cube over K_{4} we have 2 degree 1 representations of the Galois group. The only interesting matrix is that for the non-trivial representation: 12×12 matrix. It is too big to put on a Power Point talk or blackboard.

Ihara Theorem for L-Functions

$L(u, \rho, y / X)^{-1}$
$=\left(1-u^{2}\right)^{(r-1) d} \operatorname{det}\left(I^{\prime}-A_{\rho}^{\prime} u+Q^{\prime} u^{2}\right)$
$r=$ rank fundamental group of $X=|E|-|V|+1$
$\rho=$ representation of $G=\operatorname{Gal}(Y / X), d=d_{\rho}=$ degree ρ
Definitions. ndxnd matrices $A^{\prime}, Q^{\prime}, I^{\prime}, n=|X|$,
$n \times n$ matrix $A(g), g \in \operatorname{Gal}(Y / X)$, entry for a, b vertices in X $(A(g))_{a, b}=\#\{$ edges in Y from (a, e) to $(b, g)\}$,
$e=$ identity $\in G$.

$$
A_{\rho}^{\prime}=\sum_{g \in G} A(g) \otimes \rho(g)
$$

$Q=$ diagonal matrix, jth diagonal entry $=$
$Q^{\prime}=Q \otimes I_{d}, I^{\prime}=I_{\text {nd }}=\begin{gathered}q_{j}=(\text { degree of } j \text { th vertex in } X)-1 \text {, }\end{gathered}$

$Y=$ cube, $X=t e t r a h e d r o n: \quad G=\{e, g\}$

EXAMPLE

 representations of G are 1 and $\rho: \rho(e)=1, \rho(g)=-1$ $A(e)_{u, v}=\#\left\{\right.$ length 1 paths u^{\prime} to v^{\prime} in $\left.Y\right\}$$A(g)_{u, v}=\#\left\{\right.$ length 1 paths u^{\prime} to $v^{\prime \prime}$ in Y \}
$(u, e)=u^{\prime}$,
$(u, g)=u^{\prime \prime}$
$A_{1}^{\prime}=A=$ adjacency matrix of $X=A(e)+A(g)$

$A_{\rho}^{\prime}=A(e)-A(g)=\left(\begin{array}{cccc}0 & 1 & -1 & -1 \\ 1 & 0 & 1 & 1 \\ -1 & 1 & 0 & -1 \\ -1 & 1 & -1 & 0\end{array}\right)$

$X=K_{4} \quad$ and $\quad Y=c u b e$
a $\quad \zeta(u, X)^{-1}=\left(1-u^{2}\right)^{2}(1-u)(1-2 u)\left(1+u+2 u^{2}\right)^{3}$
a $L(u, p, Y / X)^{-1}=\left(1-u^{2}\right)(1+u)(1+2 u)\left(1-u+2 u^{2}\right)^{3}$
a $\quad \zeta(u, Y)^{-1}=L(u, \rho, Y / X)^{-1} \zeta(u, X)^{-1}$
Get L function of $\zeta(u, X)$ by replacing u by $-u$ for this example.

Prime Splitting Completely
path in X (list vertices) 14312412431
$f=1, g=3 \quad 3$ lifts to Y_{3}
1'4'3"'1"'2"'4"1"2"4'"3'1'
$1^{\prime \prime} 4^{\prime \prime} 3^{\prime \prime} 1^{\prime \prime} 2^{\prime \prime} 4^{\prime \prime \prime} 1^{\prime \prime \prime} 2^{\prime \prime \prime} 4^{\prime \prime} 3^{\prime \prime} 1^{\prime \prime}$
$1^{\prime \prime \prime} 4^{\prime \prime \prime} 3^{\prime} 1^{\prime} 2^{\prime} 4^{\prime} 1^{\prime} 2^{\prime} 4^{\prime} 3^{\prime \prime \prime} 1^{\prime \prime \prime}$
Frobenius trivial \Rightarrow density $1 / 6$

This is an analog of the prime 31 for $\mathbb{Q}\left(2^{1 / 3}\right)$ in Stark's article in From Number Theory to Physics, M. Waldschmidt et al (Eds.), Springer-Verlag, Berlin, 1992, pages 313-393.

Ihara Zeta Functions

K $\zeta(u, X)^{-1}=\left(1-u^{2}\right)(1-u)\left(1+u^{2}\right)\left(1+u+2 u^{2}\right)\left(1-u^{2}-2 u^{3}\right)$
($\zeta\left(u, Y_{3}\right)^{-1}=\zeta(u, X)^{-1} *\left(1-u^{2}\right)^{2}\left(1-u-u^{3}+2 u^{4}\right)$
$*\left(1+u+2 u^{2}+u^{3}+2 u^{4}\right)\left(1-u+2 u^{2}-u^{3}+2 u^{4}\right)\left(1+u+u^{3}+2 u^{4}\right)$
8 $\zeta\left(u, Y_{6}\right)^{-1}=\zeta\left(u, Y_{3}\right)^{-1}\left(1-u^{2}\right)^{3}(1+u)\left(1+u^{2}\right)\left(1-u+2 u^{2}\right)\left(1-u^{2}+2 u^{3}\right)$ * $\left(1-u-u^{3}+2 u^{4}\right)\left(1-u+2 u^{2}-u^{3}+2 u^{4}\right)$ $*\left(1+u+u^{3}+2 u^{4}\right)\left(1+u+2 u^{2}+u^{3}+2 u^{4}\right)$

It follows that, as in number theory

$$
\zeta(u, X)^{2} \zeta\left(u, y_{6}\right)=\zeta\left(u, y_{2}\right) \zeta\left(u, y_{3}\right)^{2}
$$

Y_{2} is an intermediate quadratic extension between Y_{6} and X.

See Stark \& Terras, Adv. in Math., 154 (2000), Fig. 13, for more info.

Application of Galois

 Theory of Graph Coverings.You can't hear the shape of a graph.

2 connected regular graphs (without loops \& multiple edges) which are isospectral but not isomorphic

If See A.T. \& Stark in Adv. in Math., Vol. 154 (2000) for the details. The method goes back to algebraic number theorists who found number fields K_{i} which are non isomorphic but have the same Dedekind zeta.
See Perlis, J. Number Theory, 9 (1977).

H Robert Perlis and Aubi Mellein have used the same methods to find many examples of isospectral non isomorphic graphs with multiple edges and components. 2 such are on the right.

Harold

Homework Problems

What are ramified coverings of graphs? Do the zetas ${ }^{-1}$ divide?
Is there a graph analog of regulator, Stark Conjectures, class field theory for abelian graph coverings? Or more simply a quadratic reciprocity law, fundamental units? The ideal class group is the Jacobian of a graph and has order = number of spanning trees (paper of Roland Bacher, Pierre de la Harpe and Tatiana Nagnibeda). There is an analog of BrauerSiegel theory (see H.S. and A.T. , Part III).
See M. Baker and S. Norine, Harmonic morphisms and hyperelliptic graphs, preprint.
Beth Malmskog \& Michelle Manes, Almost divisibility I the Ihara zeta functions of certain ramified covers of $q+1$-regular graphs, preprint.

