Example 1. Quedratic Extension

field ring prime ideal finite field
K=F(m) 0= Z[Nm] P o pOy O /P
F=Q O=Z pZ Z/pZ
g = # of such p, f = degree of O/p over O/pO;

pe > pOy @ pett

efg=2
Assume, m is a square-free integer congruent to 2 or 3 (mod 4).
A reference: H. Stark's article in From Number Theory to Physics, M.

Waldschmidt et al (Eds.), Springer- Verlag, Berlin, 1992, pages 313-
393.




Decomposition of Primes in Quadratic Extensions
3 CASES K=F(\m)/F, F=Q
1) pinert: f=2. pOy =primeideal in K, m # x2(mod p)

2) psplits:  g=2. pOx= pp', p#p, m = x? (mod p)
3) p ramifies: e=2. pOy = p?, p divides 4m
Gal(K/F)={1,-1} ~1 incasel

Frobenius automorphism [4_m]=], incase 2
= Legendre Symbol = 0. incase3

p does not divide 4m implies p has 50% chance of being in
Case 1 (and 50% chance of being in case 2)

Assume, m is a square-free integer =2 or 3 (mod 4).

Artin L-Functions
KoF number fields with K/F Galois
Ok 2 O¢ rings of integers
PBop primeideals (p unramified,i.e., p & P?)

Frobenius Automorphism when § is unramified.

[K;szareGaI(K/F), 5,(X) = X" (mod ), for xe O,

o, induces generator of finite Galois group, Gal((O, 159/ (0c/p )
determined by p up to conjugation if 3 /p unramified
f (P/p) = order of oy =[O /FP: O/p]
g (B/p)=number of primes of K dividing p

Artin L-Function for seC, = arepresentation of Gal(K/F).
Give only the formula for unramified primes p of F.
Pick 3 a prime in O, dividing p.

L(s,7)"=" H det (1— ﬂ[%j Np‘S]




Chebotarev Density Theorem

For a set S of primes of F, define the analytic density of S.

2P

S(S) = lim| —==
(5)=m —log(s-1)

Theorem. Set C(p)=the conjugacy class of the Frobenius
automorphism of prime ideals 32 of K above p. Then, for

every conjugacy class C in G=Gal(K/F),

The proof requires the facts that L(s,m) continues to s=1 with no
pole or zero if w#l, while L(s,1)=(-(s) has a simple pole at s=1 .

n:Y—>X is an onto graph map such that
for every xeX & for everyy e nl(x),

T maps the points z € Y adjacent to y
1-1, onto the points w € X adjacent to x.

Normal d-sheeted Covering means:
3 d graph isomorphisms g, ,..., g4 mapping¥Y —Y
such that ng; (Y) =n(y) V Ve
The Galois group GKY/X)={9;.....94 }




How fo Create a Galois First pick a spanning tree Ty in X

Covering

part of Y

(no cycles, connected, includes all
vertices of X).

Second make n=|G| copies of the
tree Ty in X. These are the sheets of Y.
Label the sheets with ge6. The vertices
of Y are (x,g) for x vertex of X,gc6.
G actionon Y:

on sheets: g(sheet h) = sheet(gh)

on vertices:  g(x,h)=(x,gh)

on paths: g(path from (v,h) to (w,j))
= path from (v,gh) to (w,gj)

Given G, get
examples Y by
T giving permutation

8 N representation of
1 generators of G to
v / lift edges of X
T ), left out of Ty.

Example 1.

Quadratic Cover

N

®
/ Cube covers
®

Tetrahedron

N .

Spanning Treein X is red.
Corresponding sheets of Y are also red




Example of Splitting of Primes
in Quadratic Cover £
.

N,/

1 / 5

Picture of Splitting of Prime which is inert;
i.e., f=2, g=1, e=1
1 prime cycle D above, & D is lift of C2.

bn

Example of Splitting of Primes in Quadratic Cover

du

N 1T 7

=] 4 //g\

/dl b'\
VV. k.
Picture of Splitting of Prime which

splits completely; i.e., f=1, g=2, e=1
2 primes cycles above

bu




Frobenius Automorphism
Da
i prime  Frob(D) = (ﬂ) = jit e G=Gal(Y/X)
’ above C D
where ji'1 maps sheet i to sheet |
Y 6 =the C is not necessarily closed
e M length (C ) = length(C)
: of CinY . .
(v,i) : (D aprime above Cis
starting : :
at (v,i) closed and is obtained
T ending at by f liftings like C )
(v.j)
X @ Exercise: Compute Frob(D) on
v C = PatQ preceding pages, 6={e,g}.
n -

Galois Group={e,g}: Label cube vertices
(x.e) > x' and (x,9) > x", x in K,

b "
[ o, d f=2
\c" a/ c
° () ®
o————@
g b.\ o
. ® o’ b\
a < c ° e
a , d
Y=cube X=K,

Frobenius of prime in X = non-trivial element of Galois group
since
if we lift path on X once, we get to the other sheet of the cover




Properties of Frobenius

1) Replace (v,i) with (v,hi). Then Frob(D) = ji-! is replaced
with hji-th-!. Or replace D with different prime above C and
see that

Conjugacy class of Frob(D) € Gal(Y/X) unchanged.
2) Varying start vertex v of C in X does not change Frob(D).
3) Frob(D) = Frob(D) .

Artin L-Function
p = representation of 6=6al(¥/X), ucC, |u| small

-1

L(u,p,Y /! X)=]]det| 1-p YIX) o

[C]

[C]=equivalence class of primes of X
v(C)=length C, D a prime in Y over C

Question: How does the Frobenius depend on the
labeling , choice of spanning tree, etc.?

Answer: You can identify the Galois group 6(Y/X) with
a quotient T/H, T= the fundamental group of X, a
group which can be viewed as generated by the edges
left out of a spanning tree.




Properties of Artin L-Functions
Copy from Lang, Algebraic Number Theory
1)L(u,1,Y/X) = {(u,X) = Ihara zeta function of X (our
analog of the Dedekind zeta function, also Selberg

zeta)
Proof by Defn.

2 {(u,Y) =] Lu,p,YIX)"

peG

product over all irreducible reps of 6, d,=degree p.
Proof uses induced representations and decomposition

G _ ®
Ind,1=> " .d.7z

See A. T., Fourier Analysis on Finite Groups and Applications. .

Det(I-uW,) formula for Artin L-Functions

Set B=W; and call the Frobenius automorphism
of an edge Frob(e). Define the blocks of the
matrix 2|E|*d, x 2|E|*d, matrix B as follows,
for each pair of oriented edges e,f in X :

(B, ), =(bsp(Frob(e)))

L(u,p,Y | X)™ = det(l —uB,)
]




For the cube over K, we have 2 degr'ee 1 r'epr'esen'rahons
of the Galois group. The only interesting matrix is that
for the non-trivial representation: 12x12 matrix. It is too
big to put on a Power Point talk or blackboard.

Ihara Theorem for L-Functions

L(u,p,Y/X)!
=(1-u?)rDdet(I'-A u+Q'u?)

r=rank fundamental group of X = |E|-|V]|+1

p= representation of 6 = 6al(¥/X), d = d, = degree p
Definitions. ndxnd matrices A’, Q', I', n=|X|,
nxn matrix A(g), g € Gal(¥Y/X), entry for a,b vertices in X
(A(g)) e #{ edges in Y from (a,e) to (b,g) },

e= |den1'|'l'y € 6.
A=Y Ag)®0(g)
g6

Q = diagonal matrix, jth diagonal entry =
(degree of jth vertex in X)-1,
Q=QRI,, I'=I,= lden'h*y matrix.




11

1{L{

Y=cube, X=tetrahedron: G = {e,g} EXAMPLE
representations of 6 are 1 and p: p(e) = 1, p(g) = -1

A(e),, = #{ length 1 paths u’ to v/ in Y}
A(g),, = #{ length 1 paths u’ to v in Y} (we)u’
A’ = A = adjacency matrix of X =A(e)+A(g) (.g)=u"
b" d"
0100 0011
1011 0000
M9=10 100 M=1 0012 .
0100 1010
a" Cc
0 1 -1 -1
1 0 1 1
A' = — =
» =Ae)-A(9) 11 0 4
-11 -1 0

10



Letn and L-Finctions of (1be 4 Tefranedn

X =K, and Y=cube
2 uX)! = (1-u?)P(1-u)(1-2u) (1+u+2u?)’
A L(u,p,Y/X) ! = (1-u?) (1+u) (1+2u) (1-u+2u?)3

7, Y)! = L(u,p,Y/X) ! G(u,X)

Get L function of {(u,X) by replacing u by
this example.

30

@
40) . .—. 1

2 @ 10 .-.i(z/\. 20 Example
[ £\
Yo o1 O g 2R Galois Coverof
a6 $23® 3@ &
‘123 N Neiad f.  Non-Normal Cublc
ak), gx+3) \.‘ .ﬂ\./
46 26) 10
l "
a 4ié°| v 6=5,, H={(1).(23)} fixes Y;.
Y3 “1 1 . W= @=
G — 4" a _(0:(1))1 a _(01(13)):
' | | a®=(a,(132),
aw 3’| °|3' a®=(a,(23)),a®=(a,(123)),a®=(a,(12)).
4o, O
l : .; ' Here we use standard cycle notation

N

for elements of the symmetric group.

X
o
o




Prime Splitting Completely
path in X (list vertices) 14312412431

f=1, g=3 3 lifts to Y;
1'4'3“' 1 “'2"‘4“1 'l2ll4l'l3l1 .

1“4“3“ 1 “2“4"'1 'll2l'l4ll3l'1ll
1lll4l‘l3l1'2'4'1!2!4!3"'1Il'

Frobenius trivial = density 1/6

This is an analog of the prime 31 for Q(2!/3) in Stark's article
in From Number Theory to Physics, M. Waldschmidt et al
(Eds.), Springer-Verlag, Berlin, 1992, pages 313-393. I

B C(u,X)! = (1-u?)(1-u)(1+u)(1+u+2u?)(1-u?-2ud)

B L(uYs)" = LX) *(1-wF(-u-uv2u)
*(1+u+2u2+u3+2u?)(1 -u+2u2-ud+2u?)(1 +u+ud+2u)

B LYt = LuYa)? (1-62) (Lru)(1 o)1 -uv2uP)(1 -u2+2u)
*(1-u-ud+2u?) (1-u+2u?-u3+2u?)
*(1+u+ud+2u?)(1 +u+2u?+u3+2u?)

It follows that, as in number theory

C(ulx)z C(ulyﬁ) = C(UIYZ) C(uly3)2
Y, is an intermediate quadratic extension between Y,
and X.

See Stark & Terras, Adv. in Math., 154 (2000), Fig:
13, for more info.
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Application -

of Galois
Theory of
6raph
Coverings.

You can't
hear the
shape of a
graph.

2 connected
regular graphs
(without loops &
multiple edges)
which are
isospectral but
not isomorphic

¥ See A.T. & Stark in Adv. in
Math., Vol. 154 (2000) for the
details. The method goes back to
algebraic number theorists who
found number fields K; which are non
isomorphic but have the same
Dedekind zeta.

See Perlis, J. Number Theory, 9
(1977).

% Robert Perlis and Aubi Mellein
have used the same methods to find
many examples of isospectral non
isomorphic graphs with multiple
edges and components. 2 such are
on the right.
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Homework Problems

What are ramified coverings of graphs? Do the zetas-! divide?

Is there a graph analog of regulator, Stark Conjectures, class
field theory for abelian graph coverings? Or more simply a
quadratic reciprocity law, fundamental units? The ideal class
group is the Jacobian of a graph and has order = number of
spanning trees (paper of Roland Bacher, Pierre de la Harpe
and Tatiana Nagnibeda). There is an analog of Brauer-
Siegel theory (see H.S. and A.T. , Part III).

See M. Baker and S. Norine, Harmonic morphisms and
hyperelliptic graphs, preprint.

Beth Malmskog & Michelle Manes, Almost divisibility I the

Ihara zeta functions of certain ramified covers of q+1-regular

graphs, preprint.
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