

Artin L-Functions $K \supset F$ number fields with K/F Galois rings of integers $O_K \supset O_F$ $\mathfrak{P} \supset \mathfrak{p}$ prime ideals (p unramified, i.e., $p \not\subset \mathfrak{P}^2$) Frobenius Automorphism when **p** is unramified. $\frac{K/F}{m} = \sigma_{\mathcal{P}} \in Gal(K/F), \qquad \sigma_{\mathcal{P}}(x) \equiv x^{|O_F/P|} \pmod{\mathcal{P}}, \text{ for } x \in O_K$ \mathcal{D} $\sigma_{\mathfrak{R}}$ induces generator of finite Galois group, Gal($(O_{\mathsf{K}}/\mathfrak{P})/(O_{\mathsf{F}}/\mathfrak{P})$) determined by p up to conjugation if p/p unramified f ($\mathfrak{P}/\mathfrak{p}$) = order of $\sigma_{\mathfrak{P}} = [O_{\mathsf{K}}/\mathfrak{P}: O_{\mathsf{F}}/\mathfrak{p}]$ $g(\mathfrak{P}/\mathfrak{p})$ =number of primes of K dividing \mathfrak{p} Artin L-Function for $s \in \mathbb{C}, \pi$ a representation of Gal(K/F). Give only the formula for unramified primes **p** of **F**. Pick \mathfrak{P} a prime in O_{κ} dividing **p**. $L(s,\pi)'' = ''\prod_{n} \det\left(1 - \pi \left(\frac{K/F}{\mathfrak{N}}\right) N p^{-s}\right)^{-1}$

Chebotarev Density Theorem

For a set S of primes of F, define the analytic density of S.

$$\delta(S) = \lim_{s \to 1+} \left(\frac{\sum_{p \in S} p^{-s}}{-\log(s-1)} \right)$$

Theorem. Set C(p)=the conjugacy class of the Frobenius automorphism of prime ideals \mathfrak{P} of K above p. Then, for every conjugacy class C in G=Gal(K/F),

$$\delta\left\{p \mid C(p) = C\right\} = \frac{|C|}{|G|}$$

The proof requires the facts that $L(s,\pi)$ continues to s=1 with no pole or zero if $\pi \neq 1$, while $L(s,1)=\zeta_F(s)$ has a simple pole at s=1.

Properties of Artin L-Functions Copy from Lang, Algebraic Number Theory 1)L(u,1,Y/X) = $\zeta(u,X)$ = Thara zeta function of X (our analog of the Dedekind zeta function, also Selberg zeta) Proof by Defn. 2) $\zeta(u,Y) = \prod_{\rho \in \hat{G}} L(u,\rho,Y/X)^{d_{\rho}}$ product over all irreducible reps of G, d_{ρ} =degree ρ . Proof uses induced representations and decomposition $Ind_{\{e\}}^{G} 1 = \sum_{\pi \in \hat{G}}^{\oplus} d_{\pi}\pi$ See A. T., Fourier Analysis on Finite Groups and Applications.

Det(I-uW₁) formula for Artin L-Functions Set B=W₁ and call the Frobenius automorphism of an edge Frob(e). Define the blocks of the matrix 2|E|*d_p × 2|E|*d_p matrix B_p as follows, for each pair of oriented edges e.f in X: $\left(B_{\rho}\right)_{ef} = \left(b_{ef}\rho(Frob(e))\right)$ $L(u, \rho, Y / X)^{-1} = det(I - uB_{\rho})$

For the cube over K_4 we have 2 degree 1 representations of the Galois group. The only interesting matrix is that for the non-trivial representation: 12x12 matrix. It is too big to put on a Power Point talk or blackboard.

Thara Theorem for L-Functions

$$L(u, \rho, Y / X)^{-1}$$

$$= (1 - u^{2})^{(r-1)d} det(I' - A'_{\rho}u + Q'u^{2})$$
r=rank fundamental group of X = |E|-|V|+1
p= representation of G = Gal(Y/X), d = d_{p} = degree p
Definitions. nd×nd matrices A', Q', I', n=|X|,
n×n matrix A(g), g ∈ Gal(Y/X), entry for a, b vertices in X
(A(g))_{a,b} = #{ edges in Y from (a,e) to (b,g) },
e=identity ∈ G.
Q = diagonal matrix, jth diagonal entry =
q_{j} = (degree of jth vertex in X)-1,
Q' = Q⊗I_{d}, I' = I_{nd} = identity matrix.

Y=cube, X=tetrahedron:
$$G = \{e,g\}$$

representations of G are 1 and $\rho: \rho(e) = 1$, $\rho(g) = -1$
 $A(e)_{u,v} = \#\{ \text{ length 1 paths } u' \text{ to } v' \text{ in } Y \}$
 $A(g)_{u,v} = \#\{ \text{ length 1 paths } u' \text{ to } v'' \text{ in } Y \}$
 $A'_1 = A = \text{ adjacency matrix of } X = A(e) + A(g)$
 $A'_1 = A = \text{ adjacency matrix of } X = A(e) + A(g)$
 $A(e) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$
 $A(g) = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ -1 & 1 & 0 & -1 \\ -1 & 1 & -1 & 0 \end{pmatrix}$
 $A'_{\rho} = A(e) - A(g) = \begin{pmatrix} 0 & 1 & -1 & -1 \\ 1 & 0 & 1 & 1 \\ -1 & 1 & 0 & -1 \\ -1 & 1 & -1 & 0 \end{pmatrix}$

Ihara Zeta Functions $\zeta(u,X)^{-1} = (1-u^2)(1-u)(1+u^2)(1+u+2u^2)(1-u^2-2u^3)$ $\zeta(u, Y_3)^{-1} = \zeta(u, X)^{-1} * (1 - u^2)^2 (1 - u - u^3 + 2u^4)$ $(1+u+2u^2+u^3+2u^4)(1-u+2u^2-u^3+2u^4)(1+u+u^3+2u^4)$ $\zeta(u, Y_6)^{-1} = \zeta(u, Y_3)^{-1} (1-u^2)^3 (1+u)(1+u^2)(1-u+2u^2)(1-u^2+2u^3)$ 28 *(1-u-u³+2u⁴) (1-u+2u²-u³+2u⁴) $(1+u+u^3+2u^4)(1+u+2u^2+u^3+2u^4)$ It follows that, as in number theory $\zeta(\mathbf{u},\mathbf{X})^2 \zeta(\mathbf{u},\mathbf{Y}_6) = \zeta(\mathbf{u},\mathbf{Y}_2) \zeta(\mathbf{u},\mathbf{Y}_3)^2$ Y_2 is an intermediate quadratic extension between Y_4 and X. See Stark & Terras, Adv. in Math., 154 (2000), Fig. 13, for more info.

Homework Problems

What are ramified coverings of graphs? Do the zetas⁻¹ divide?

Is there a graph analog of regulator, Stark Conjectures, class field theory for abelian graph coverings? Or more simply a quadratic reciprocity law, fundamental units? The ideal class group is the Jacobian of a graph and has order = number of spanning trees (paper of Roland Bacher, Pierre de la Harpe and Tatiana Nagnibeda). There is an analog of Brauer-Siegel theory (see H.S. and A.T., Part III).

See M. Baker and S. Norine, Harmonic morphisms and hyperelliptic graphs, preprint.

Beth Malmskog & Michelle Manes, Almost divisibility I the Ihara zeta functions of certain ramified covers of q+1-regular graphs, preprint.

