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field ring                    prime ideal       finite field

K=F(√m)            OK= Z[√m]                p ⊃ pOK OK/p

F= Q OF=Z pZ Z/pZ

f = degree of  OK/p over OF/pOFg = # of such p,

pe ⊃ pOK ⊄ pe+1

efg=2
Assume, m is a square-free integer congruent to 2 or 3 (mod 4).

A reference: H. Stark’s article in From Number Theory to Physics, M.
Waldschmidt et al (Eds.), Springer- Verlag, Berlin, 1992, pages 313-
393.
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3 CASES

1) p inert: f=2.     pOK = prime ideal in K,     m T x2 (mod p)

2) p splits: g=2 pO = p p′ p ≠ p′ m ≡ x2 (mod p)

K=F(√m)/F,           F=Q

Decomposition of Primes in Quadratic Extensions

2) p splits: g=2.    pOK =  p p ,    p ≠ p ,   m ≡ x2 (mod p)

3) p ramifies: e=2.    pOK = p2,                             p divides 4m

Gal(K/F)={1,-1}
Frobenius automorphism

L d S b l

1,  in case 1
4 1,     in case 2m
p

⎧
⎛ ⎞ ⎪
⎜ ⎟ ⎨⎜ ⎟
⎝ ⎠ ⎪

−
=

= Legendre Symbol =

p does not divide 4m  implies p has 50% chance of being in 
Case  1   (and 50% chance of being in case 2) 

Assume, m  is a square-free integer ≡ 2 or 3 (mod 4).  

0,    in case 3
p⎜ ⎟

⎝ ⎠ ⎪
⎩

K ⊃ F number fields with K/F Galois

OK ⊃ OF rings of integers

P ⊃ p prime ideals   (p unramified , i.e., p ⊄ P2)
Frobenius Automorphism when p is unramified. 

Artin L-Functions

σP induces generator of finite Galois group, Gal((OK /P)/(OF/p ))
determined by p up to conjugation if P/p unramified  
f (P/p) = order of    σP = [OK /P: OF/p] 

g (P/p)=number of  primes of K dividing p

A ti L F ti f C t ti f G l(K/F)

( ),// Gal FKFK σ⎛ ⎞ = ∈⎜ ⎟
⎝ ⎠

PP
( ) (mod ), forF

K
Ox x Oxσ ≡ ∈P
/ p P

Artin L-Function for s∈C, π a representation of  Gal(K/F).   
Give only the formula for unramified primes p of F.  
Pick P a prime in OK dividing p. 

1

( , )" " det 1 / sL s NFKπ π
−

−⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∏
p

p
P
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For a set S of primes of F, define the analytic density of S. 

( ) li p S

sp
Sδ ∈

−⎛ ⎞
⎜ ⎟
⎜ ⎟

∑

Chebotarev Density Theorem

Theorem. Set C(p)=the conjugacy class of the Frobenius 
automorphism of prime ideals P of K above p. Then, for 
every conjugacy class C in G=Gal(K/F), 

( )1
( ) lim

log 1
p

s
S

s
δ

→ +
= ⎜ ⎟− −⎜ ⎟

⎝ ⎠

| |C

The proof requires the facts that L(s,π) continues to s=1 with no 
pole or zero if π≠1, while L(s,1)=ζF(s) has a simple pole at s=1 .

{ } | |( ) .
| |
Cp C p C
G

δ = =

Graph Y an unramified covering of Graph X means 
(assuming no loops or multiple edges)

∃ π:Y→X  is an onto graph map such that 
fo e e X & fo e e 1( )

Graph Galois Theory

for every x∈X &  for every y ∈ π-1(x),

π maps the points z ∈ Y adjacent to y 
1-1, onto the points w ∈ X adjacent to x.

Normal d-sheeted Covering means: 
∃ d graph isomorphisms g1 ,..., gd mapping Y → Y

such that             π gj (y) = π (y)        ∀ y ∈ Ygj (y) (y) y
The Galois group G(Y/X) = { g1 ,..., gd }.

This is an analog of coverings of 
manifolds, Riemann surfaces, etc.
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First pick a spanning tree TX in X 
(no cycles, connected, includes all 
vertices of X).

Second make n=|G| copies of the
tree TX in X. These are the sheets of Y. 

How to Create a Galois 
Covering

part of Y Label the sheets with g∈G.  The vertices
of Y are (x,g) for x vertex of X,g∈G. 
G  action on Y: 

on sheets: g(sheet h) = sheet(gh)
on vertices:     g(x,h)=(x,gh)

on paths: g(path from (v,h) to (w,j))
= path from (v,gh) to (w,gj)

(v,g)

π v

TX

Given G, get 
examples Y by 
giving permutation  
representation of 
generators of G to 
lift edges of X 
left out of TX.

Cube covers 
TetrahedronTetrahedron

Spanning Tree in X is red. 
Corresponding sheets of Y are also red
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d''b''

c" a'

Example of Splitting of Primes 
in Quadratic Cover f=2

c

a'' c'

b'd'

a d

b

Picture of Splitting of Prime which is inert; 
i.e., f=2, g=1, e=1

1 prime cycle D above, & D is lift of C2.

d''

c"

b''

a'
c

Example of Splitting of Primes in Quadratic Cover

g=2

b'd'

a'' c' b

a da d

Picture of Splitting of Prime which 
splits completely; i.e., f=1, g=2, e=1

2 primes cycles above
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Frob(D) =              =   ji-1 ∈ G=Gal(Y/X)

where  ji-1 maps sheet i to sheet j

⎛ ⎞
⎜ ⎟
⎝ ⎠
Y/X
D

D a 
prime 
above C

(v,j)

Frobenius Automorphism

is not necessarily closed 

( D a prime above C is
closed and is obtained 

by f liftings like )

( ) ( )length C length C=

C

CY

(v,i)

π

= the 
unique lift  
of C in Y 
starting 
at  (v,i) 
ending at

C

Exercise: Compute Frob(D) on 
preceding pages, G={e,g}.

by f   liftings like         )ending at 
(v,j)

X 
v C = path

in X

d''b''

c" a'

Galois Group={e,g}: Label cube vertices
(x,e) → x’  and    (x,g) → x”, x in K4

f=2
c

a'' c'

b'd'

a d

b

Frobenius of prime in X = non-trivial element of Galois group 
since 

if we lift path on X once, we get to the other sheet of the cover

Y=cube                                                    X=K4
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1) Replace (v,i) with (v,hi). Then Frob(D) =  ji-1 is replaced   
with  hji-1h-1. Or replace D with different prime above C and 
see that
Conjugacy class of Frob(D) ∈ Gal(Y/X) unchanged.

2) V i t t t f C i X d t h F b(D)

Properties of Frobenius

2) Varying  start vertex v of C in X does not change Frob(D).
3) Frob(D)j = Frob(Dj) .

ρ = representation of G=Gal(Y/X), u∈C, |u| small
1

( )/( / ) det 1 CY XL u Y X uνρ ρ
−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟∏

Artin L-Function

[C]=equivalence class of primes of X
ν(C)=length C,   D a prime in Y over C

( )

[ ]

( , , / ) det 1
C

L u Y X u
D

ρ ρ= − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∏

Question: How does the Frobenius depend on the 
labeling , choice of spanning tree, etc.?

Answer:  You can identify the Galois group G(Y/X) with fy g p ( )
a quotient  Γ/H,  Γ= the fundamental group of X, a 
group which can be viewed as generated by the edges 
left out of a spanning tree.
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Copy from Lang, Algebraic Number Theory
Properties of Artin L-Functions

1)L(u,1,Y/X)  =  ζ(u,X) =  Ihara zeta function of X   (our 
analog of the Dedekind zeta function, also Selberg 
zeta)zeta)
Proof by Defn.

2) 

product over all irreducible reps of G,  dρ=degree ρ.

( , ) ( , , / ) d

G

u Y L u Y X ρ

ρ

ζ ρ
∈

= ∏

See A. T., Fourier Analysis on Finite Groups and Applications.

ρ
Proof uses induced representations and decomposition

{ } ˆ1G
e G

Ind d ππ
π⊕

∈
= ∑

Det(I-uW1) formula for Artin L-Functions

Set B=W1   and call the Frobenius automorphism 
of an edge   Frob(e).   Define the blocks of the 

i 2|E|*d 2|E|*d i B f llmatrix 2|E|*dρ x 2|E|*dρ matrix Bρ as follows, 
for each pair of oriented edges e,f in X :

( ) ( )( ( ))efef
B b Frob eρ ρ=

1( , , / ) det( )L u Y X I uBρρ − = −
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For the cube over K4 we have 2 degree 1 representations
of the Galois group. The only interesting matrix is that
for the non-trivial representation: 12x12 matrix. It is too
big to put on a Power Point talk or blackboard.

ρ

ρ
2

-1

(r -1 )d2

L (u , , Y / X )

= (1 - u ) d e t (I '- A ' u + Q 'u )

Ihara Theorem for L-Functions

r=rank fundamental group of X = |E|-|V|+1
ρ= representation of G = Gal(Y/X), d = dρ = degree ρ

Definitions. nd×nd matrices A’, Q’, I’,  n=|X|,
nxn matrix A(g), g ∈ Gal(Y/X), entry for a,b vertices in X
(A(g))a,b = #{ edges in Y from (a,e) to (b,g) }, 
e=identity ∈ G. 'y

Q = diagonal matrix, jth diagonal entry = 
qj = (degree of jth vertex in X)-1,

Q′ = Q⊗Id ,  I′ = Ind =  identity matrix.

∈
⊗∑ρ

g G
= A(g) ρ(g)A
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B is pxp and C is qxq
B⊗C  is pqxpq

Y=cube,  X=tetrahedron:   G = {e,g}
representations of G are 1 and ρ: ρ(e) = 1, ρ(g) = -1
A(e)u,v =  #{ length 1 paths u′ to v′ in Y}
A(g)u,v =  #{ length 1 paths u′ to v′′ in Y}

′ d f X ( ) ( )

EXAMPLE

(u,e)=u’,  
(u,g)=u”

0 1 0 0 0 0 1 1
1 0 1 1 0 0 0 0

( ) ( )
0 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0

A e A g

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

A′1 = A = adjacency matrix of X =A(e)+A(g)

'' '

d''b''

b'd'

c" a′

(u,g) u

0 1 1 1
1 0 1 1

' ( ) ( )
1 1 0 1
1 1 1 0

A A e A gρ

− −⎛ ⎞
⎜ ⎟
⎜ ⎟= − =
⎜ ⎟− −
⎜ ⎟⎜ ⎟− −⎝ ⎠

a d

c

b

a'' c'
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X K d Y bX = K4 and   Y=cube  

ζ(u,X)-1 = (1-u2)2(1-u)(1-2u) (1+u+2u2)3

L(u,ρ,Y/X)-1 = (1-u2) (1+u) (1+2u) (1-u+2u2)3

ζ(u,Y)-1 = L(u,ρ,Y/X)-1 ζ(u,X)-1

Get L function of ζ(u,X)  by replacing u by -u for 
this example.

3(6)

4(6)

2(5)

1(5)

3(5)

3(4)

1(4)

4(4)

2(4)

4(1)

1(1)

2(1)

3(1)

3(2)

1(2)

4(2)
2(2)

4(3)1(3)2(3)

3(3)

Y6

x=1,2,3

Example

G=S3,  H={(1),(23)} fixes Y3. 

a(1)=(a,(1)),  a(2)=(a,(13)), 
a(3)=(a,(132), 

a(4)=(a,(23)),a(5)=(a,(123)),a(6)=(a,(12)).a(x) 3’3’’’

4’’’
1’’’

2’’’

4’’

2’’

1’’

3’’

1(6)2(6)

4( )

4(5)

Y3

a(x),a(x+3)

a(x)

Here we use standard cycle notation 
for elements of the symmetric group.a

1

2

4
2’

1’
4’

X 3
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Prime Splitting Completely

path in X (list vertices) 14312412431

f=1, g=3 3 lifts to Y3
1’4’3’’’1’’’2’’’4’’1’’2’’4’’’3’1’1 4 3 1 2 4 1 2 4 3 1
1’’4’’3’’1’’2’’4’’’1’’’2’’’4’’3’’1’’
1’’’4’’’3’1’2’4’1’2’4’3’’’1’’’
Frobenius trivial  ⇒ density 1/6

2 3

4

This is an analog of the prime 31 for Q(21/3) in Stark’s article
in From Number Theory to Physics, M. Waldschmidt et al
(Eds.), Springer-Verlag, Berlin, 1992, pages 313-393.

1

ζ(u,X)-1 = (1-u2)(1-u)(1+u2)(1+u+2u2)(1-u2-2u3)

ζ(u,Y3)-1 = ζ(u,X)-1 *(1-u2)2(1-u-u3+2u4)   
*(1+u+2u2+u3+2u4)(1-u+2u2-u3+2u4)(1+u+u3+2u4)( u u u u )( u u u u )( u u u )

ζ(u,Y6)-1  =  ζ(u,Y3)-1 (1-u2)3 (1+u)(1+u2)(1-u+2u2)(1-u2+2u3) 
*(1-u-u3+2u4) (1-u+2u2-u3+2u4) 
*(1+u+u3+2u4)(1+u+2u2+u3+2u4)

It follows that, as in number theory 
ζ(u X)2 ζ(u Y ) = ζ(u Y ) ζ(u Y )2ζ(u,X) ζ(u,Y6) = ζ(u,Y2) ζ(u,Y3)

Y2 is an intermediate quadratic extension between Y6
and X. 

See Stark & Terras, Adv. in Math., 154 (2000), Fig. 
13, for more info.



13

Application 
of Galois 
Theory of 
Graph 
Coverings.  

2 connected 
l h

You can’t 
hear the 
shape of a 
graph.

regular graphs 
(without loops & 
multiple edges) 
which are 
isospectral but 
not isomorphic

See A.T. & Stark in Adv. in 
Math., Vol. 154 (2000)  for the 
details.  The method goes back to 
algebraic number theorists who 
found number fields K which are nonfound number fields Ki which are non 
isomorphic but have the same 
Dedekind zeta. 
See Perlis, J. Number Theory, 9 
(1977).

Robert Perlis and Aubi Mellein 
h d h h d f d

Audrey

have used the same methods to find 
many examples of isospectral non 
isomorphic graphs with multiple 
edges and components.   2 such are 
on the right. Harold
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There are nice constructions of isospectal 
non-isomorphic graphs in paper of 
Lubotzky, Samuels and Vishne

What are ramified coverings of graphs?  Do the zetas-1  divide?
Is there a graph analog of regulator, Stark Conjectures, class 

field theory for abelian graph coverings? Or more simply a 
quadratic reciprocity law, fundamental units?  The ideal class 
group is the Jacobian of a graph and has order = number of 
spanning trees (paper of Roland Bacher Pierre de la Harpe

Homework Problems

spanning trees (paper of Roland Bacher, Pierre de la Harpe
and Tatiana Nagnibeda).  There is an analog of Brauer-
Siegel theory (see H.S. and A.T. , Part III).

See M. Baker and S. Norine, Harmonic morphisms and 
hyperelliptic graphs, preprint.

Beth Malmskog & Michelle Manes, Almost divisibility I  the 
Ihara zeta functions of certain ramified covers of q+1-regular 
graphs preprintgraphs, preprint. 


