

Ihara Zeta Function

$$
\zeta(u, X)=\prod\left(1-u^{v(\mathrm{C})}\right)^{-1}
$$

$v(C)=\#$ edges in C converges for u complex, |u| small

Ihara's Theorem.
$\zeta(u, X)^{-1}=\left(1-u^{2}\right)^{r-1} \operatorname{det}\left(I-A u+\mathrm{Qu}^{2}\right)$
$A=$ adjacency matrix, $Q+I=$ diagonal matrix of degrees, $r=$ rank fundamental group.

Edge Zetas

Orient the edges of the graph. Multiedge matrix W has $a b$ entry $w_{a b}$ in $\mathbb{C}, w(a, b)=w_{a b}$ if the edges a and b look like

and a is not the inverse of b

Otherwise set $w_{a b}=0$.

For a prime $C=a_{1} a_{2} \ldots a_{s}$, define the edge norm

$$
N_{E}(C)=w\left(a_{s}, a_{1}\right) w\left(a_{1}, a_{2}\right) w\left(a_{2}, a_{3}\right) \cdots w\left(a_{s-1}, a_{s}\right)
$$

Define the edge zeta for small $\left|w_{a b}\right|$ as

$$
\zeta_{E}(W, X)=\prod_{[C]}\left(1-N_{E}(C)\right)^{-1}
$$

Properties of Edge Zeta

H Ihara $\zeta(u, X)=\zeta_{E}(W, X) \mid$ non- $0 w(i, j)=u$

H edge e deletion
$\zeta_{E}(W, X-e)=\left.\zeta_{E}(W, X)\right|_{0=w(i, j), ~ i f ~} i$ or $j=e$

Determinant Formula For Edge Zeta
$\zeta_{E}(W, X)=\operatorname{det}(I-W)^{-1}$
From this Bass gives an ingenious proof of Ihara's theorem.
Reference:
Stark and T., Adv. in Math., Vol. 121 and 154 and 208 (1996 and 2000 and 2007)

Example

$\mathrm{D}=$ Dumbbell Graph
$\zeta_{E}(W, D)^{-1}=\operatorname{det}\left(\begin{array}{cccccc}w_{11}-1 & w_{12} & 0 & 0 & 0 & 0 \\ 0 & -1 & w_{23} & 0 & 0 & w_{26} \\ 0 & 0 & w_{33}-1 & 0 & w_{35} & 0 \\ 0 & w_{42} & 0 & w_{44}-1 & 0 & 0 \\ w_{51} & 0 & 0 & w_{54} & -1 & 0 \\ 0 & 0 & 0 & 0 & w_{65} & w_{66}-1\end{array}\right)$
e_{2} and e_{5} are the vertical edges.
Specialize all variables with 2 and 5 to be 0 and get zeta function of subgraph with vertical edge removed. Fission

Diagonalizes the matrix.

Proof of the Determinant Formula

$$
\begin{aligned}
\log \zeta_{E}^{-1}= & \sum_{[P]} \sum_{j \geq 1} \frac{N_{E}(P)^{j}}{j} \quad v(P)=m \Rightarrow \#[\mathrm{P}]=\mathrm{m} . \\
& \log \zeta_{E}^{-1}=\sum_{m \geq 1} \frac{1}{m} \sum_{\substack{P \\
v(P)=m}} \sum_{k \geq 1} \frac{N_{E}(P)^{k}}{k} \\
& \begin{array}{l}
\text { non-prime paths } \\
C \text { are powers of } \\
\text { primes } C=\mathrm{Pk}
\end{array}
\end{aligned}
$$

$\log \zeta_{E}^{-1}=\sum_{C} \frac{1}{v(C)} N_{E}(C)=\sum_{m \geq 1} \frac{1}{m} \operatorname{Tr}\left(W^{m}\right) \begin{gathered}\substack{\text { for last } \\ \text { use the } \\ \text { se }}\end{gathered}$
Here C need not be prime path, still closed, no backtrack, no tails
same sort of argument as in Lecture 2.

EndofProof

Using the matrix calculus exercise from Lecture 2 $\operatorname{det}(\exp (B)=\exp (\operatorname{Tr}(B))$ gives

$$
\log \zeta_{E}(W)^{-1}=\sum_{m \geq 1} \frac{1}{m} \operatorname{Tr}\left(W^{m}\right)=\log \operatorname{det}(I-W)^{-1}
$$

This proves (log(determinant formula)).

$$
\zeta_{E}(W, X)=\operatorname{det}(I-W)^{-1}
$$

Bass Proof of Thara formula $\zeta_{E}(W, X)=\operatorname{det}(I-W)^{-1}$】
$\zeta_{v}(u, X)^{-1}=\left(1-u^{2}\right)^{r-1} \operatorname{det}\left(I-A u+Q u^{2}\right)$

Part 1 of Bass Proof

Define
Define starting matrix S and terminal matrix T

$$
J=\left(\begin{array}{cc}
0 & I_{|E|} \\
I_{|E|} & 0
\end{array}\right)
$$ - both $|V| \times 2|E|$ matrices of $0 s$ and 1s

$s_{v e}=\left\{\begin{array}{l}1, \text { if } v \text { is starting vertex of oriented edge e } \\ 0, \text { otherwise }\end{array}\right.$

$$
t_{v e}=\left\{\begin{array}{l}
1, \text { if } \mathrm{v} \text { is the terminal vertex of oriented edge } \mathrm{e} \\
0, \text { otherwise }
\end{array}\right.
$$

Then, recalling our edge numbering system, we see that

$$
S J=T, \quad \mathrm{TJ}=\mathrm{S}
$$

since start (end) of e_{j} is end (start) of $\mathrm{e}_{\mathrm{j}+\mathrm{E}}$

$$
A=S \mathrm{~T}^{\mathrm{t}}, \quad \mathrm{Q}+\mathrm{I}_{|\mathrm{V}|}=S S^{t}=T T^{t}
$$

Note: matrix A counts number of undirected edges connecting 2 distinct vertices and twice \# of loops at each vertex. Q+I = diagonal matrix of degrees of vertices

Part 2 of Bass Proof

W_{1} matrix obtained from W by setting all non-zero $W_{i j}$ equal to 1
$\mathrm{W}_{1}+J=\mathrm{T}^{\dagger} S$, where J compensates
for not allowing edge e_{j} to feed into $e_{j \pm t \mid}$

Below all matrices are $(|V|+2|E|) \times(|V|+2|E|)$, with $|V| \times|V|$ 1st block.
The preceding formulas imply that:

$$
\begin{aligned}
& \left(\begin{array}{cc}
I_{|V|} & 0 \\
T^{t} & I_{2|E|}
\end{array}\right)\left(\begin{array}{cc}
I_{|V|}\left(1-u^{2}\right) & S u \\
0 & I_{2|E|}-W_{1} u
\end{array}\right) \\
& =\left(\begin{array}{cc}
I_{|V|}-A u+Q u^{2} & S u \\
0 & I_{2|E|}+J u
\end{array}\right)\left(\begin{array}{cc}
I_{|V|} & 0 \\
T^{t}-S^{t} u & I_{2|E|}
\end{array}\right)
\end{aligned}
$$

Then take determinants of both sides to see
$\left(1-u^{2}\right)^{V \mid} \operatorname{det}\left(I_{2|E|}-W_{1} u\right)=\operatorname{det}\left(I_{|V|}-A u+Q u^{2}\right) \operatorname{det}\left(I_{2|E|}+J u\right)$

End of Bass Proof

$$
\begin{aligned}
& \left(1-u^{2}\right)^{V \mid} \operatorname{det}\left(I_{2|E|}-W_{1} u\right)=\operatorname{det}\left(I_{|V|}-A u+Q u^{2}\right) \operatorname{det}\left(I_{2|E|}+J u\right) \\
& I+J u=\left(\begin{array}{cc}
I & I u \\
I u & I
\end{array}\right) \operatorname{implies}\left(\begin{array}{cc}
\mathrm{I} & 0 \\
-\mathrm{Iu} & \mathrm{I}
\end{array}\right)(I+J u)=\left(\begin{array}{cc}
I & I u \\
0 & I\left(1-u^{2}\right)
\end{array}\right)
\end{aligned}
$$

$$
\text { So } \quad \operatorname{det}(I+J u)=\left(1-u^{2}\right)^{|E|}
$$

Since $r-1=|E|-|V|$, for a connected graph, the Ihara formula for the vertex zeta function follows from the edge zeta determinant formula.

A Taste of Random Matrix Theory / Quantum Chaos
a reference with some background on the interest in random matrices in number theory and quantum physics:
A.Terras, Arithmetical quantum chaos, IAS/Park City Math. Series, Vol. 12 (2007).

Here although W_{1} is not symmetric, we mean the nearest neighbor spacing (i.e., histogram of minimum distances between eigenvalues which lie in the complex plane not just the real axis).

Reference on spacings of spectra of non-Hermitian or non-symmetric matrices.
P. LeBoef, Random matrices, random polynomials, and Coulomb systems, ArXiv.
J. Ginibre, J. Math. Phys. 6, 440 (1965).

Mehta, Random Matrices, Chapter 15.
An approximation to the density for spacings of eigenvalues of a complex matrix (analogous to the Wigner surmise for Hermitian matrices) is:

$$
4 \Gamma\left(\frac{5}{4}\right)^{4} s^{3} e^{-\Gamma\left(\frac{5}{4}\right)^{4} s^{4}}
$$

Statistics of the poles of Ihara zeta or reciprocals of eigenvalues of the Edge Matrix W_{1}

Define W_{1} to be the 0,1 matrix you get from W by setting all non-0 entries of W to be 1 .

Theorem. $\zeta(u, X)^{-1}=\operatorname{det}\left(I-W_{1} u\right)$.
Corollary. The poles of Ihara zeta are the reciprocals of the eigenvalues of W_{1}.
The pole R of zeta is:
$R=1 /$ Perron-Frobenius eigenvalue of W_{1}.

Properties of W_{1}

1) $\quad W_{1}=\left(\begin{array}{cc}A & B, \\ C & A^{T}\end{array}\right) \quad B$ and C symmetric real, A real
2) j th row sums of entries are $q_{j}+1$ degree vertex which is start of edge j .

Poles Ihara Zeta are in region $\quad q^{-1} \leq R \leq|u| \leq 1$, $q+1=$ maximum degree of vertices of X.
Theorem of Kotani and Sunada
If $p+1=m i n$ vertex degree, and $q+1=$ maximum vertex degree, non-real poles u of zeta satisfy

$$
\frac{1}{\sqrt{q}} \leq|u| \leq \frac{1}{\sqrt{p}}
$$

Kotani \& Sunada, J. Math. Soc. U. Tokyo, 7 (2000)
or see my manuscript on my website:
www.math.ucsd.edu
~aterras \newbook.pdf

Spectrum of Random Matrix with Properties of W -matrix

$$
W=\left(\begin{array}{ll}
A & B \\
C & A^{T}
\end{array}\right)
$$

entries of W are nonnegative from normal distribution
B and C symmetric
diagonal entries are 0
Girko circle law for real matrices with circle of radius $\frac{1}{2}(1+\sqrt{2}) \sqrt{n}$
symmetry about real axis
Can view W as edge matrix for a weighted graph

We used Matlab command randn(1500) to get A, B, C matrices with random normally distributed entries mean 0 std dev 1

Nearest Neighbor Spacings vs Wigner surmise of Ginibre

$$
\mathrm{p}_{w}(s)=4 \Gamma(5 / 4)^{4} s^{3} \exp \left(-\Gamma(5 / 4)^{4} s^{4}\right)
$$

See P. Leboef, "Random matrices, random
polynomials and Coulomb systems," ArXiv, Nov. 15, 1999.

Mehta, Random Matrices, Chapter 15

Note that we have normalized the histogram to have area 1.

The spacings are also normalized to have mean 1.

Matlab Experiments with Eigenvalues of "Random" W_{1} matrix of an Irregular Graph - Reciprocals of Poles of Zeta

Circles have radii
$S \mathrm{p}$ blue
1/VR green
$\checkmark q$ turquoise
RH approximately true region 2 dimensional but not even an annulus

Looks very similar to the regions obtained for random covers of a small base graph.
probability of edge \cong 0.0358

The corresponding nearest neighbor spacings for the preceding graph vs the Wigner surmise

> Matlab Experiment Random Graph with Higher Probability of an Edge Between Vertices
> (Edge Probability ≈ 0.2848)

RH \approx true

Spectrum W_{1} for a $\mathbb{Z}_{61} \times \mathbb{Z}_{65}$-Cover of 2 Loops + Extra Vertex are pink dots

Comparing W_{1} spacings for this abelian cover with the random cover following looks like the dichotomy between spacings of eigenvalues of the Laplacian for arithmetic vs non-arithmetic groups.

Spec W for random 701 cover of 2 loops plus vertex graph in picture. The pink dots are at Spectrum W. Circles have radii Sq, $1 / \int R, \int p$, with $q=3, p=1, R \cong .4694$. \quad RH approximately True.

References: 3 papers with Harold Stark in Advances in Math.

* Papers with Matthew Horton \& Harold Stark on my website www.math.ucsd.edu/~aterras/
* For work on directed graphs, see Matthew Horton, Ihara zeta functions of digraphs, Linear Algebra and its Applications, 425 (2007) 130-142.
* work of Angel, Friedman and Hoory giving analog of Alon conjecture for irregular graphs, implying our Riemann Hypothesis (see Joel Friedman's website: www.math.ubc.ca/~jf)

