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LECTURE 4.
PROOF OF IHARA’S 
THEOREM, EDGE 
ZETAS QUANTUMZETAS, QUANTUM 
CHAOS

Ihara Zeta Function

( )-1ν(C)

[C]

ζ(u,X)= 1-u∏

Ihara’s Theorem.

-1 2 r-1 2ζ( X) (1 ) d t (I A +Q )

[C]
prime ν(C) = # edges in C

converges for u complex, |u| small

A=adjacency matrix, Q +I = diagonal matrix of degrees, 
r=rank fundamental group.

-1 2 r-1 2ζ(u,X) =(1-u ) det (I-Au+Qu )



2

Edge Zetas
Orient the edges of the graph.  Multiedge matrix 
W has ab entry wab in C,  w(a,b)=wab if the edges a 
and b look like                 

a b
and a is not 

a             b

1 1 2 2 3 1( ) ( , ) ( , ) ( , ) ( , )EN C w a a w a a w a a w a a=

Otherwise set  wab=0.       

For a prime C = a1a2…as, define the edge norm

the inverse 
of b

1 1 2 2 3 1( ) ( , ) ( , ) ( , ) ( , )E s s sN C w a a w a a w a a w a a−

( ) 1

[ ]

( , ) 1 ( )E E
C

W X N Cζ −= −∏
Define the edge zeta for small |wab| as

Properties of Edge Zeta

Ihara ζ(u,X) = ζE(W,X)| non-0 w(i,j)=u

edge e deletiong
ζE (W,X-e)=ζE (W,X)|0=w(i,j), if i or j=e

( ) 1( , ) detE W X I Wζ −= −
Determinant Formula For Edge Zeta

( )( , )Eζ
From this Bass gives an ingenious proof of Ihara’s 

theorem.
Reference:
Stark and T., Adv. in Math., Vol. 121 and 154 

and 208  (1996   and   2000 and 2007)
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Example

D=Dumbbell Graph
e2 e5

e1 e4

e3 e6

11 12

23 26

33 351

42 44

51 54

1 0 0 0 0
0 1 0 0
0 0 1 0 0

( , ) det
0 0 1 0 0

0 0 1 0
0 0 0 0 1

E

w w
w w

w w
W D

w w
w w

ζ −

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−

= ⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠65 660 0 0 0 1w w⎜ ⎟−⎝ ⎠

e2 and e5 are the vertical edges.

Specialize all variables with 2 and 5 to be 0 and get 
zeta function of subgraph with vertical edge 
removed.  Fission

Diagonalizes the matrix.

Proof of the Determinant Formula

1

[ ] 1

( )log
j

E
E

P j

N P
j

ζ −

≥

=∑ ∑ ν(P)=m  ⇒ #[P]=m.

[ ] j

1

1 1
( )

1 ( )log

P prime path, not class [P]

k
E

E
m P k

P m

N P
m k

ν

ζ −

≥ ≥
=

=∑ ∑ ∑

1 1 1log ( ) ( )m
E EN C Tr Wζ − = =∑ ∑

non-prime paths 
C are powers of 
primes C=Pk

f l t
1

log ( ) ( )
( )

Here C need not be prime path, still 
closed, no backtrack, no tails

E E
C m

N C Tr W
C m

ζ
ν ≥

∑ ∑ for last = 
use the 
same sort 
of argument 
as in 
Lecture 2.
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Using the matrix calculus exercise from Lecture 2

det(exp(B)=exp(Tr(B))   gives

( ) 11

1

1log ( ) ( ) logdetm
E

m

W Tr W I W
m

ζ −−

≥

= = −∑

This proves    (log( determinant formula)).  p g

( ) 1( , ) detE W X I Wζ −= −

( ) 1( , ) detE W X I Wζ −= −

1 2 1 2( , ) (1 ) det( )r
V u X u I Au Quζ − −= − − +
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1, if v is starting vertex of oriented edge e
0, otherwiseves ⎧

= ⎨
⎩

Define 

Define starting matrix S  and  terminal matrix T 
- both |V|x2|E| matrices of 0s and 1s

| |

| |

0
0
E

E

I
J

I
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

Part 1 of Bass Proof

0, otherwise⎩
1,  if v is the terminal vertex of oriented edge e
0, otherwisevet
⎧

= ⎨
⎩

             ,        TJ=S
i t t ( d) f i d ( t t) f

SJ T=
Then, recalling our edge numbering system,  we see that

j j+|E|since start (end) of e  is end (start) of e
t

|V| T ,    Q+I t tA S SS TT= = =
Note: matrix A counts number of undirected edges connecting 2 
distinct vertices  and twice # of loops at each vertex.   Q+I = diagonal 
matrix of degrees of vertices

1 ijW matrix obtained from W by setting all non -zero w  equal to 1
t

1

j j±|E|

W +J =T , where J compensates 
for not allowing edge e  to feed into e

S

Below all matrices are (|V|+2|E|) x (|V|+2|E|) with |V| x |V| 1st block

Part 2 of Bass Proof

2
| | | |

2| | 2| | 1

2
| || |

0 (1 )
0

0

V V
t

E E

VV

I I u Su
T I I W u

II Au Qu Su

⎛ ⎞−⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

⎛ ⎞− + ⎛ ⎞
⎜ ⎟⎜ ⎟

Below all matrices are (|V|+2|E|) x (|V|+2|E|), with |V| x |V|  1st block.

The preceding formulas imply that:

| || |

2| |2| |0
VV

t t
EE

Q
T S u II Ju
⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟ −+ ⎝ ⎠⎝ ⎠
Then take determinants of both sides to see

2 | | 2
2| | 1 | | 2| |(1 ) det( ) det( )det( )V

E V Eu I W u I Au Qu I Ju− − = − + +
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2 | | 2
2| | 1 | | 2| |(1 ) det( ) det( )det( )V

E V Eu I W u I Au Qu I Ju− − = − + +

I 0
implies ( )

I Iu I Iu
I Ju I Ju

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

End of Bass Proof

2  implies  ( )
-Iu I 0 (1 )

I Ju I Ju
Iu I I u

+ = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

So          det(I+Ju)=(1-u2)|E|

Since r-1=|E|-|V| for a connected graph the IharaSince r 1 |E| |V|, for a connected graph, the Ihara 
formula for the vertex zeta function follows from 
the edge zeta determinant formula.        

A Taste of Random Matrix Theory / Quantum Chaos

a reference with some background on the interest in 
random matrices in number theory and quantum 
physics:

A.Terras, Arithmetical quantum chaos, IAS/Park City 
Math. Series, Vol. 12 (2007).

In lecture 1 we mentioned the experimental connections 
between statistics of spectra of random symmetric real 
matrices and the statistics of imaginary parts of s at  
poles of Ihara ζ(q-s) (analogous to statistics of 
imaginary parts of zeros of Riemann ζ and spectra of 
Hermitian matrices).
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from O. Bohigas and M.-J. Giannoni, Chaotic motion and random 
matrix theories, Lecture Notes in Physics, 209, Springer-Verlag, 
Berlin, 1984:         arrows mean lines are too close to distiguish

RMT spacings (GOE etc)      
½πxexp(−πx2/4)

Poisson  spacings exp(-x) 

quantum spectra of system with
chaos in classical counterpart
B hi Gi i S h it

energy levels of quantum system with 
integrable system for classical 

t t

The dichotomy

Bohigas Giannoni Schmit
Conjecture, 1984

counterpart 
Berry Tabor Gutzwiller Conjecture, 
1977

eigenvalues of Laplacian for non-
arithmetic manifold

eigenvalues of Laplacian for arithmetic 
manifold; e.g. H/SL(2,Z)

zeros Riemann zeta

Sarnak invented the term “arithmetical quantum chaos” to describe the 2nd 
row of our table.  See the book of Katz and Sarnak for some proved 
results about zetas of curves over finite fields.
See Rudnick “What is quantum chaos?”  Notices AMS, Jan. 2008  for 
definitions of some of these things in the context of billiards.    None of 
these conjectures is proved as far as I know.
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Here although W1 is not symmetric, we mean the nearest neighbor spacing 
(i.e., histogram of minimum distances between eigenvalues which lie in the 
complex plane not just the real axis). 
Reference on spacings of spectra of non-Hermitian or non-symmetric

Now we wish to add a new column to earlier figure 
- spacings of the eigenvalues of the W1 matrix of a graph

Reference on spacings of spectra of non-Hermitian or non-symmetric 
matrices.  
P. LeBoef, Random matrices, random polynomials, and Coulomb 
systems,ArXiv. 
J. Ginibre, J. Math. Phys. 6, 440 (1965).
Mehta, Random Matrices, Chapter 15.
An approximation to the density for spacings of eigenvalues of a complex 
matrix (analogous to the Wigner surmise for Hermitian matrices) is:             

44 5⎛ ⎞
4

44 5
3 454

4

s
s e

⎛ ⎞−Γ⎜ ⎟
⎝ ⎠⎛ ⎞Γ⎜ ⎟

⎝ ⎠

Statistics of the poles of Ihara zeta or reciprocals 
of eigenvalues of the Edge Matrix  W1

Define W1 to be the 0,1 matrix you get from W by 
setting all non-0 entries of W to be 1.

Theorem. ζ(u,X)-1=det(I-W1u).

Corollary.  The poles of Ihara zeta are the 
reciprocals of the eigenvalues of W1.

The pole R of zeta is:The pole R of zeta is: 

R=1/Perron-Frobenius eigenvalue of W1.
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Properties of W1

2)  jth row sums of entries are qj+1=degree vertex which is 
f d

1 T

A B
W

C A
⎛ ⎞= ⎜ ⎟
⎝ ⎠

1)                 ,     B and C symmetric real,  A real

start of edge j.

Poles Ihara Zeta are in region    q-1 ≤R ≤|u| ≤1,   
q+1=maximum degree of vertices of X.

Theorem of Kotani and Sunada
If p+1=min vertex degree, and q+1=maximum vertex degree,   

n n l p l f t ti fnon-real poles u of zeta satisfy

Kotani & Sunada, J. Math. Soc. U. Tokyo, 7 (2000) 
or see my manuscript on my website: 

www.math.ucsd.edu\~aterras\newbook.pdf

1 1u
q p

≤ ≤

Spectrum of Random Matrix with Properties of W -matrix  

T

A B
W

C A
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

entries of W are non-
negative from normal 
distribution

B and C symmetric
diagonal entries are 0

Girko circle law for real 
matrices with circle of 
radius   ½(1+√2) √n

symmetry about real axissymmetry about real axis

Can view W as edge 
matrix for a weighted 
graph

We used Matlab command randn(1500)  to get A,B,C
matrices with random normally distributed entries mean 0 std dev 1
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Nearest Neighbor Spacings vs Wigner surmise of Ginibre
pw(s) = 4 Γ(5/4)4 s3 exp (−Γ(5/4)4s4)

See P. Leboef, “Random 
matrices, random 

l i ls d C l bpolynomials and Coulomb 
systems,” ArXiv, Nov. 15, 
1999. 

Mehta, Random Matrices, 
Chapter 15

Note that we haveNote that we have 
normalized the histogram 
to have area 1.

The spacings are also 
normalized to have mean 1.

Matlab Experiments with Eigenvalues of “Random” W1 matrix 
of an Irregular Graph - Reciprocals of Poles of Zeta

Circles have radii
√p    blue
1/√R   greeng
√q   turquoise

RH approximately true
region 2 dimensional but 
not even an annulus

Looks very similar to the 
regions obtained forregions obtained for 
random covers of a small 
base graph.

probability of edge ≅
0.0358
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The corresponding nearest neighbor spacings for 
the preceding graph  vs the Wigner surmise

Matlab Experiment Random Graph with Higher Probability 
of an Edge Between Vertices  

(Edge Probability ≈  0.2848)

RH ≈ true
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Spectrum W1 for a Z61xZ65-Cover of 
2 Loops + Extra Vertex are pink dots

Circles Centers (0,0);     Radii:   3-1/2, R1/2 ,1;      R ≅.47
RH very False:  Lots of Pink outside green circle

Level Spacing for the Previous W1 Matrix

Comparing W1 spacings for this abelian cover with the random cover 
following looks like the dichotomy between spacings of eigenvalues of 
the Laplacian for arithmetic vs non-arithmetic groups.
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Spec W for random 701 cover of 2 loops plus vertex graph in 
picture.  The pink dots are at Spectrum W. Circles have radii  √q, 
1/√R, √p,   with   q=3,  p=1,  R ≅ .4694.        RH  approximately 
True.

Level Spacing for 
the Previous W 
Matrix vs
modified Wigner 
surmise:
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References:  3 papers with Harold Stark in Advances in Math.
Papers with Matthew Horton & Harold Stark on my website

www.math.ucsd.edu/~aterras/

For work on directed graphs, see Matthew Horton, Ihara zeta 
functions of digraphs, Linear Algebra and its Applications,  425 
(2007) 130–142.

work of Angel, Friedman and Hoory giving analog of Alon 
conjecture for irregular graphs, implying our Riemann Hypothesis  
(see Joel Friedman’s website: www math ubc ca/~jf)(see Joel Friedman s website:   www.math.ubc.ca/~jf)

The End


