Coordinates and Change of Basis

Let $\mathcal{B}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]$ be an ordered basis for the n-dimensional vector space V.
If \mathbf{v} is any vector in V, then there is a unique coordinate vector $[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ in \mathbb{R}^{n} such that $\mathbf{v}=x_{1} \mathbf{b}_{1}+\cdots+x_{n} \mathbf{b}_{n}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]=\mathcal{B}[\mathbf{v}]_{\mathcal{B}}$.
If $\mathcal{D}=\left[\mathbf{d}_{1}, \ldots, \mathbf{d}_{n}\right]$ is another ordered basis for V, then there are unique scalars $P_{i j}$ such that $\mathbf{d}_{j}=\sum_{i=1}^{n} \mathbf{b}_{i} P_{i j}$, for $1 \leq j \leq n$. In other words,

$$
\left[\mathbf{d}_{1}, \ldots, \mathbf{d}_{n}\right]=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]\left[\begin{array}{ccc}
P_{11} & \cdots & P_{1 n} \\
\vdots & & \vdots \\
P_{n 1} & \cdots & P_{n n}
\end{array}\right]
$$

Thus $\mathcal{D}=\mathcal{B} P$, where P is the matrix $\left(P_{i j}\right)$.
Let $[\mathbf{v}]_{\mathcal{D}}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right]$. Then $\mathbf{v}=y_{1} \mathbf{d}_{1}+\cdots+y_{n} \mathbf{d}_{n}=\left[\mathbf{d}_{1}, \ldots, \mathbf{d}_{n}\right]\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right]=\mathcal{D}[\mathbf{v}]_{\mathcal{D}}$.
Since \mathbf{v} is also equal to $\mathcal{B}[\mathbf{v}]_{\mathcal{B}}$, we have $\mathcal{D}[\mathbf{v}]_{\mathcal{D}}=\mathcal{B}[\mathbf{v}]_{\mathcal{B}}$, and since $\mathcal{D}=\mathcal{B} P$, it follows that $\mathcal{B} P[\mathbf{v}]_{\mathcal{D}}=\mathcal{B}[\mathbf{v}]_{\mathcal{B}}$.
Since \mathcal{B} is a basis for V, \mathbf{v} is uniquely represented as a linear combination of elements of \mathcal{B}. This means that

$$
[\mathbf{v}]_{\mathcal{B}}=P[\mathbf{v}]_{\mathcal{D}}
$$

Similarly,

$$
[\mathbf{v}]_{\mathcal{D}}=P^{-1}[\mathbf{v}]_{\mathcal{B}} .
$$

P is called the transition matrix from the ordered basis \mathcal{D} to the ordered basis \mathcal{B}.
Note: In the notation of Proposition and definition 2.6.18 on page 217 of your book,

$$
P=\left[P_{\mathcal{D} \rightarrow \mathcal{B}}\right] .
$$

It's also worth observing that

$$
P^{-1}=\left[P_{\mathcal{D} \rightarrow \mathcal{B}}\right]^{-1}=\left[P_{\mathcal{B} \rightarrow \mathcal{D}}\right] .
$$

