Math 31AH

Dimension of a Vector Space

Theorem. If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Proof. Let $\mathcal{V}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ and $\mathcal{W}=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{p}\right\}$ be finite indexed subsets of a vector space V. Suppose that

1. \mathcal{V} spans V; that is, $V=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$, and
2. \mathcal{W} is linearly independent; that is, the vector equation $x_{1} \mathbf{w}_{1}+\cdots+x_{p} \mathbf{w}_{p}=\mathbf{0}$ has only the trivial solution $x_{1}=\cdots=x_{p}=0$.

Then, the set $\left\{\mathbf{w}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$, obtained by adjoining \mathbf{w}_{p} to the beginning of the indexed list of vectors in \mathcal{V}, is linearly dependent since $\mathcal{V}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ spans V. Thus, at least one of the vectors in this set, say \mathbf{v}_{k}, is a linear combination of the preceding vectors $\mathbf{w}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$. It follows that the set $\left\{\mathbf{w}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{m}\right\}$, obtained by removing \mathbf{v}_{k}, still spans V. Renumbering the \mathbf{v} 's, we obtain a set $S_{1}=\left\{\mathbf{w}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{m-1}\right\}$ which spans V.

Similarly, the set $\left\{\mathbf{w}_{p-1}, \mathbf{w}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{m-1}\right\}$, obtained by adjoining \mathbf{w}_{p-1} to the beginning of the indexed list of vectors in S_{1}, is linearly dependent since S_{1} spans V. Thus, one of these vectors is a linear combination of the previous vectors, and since $\left\{\mathbf{w}_{p-1}, \mathbf{w}_{p}\right\}$ is linearly independent, it must be one of the \mathbf{v} 's that is a linear combination of the previous vectors. After removing this vector and renumbering the \mathbf{v} 's (if necessary), we obtain a set $S_{2}=\left\{\mathbf{w}_{p-1}, \mathbf{w}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{m-2}\right\}$ which spans V.

Continuing in this fashion, we obtain a sequence of sets which span V :

$$
\begin{aligned}
S_{1}= & \left\{\mathbf{w}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{m-1}\right\} \\
S_{2}= & \left\{\mathbf{w}_{p-1}, \mathbf{w}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{m-2}\right\} \\
\ldots & \cdots \\
S_{k}= & \left\{\mathbf{w}_{p-k+1}, \ldots, \mathbf{w}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{m-k}\right\} \\
\ldots & \cdots \\
S_{p}= & \left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{m-p}\right\}
\end{aligned}
$$

where $S_{p}=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{p}\right\}$ if $p=m$.
Note that p cannot be greater than m. For, if it were, we would obtain a set $S_{p}=\left\{\mathbf{w}_{p-m+1}, \ldots, \mathbf{w}_{p}\right\}$ that spans V. Then, the set $\left\{\mathbf{w}_{p-m}, \mathbf{w}_{p-m+1}, \ldots, \mathbf{w}_{p}\right\}$ would be linearly dependent, contrary to our initial assumption. Therefore, we conclude that $p \leq m$; that is, the number of vectors in any linearly independent subset of V is less than or equal to the number of vectors in a subset of V that spans V.

If both \mathcal{V} and \mathcal{W} are bases for V; that is, that they both are linearly independent and span V, then the above argument can be applied to \mathcal{V} and \mathcal{W} with their roles reversed $(\mathcal{W}$ spans V and \mathcal{V} is linearly independent) to conclude that $m \leq p$. It follows that $p=m$.

