Math 31AH Dimension of a Vector Space

Theorem. If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

Proof. Let $\mathcal{V} = {\mathbf{v}_1, \ldots, \mathbf{v}_m}$ and $\mathcal{W} = {\mathbf{w}_1, \ldots, \mathbf{w}_p}$ be finite indexed subsets of a vector space V. Suppose that

- 1. \mathcal{V} spans V; that is, $V = \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$, and
- 2. \mathcal{W} is linearly independent; that is, the vector equation $x_1\mathbf{w}_1 + \cdots + x_p\mathbf{w}_p = \mathbf{0}$ has only the trivial solution $x_1 = \cdots = x_p = 0$.

Then, the set $\{\mathbf{w}_p, \mathbf{v}_1, \ldots, \mathbf{v}_m\}$, obtained by adjoining \mathbf{w}_p to the beginning of the indexed list of vectors in \mathcal{V} , is linearly dependent since $\mathcal{V} = \{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$ spans V. Thus, at least one of the vectors in this set, say \mathbf{v}_k , is a linear combination of the preceding vectors $\mathbf{w}_p, \mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$. It follows that the set $\{\mathbf{w}_p, \mathbf{v}_1, \ldots, \mathbf{v}_{k-1}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_m\}$, obtained by removing \mathbf{v}_k , still spans V. Renumbering the \mathbf{v} 's, we obtain a set $S_1 = \{\mathbf{w}_p, \mathbf{v}_1, \ldots, \mathbf{v}_{m-1}\}$ which spans V.

Similarly, the set $\{\mathbf{w}_{p-1}, \mathbf{w}_p, \mathbf{v}_1, \dots, \mathbf{v}_{m-1}\}$, obtained by adjoining \mathbf{w}_{p-1} to the beginning of the indexed list of vectors in S_1 , is linearly dependent since S_1 spans V. Thus, one of these vectors is a linear combination of the previous vectors, and since $\{\mathbf{w}_{p-1}, \mathbf{w}_p\}$ is linearly independent, it must be one of the \mathbf{v} 's that is a linear combination of the previous vectors. After removing this vector and renumbering the \mathbf{v} 's (if necessary), we obtain a set $S_2 = \{\mathbf{w}_{p-1}, \mathbf{w}_p, \mathbf{v}_1, \dots, \mathbf{v}_{m-2}\}$ which spans V.

Continuing in this fashion, we obtain a sequence of sets which span V:

$$S_1 = \{\mathbf{w}_p, \mathbf{v}_1, \dots, \mathbf{v}_{m-1}\}$$

$$S_2 = \{\mathbf{w}_{p-1}, \mathbf{w}_p, \mathbf{v}_1, \dots, \mathbf{v}_{m-2}\}$$

$$\dots$$

$$S_k = \{\mathbf{w}_{p-k+1}, \dots, \mathbf{w}_p, \mathbf{v}_1, \dots, \mathbf{v}_{m-k}\}$$

$$\dots$$

$$S_p = \{\mathbf{w}_1, \dots, \mathbf{w}_p, \mathbf{v}_1, \dots, \mathbf{v}_{m-p}\}$$

where $S_p = {\mathbf{w}_1, \ldots, \mathbf{w}_p}$ if p = m.

Note that p cannot be greater than m. For, if it were, we would obtain a set $S_p = \{\mathbf{w}_{p-m+1}, \ldots, \mathbf{w}_p\}$ that spans V. Then, the set $\{\mathbf{w}_{p-m}, \mathbf{w}_{p-m+1}, \ldots, \mathbf{w}_p\}$ would be linearly *dependent*, contrary to our initial assumption. Therefore, we conclude that $p \leq m$; that is, the number of vectors in any linearly independent subset of V is less than or equal to the number of vectors in a subset of V that spans V.

If both \mathcal{V} and \mathcal{W} are bases for V; that is, that they both are linearly independent and span V, then the above argument can be applied to \mathcal{V} and \mathcal{W} with their roles reversed (\mathcal{W} spans V and \mathcal{V} is linearly independent) to conclude that $m \leq p$. It follows that p = m.