Matrix Representation of Linear Transformations

Let V be an n-dimensional vector space with ordered basis $\mathcal{B}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]$, let W be an m dimensional vector space with ordered basis $\mathcal{D}=\left[\mathbf{d}_{1}, \ldots, \mathbf{d}_{m}\right]$, and let $T: V \rightarrow W$ be a linear transformation. We know that for each j between 1 and n,

$$
T\left(\mathbf{b}_{j}\right)=t_{1 j} \mathbf{d}_{1}+\cdots+t_{m j} \mathbf{d}_{m}=\left[\mathbf{d}_{1}, \ldots, \mathbf{d}_{m}\right]\left[\begin{array}{c}
t_{1 j} \\
\vdots \\
t_{m j}
\end{array}\right]
$$

for some choice of scalars $t_{1 j}, \ldots, t_{m j}$, since $\mathcal{D}=\left[\mathbf{d}_{1}, \ldots, \mathbf{d}_{m}\right]$ is a basis for W.

Therefore,

$$
\begin{aligned}
{\left[T\left(\mathbf{b}_{1}\right), \ldots, T\left(\mathbf{b}_{n}\right)\right] } & =\left[t_{11} \mathbf{d}_{1}+\cdots+t_{m 1} \mathbf{d}_{m},\right. \\
\cdots & \left., t_{1 n} \mathbf{d}_{1}+\cdots+t_{m n} \mathbf{d}_{m}\right] \\
& =\left[\mathbf{d}_{1}, \ldots, \mathbf{d}_{m}\right]\left[\begin{array}{ccc}
t_{11} & \cdots & t_{1 n} \\
\vdots & & \vdots \\
t_{m 1} & \cdots & t_{m n}
\end{array}\right]
\end{aligned}
$$

$\left[\begin{array}{ccc}t_{11} & \cdots & t_{1 n} \\ \vdots & & \vdots \\ t_{m 1} & \cdots & t_{m n}\end{array}\right]$ is called the matrix representing T relative to the bases \mathcal{B}, \mathcal{D}, and is denoted
by $[T]_{\mathcal{D B}}$ (note the order).
We have shown that if V and W are vector spaces with ordered bases \mathcal{B} and \mathcal{D}, and if $T: V \rightarrow W$ is a linear transformation, then

$$
\left[T\left(\mathbf{b}_{1}\right), \ldots, T\left(\mathbf{b}_{n}\right)\right]=\left[\mathbf{d}_{1}, \ldots, \mathbf{d}_{m}\right]\left[\begin{array}{ccc}
t_{11} & \cdots & t_{1 n} \\
\vdots & & \vdots \\
t_{m 1} & \cdots & t_{m n}
\end{array}\right]=\mathcal{D}[T]_{\mathcal{D B}}
$$

where $[T]_{\mathcal{D B}}$ is the matrix representing T with respect to the ordered bases \mathcal{B}, \mathcal{D}.

Let \mathbf{x} be a vector in V and let $\mathbf{y}=T(\mathbf{x})$. Since $\mathbf{y}=T(\mathbf{x})$ is a vector in W,

$$
T(\mathbf{x})=y_{1} \mathbf{d}_{1}+\cdots+y_{m} \mathbf{d}_{m}=\left[\mathbf{d}_{1}, \ldots, \mathbf{d}_{m}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]=\mathcal{D}[\mathbf{y}]_{\mathcal{D}}=\mathcal{D}[T(\mathbf{x})]_{\mathcal{D}}
$$

On the other hand,

$$
\begin{aligned}
T(\mathbf{x}) & =T\left(x_{1} \mathbf{b}_{1}+\cdots+x_{n} \mathbf{b}_{n}\right) \\
& =x_{1} T\left(\mathbf{b}_{1}\right)+\cdots+x_{n} T\left(\mathbf{b}_{n}\right) \\
& =\left[T\left(\mathbf{b}_{1}\right), \ldots, T\left(\mathbf{b}_{n}\right)\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \\
& =\mathcal{D}[T]_{\mathcal{D B}}[\mathbf{x}]_{\mathcal{B}} .
\end{aligned}
$$

Therefore, $\mathcal{D}[T(\mathbf{x})]_{\mathcal{D}}=\mathcal{D}[T]_{\mathcal{D B}}[\mathbf{x}]_{\mathcal{B}}$. In other words, $[T(\mathbf{x})]_{\mathcal{D}}=[T]_{\mathcal{D B}}[\mathbf{x}]_{\mathcal{B}}$.
If $T: V \rightarrow V$ and $\mathcal{D}=\mathcal{B}$, we write $[T]_{\mathcal{B}}$ rather than $[T]_{\mathcal{B B}}$.

