Matrix Representation of Linear Transformations

Let V be an n-dimensional vector space with ordered basis $\mathcal{B} = [\mathbf{b}_1, \ldots, \mathbf{b}_n]$, let W be an mdimensional vector space with ordered basis $\mathcal{D} = [\mathbf{d}_1, \ldots, \mathbf{d}_m]$, and let $T : V \to W$ be a linear transformation. We know that for each j between 1 and n,

$$T(\mathbf{b}_j) = t_{1j}\mathbf{d}_1 + \dots + t_{mj}\mathbf{d}_m = [\mathbf{d}_1, \dots, \mathbf{d}_m] \begin{bmatrix} t_{1j} \\ \vdots \\ t_{mj} \end{bmatrix}$$

for some choice of scalars t_{1j}, \ldots, t_{mj} , since $\mathcal{D} = [\mathbf{d}_1, \ldots, \mathbf{d}_m]$ is a basis for W.

Therefore,

$$[T (\mathbf{b}_1), \dots, T (\mathbf{b}_n)] = [t_{11}\mathbf{d}_1 + \dots + t_{m1}\mathbf{d}_m, \dots, t_{1n}\mathbf{d}_1 + \dots + t_{mn}\mathbf{d}_m]$$
$$= [\mathbf{d}_1, \dots, \mathbf{d}_m] \begin{bmatrix} t_{11} & \dots & t_{1n} \\ \vdots & \vdots \\ t_{m1} & \dots & t_{mn} \end{bmatrix}.$$

 $\begin{bmatrix} t_{11} & \cdots & t_{1n} \\ \vdots & \vdots \\ t_{m1} & \cdots & t_{mn} \end{bmatrix}$ is called the *matrix representing* T *relative to the bases* \mathcal{B} , \mathcal{D} , and is denoted by $[T]_{\mathcal{DB}}$ (note the order).

We have shown that if V and W are vector spaces with ordered bases \mathcal{B} and \mathcal{D} , and if $T: V \to W$ is a linear transformation, then

$$[T(\mathbf{b}_1),\ldots,T(\mathbf{b}_n)] = [\mathbf{d}_1,\ldots,\mathbf{d}_m] \begin{bmatrix} t_{11} & \cdots & t_{1n} \\ \vdots & & \vdots \\ t_{m1} & \cdots & t_{mn} \end{bmatrix} = \mathcal{D}[T]_{\mathcal{DB}}$$

where $[T]_{\mathcal{DB}}$ is the matrix representing T with respect to the ordered bases \mathcal{B} , \mathcal{D} .

Let **x** be a vector in V and let $\mathbf{y} = T(\mathbf{x})$. Since $\mathbf{y} = T(\mathbf{x})$ is a vector in W,

$$T(\mathbf{x}) = y_1 \mathbf{d}_1 + \dots + y_m \mathbf{d}_m = [\mathbf{d}_1, \dots, \mathbf{d}_m] \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \mathcal{D} [\mathbf{y}]_{\mathcal{D}} = \mathcal{D} [T(\mathbf{x})]_{\mathcal{D}}.$$

On the other hand,

$$T (\mathbf{x}) = T (x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n)$$

= $x_1 T (\mathbf{b}_1) + \dots + x_n T (\mathbf{b}_n)$
= $[T (\mathbf{b}_1), \dots, T (\mathbf{b}_n)] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$
= $\mathcal{D} [T]_{\mathcal{DB}} [\mathbf{x}]_{\mathcal{B}}.$

Therefore, $\mathcal{D}[T(\mathbf{x})]_{\mathcal{D}} = \mathcal{D}[T]_{\mathcal{DB}}[\mathbf{x}]_{\mathcal{B}}$. In other words, $[T(\mathbf{x})]_{\mathcal{D}} = [T]_{\mathcal{DB}}[\mathbf{x}]_{\mathcal{B}}$.

If $T: V \to V$ and $\mathcal{D} = \mathcal{B}$, we write $[T]_{\mathcal{B}}$ rather than $[T]_{\mathcal{B}\mathcal{B}}$.