Theorem (2.2.1). Given a system $A \mathbf{x}=\mathbf{b}$ of m linear equations in n unknowns represented by the $m \times(n+1)$ augmented matrix $[A \mid \mathbf{b}]$ with echelon form $[\widetilde{A} \mid \widetilde{\mathbf{b}}]$.

1. If $\widetilde{\mathbf{b}}$ contains a pivotal 1 , the system has no solutions.
2. If $\widetilde{\mathbf{b}}$ does not contain a pivotal 1 , then
(a) If each column of \widetilde{A} has a pivotal 1, the system has a unique solution.
(b) If at least one column of \widetilde{A} does not have a pivotal 1 , the system has infinitely many solutions which may be found by assigning arbitrary values to the the unknowns corresponding to the nonpivotal columns of \widetilde{A}, which then uniquely determine the values of the unknowns corresponding to the pivotal columns of \widetilde{A}.

Theorem 2.2.1 was proven in class (as well as in the book). The following corollary follows immediately.

Corollary (2.2.2). A system $A \mathbf{x}=\mathbf{b}$ has a unique solution for every \mathbf{b} if and only if A row reduces to the identity.

Proof.
$\Longleftarrow)$ If A row reduces to the identity, then \widetilde{A} has a pivotal 1 in each row and each column. In particular, A is an $n \times n$ square matrix, and $\widetilde{\mathbf{b}}$ does not have a pivotal 1 (since it is the $(n+1)^{\text {st }}$ column of $\left.[A \mid \mathbf{b}]\right)$. By Theorem 2.2.2:2.(a), the system $A \mathbf{x}=\mathbf{b}$ has a unique solution.
$\Longrightarrow)$ If A does not row reduce to the identity, then either i) $m>n$, every column of \widetilde{A} has a pivotal 1 , and $A \mathbf{x}=\mathbf{e}_{m}$ will have no solution or ii) at least one column of A does not have a pivotal 1 , in which case either $\widetilde{\mathbf{b}}$ has a pivotal 1 and the system has no solutions (by Theorem 2.2.1:1), or $\widetilde{\mathbf{b}}$ does not have a pivotal 1 and the system has infinitely many solutions (by Theorem 2.2.1:2.(b)).

Theorem (2.1.7.2). Given an $m \times n$ matrix A, its echelon form \widetilde{A} is unique.
Note: This is clear if A can be row reduced to the identity. In that case, every column of A is a pivotal column and every system $A \mathbf{x}=\mathbf{b}$ has a unique solution, by Theorem 2.2.1:2(a). If A had another echelon form, at least one of its columns would not have a pivotal 1 (otherwise it would be the identity), and by Theorem 2.2.1, a system of the form $A \mathbf{x}=\mathbf{b}$ would have either no solution or infinitely many solutions, which would contradict Theorem 2.1.2 (which asserts that the solutions to $A \mathbf{x}=\mathbf{b}$ and $\widetilde{A} \mathbf{x}=\widetilde{\mathbf{b}}$ are the same whenever the augmented matrix $[\widetilde{A} \mid \widetilde{\mathbf{b}}]$ can be obtained from $[A \mid \mathbf{b}]$ by row operations).

Proof. Write $A=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]$, where \mathbf{a}_{i} is the $i^{\text {th }}$ column of A. For each $k=1, \ldots, n$, write $A[k]=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right]$, the submatrix of A consisting of the first k columns of A. Observe that any sequence of row operations that reduces A to an echelon form \widetilde{A} will also reduce $A[k]$ to an echelon form $\widetilde{A}[k]$, for every $k=1, \ldots, n$.

Interpret $A[k]$ as the augmented matrix corresponding to the system of equations

$$
\begin{equation*}
x_{1} \mathbf{a}_{1}+\cdots+x_{k-1} \mathbf{a}_{k-1}=\mathbf{a}_{k} \tag{1}
\end{equation*}
$$

Note that equation (1) depends only on A, and not on \widetilde{A}. By Theorem 2.2.1, the system of equations (1) has no solutions if and only if the last column of $\widetilde{A}[k]$, that is, the $k^{\text {th }}$ column of \widetilde{A}, is pivotal. (Note: When $k=1$, we interpret the empty sum on the left as being the zero vector in \mathbb{R}^{m}, so \mathbf{a}_{1} is pivotal if and only if it is nonzero.) Thus, A determines the pivotal columns of \widetilde{A}.

By Theorem 2.1.2, the solutions to equation (1) are the same as the solutions to

$$
\begin{equation*}
x_{1} \widetilde{\mathbf{a}}_{1}+\cdots+x_{k-1} \widetilde{\mathbf{a}}_{k-1}=\widetilde{\mathbf{a}}_{k} \tag{2}
\end{equation*}
$$

where $\widetilde{\mathbf{a}}_{i}$ is the $i^{\text {th }}$ column of \widetilde{A}. For each $k=1, \ldots, n$, if the $k^{\text {th }}$ column of \widetilde{A} is pivotal, it is just \mathbf{e}_{k}, the $k^{\text {th }}$ standard basis vector. If the $k^{\text {th }}$ column of \widetilde{A} is nonpivotal, then equation (1) (and equation (2)) has a unique solution for every choice of values for the variables corresponding to the nonpivotal columns among the first $k-1$ columns of \widetilde{A}, by Theorem 2.2.1. In particular, equation (1) (and equation (2)) has a unique solution with the nonpivotal variables set to zero. Thus, the $k^{\text {th }}$ column of \widetilde{A} is given by $x_{1} \mathbf{e}_{1}+\cdots+x_{j} \mathbf{e}_{j}=\widetilde{\mathbf{a}}_{k}$, where x_{1}, \ldots, x_{j} are the unique values of the pivotal variables that solve equation (1) (and equation (2)) with the nonpivotal variables set to zero.

Thus, each column of \widetilde{A} is uniquely specified by the system of equations (1) (one for every $k)$, hence by A.

