Theorem (2.2.1). Given a system $A\mathbf{x} = \mathbf{b}$ of m linear equations in n unknowns represented by the $m \times (n+1)$ augmented matrix $[A \mid \mathbf{b}]$ with echelon form $[\widetilde{A} \mid \widetilde{\mathbf{b}}]$.

- 1. If $\tilde{\mathbf{b}}$ contains a pivotal 1, the system has no solutions.
- 2. If $\widetilde{\mathbf{b}}$ does not contain a pivotal 1, then
 - (a) If each column of \widetilde{A} has a pivotal 1, the system has a unique solution.
 - (b) If at least one column of \widetilde{A} does not have a pivotal 1, the system has infinitely many solutions which may be found by assigning arbitrary values to the the unknowns corresponding to the nonpivotal columns of \widetilde{A} , which then uniquely determine the values of the unknowns corresponding to the pivotal columns of \widetilde{A} .

Theorem 2.2.1 was proven in class (as well as in the book). The following corollary follows immediately.

Corollary (2.2.2). A system $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} if and only if A row reduces to the identity.

Proof.

- \Leftarrow) If A row reduces to the identity, then \widetilde{A} has a pivotal 1 in each row and each column. In particular, A is an $n \times n$ square matrix, and $\widetilde{\mathbf{b}}$ does not have a pivotal 1 (since it is the $(n + 1)^{\text{st}}$ column of $[A \mid \mathbf{b}]$). By Theorem 2.2.2:2.(a), the system $A\mathbf{x} = \mathbf{b}$ has a unique solution.
- \implies) If A does not row reduce to the identity, then either i) m > n, every column of \widetilde{A} has a pivotal 1, and $A\mathbf{x} = \mathbf{e}_m$ will have no solution or ii) at least one column of A does not have a pivotal 1, in which case either $\widetilde{\mathbf{b}}$ has a pivotal 1 and the system has no solutions (by Theorem 2.2.1:1), or $\widetilde{\mathbf{b}}$ does not have a pivotal 1 and the system has infinitely many solutions (by Theorem 2.2.1:2.(b)).

Theorem (2.1.7.2). Given an $m \times n$ matrix A, its echelon form \widetilde{A} is unique.

Note: This is clear if A can be row reduced to the identity. In that case, every column of A is a pivotal column and every system $A\mathbf{x} = \mathbf{b}$ has a unique solution, by Theorem 2.2.1:2(a). If A had another echelon form, at least one of its columns would not have a pivotal 1 (otherwise it would be the identity), and by Theorem 2.2.1, a system of the form $A\mathbf{x} = \mathbf{b}$ would have either no solution or infinitely many solutions, which would contradict Theorem 2.1.2 (which asserts that the solutions to $A\mathbf{x} = \mathbf{b}$ and $\tilde{A}\mathbf{x} = \tilde{\mathbf{b}}$ are the same whenever the augmented matrix $[\tilde{A} \mid \tilde{\mathbf{b}}]$ can be obtained from $[A \mid \mathbf{b}]$ by row operations).

Proof. Write $A = [\mathbf{a}_1, \ldots, \mathbf{a}_n]$, where \mathbf{a}_i is the *i*th column of A. For each $k = 1, \ldots, n$, write $A[k] = [\mathbf{a}_1, \ldots, \mathbf{a}_k]$, the submatrix of A consisting of the first k columns of A. Observe that any sequence of row operations that reduces A to an echelon form \widetilde{A} will also reduce A[k] to an echelon form $\widetilde{A}[k]$, for every $k = 1, \ldots, n$.

Interpret A[k] as the augmented matrix corresponding to the system of equations

$$x_1\mathbf{a}_1 + \dots + x_{k-1}\mathbf{a}_{k-1} = \mathbf{a}_k.$$
 (1)

Note that equation (1) depends only on A, and not on \widetilde{A} . By Theorem 2.2.1, the system of equations (1) has no solutions if and only if the last column of $\widetilde{A}[k]$, that is, the k^{th} column of \widetilde{A} , is pivotal. (Note: When k = 1, we interpret the empty sum on the left as being the zero vector in \mathbb{R}^m , so \mathbf{a}_1 is pivotal if and only if it is nonzero.) Thus, A determines the pivotal columns of \widetilde{A} .

By Theorem 2.1.2, the solutions to equation (1) are the same as the solutions to

$$x_1\widetilde{\mathbf{a}}_1 + \dots + x_{k-1}\widetilde{\mathbf{a}}_{k-1} = \widetilde{\mathbf{a}}_k,\tag{2}$$

where $\widetilde{\mathbf{a}}_i$ is the *i*th column of \widetilde{A} . For each $k = 1, \ldots, n$, if the k^{th} column of \widetilde{A} is pivotal, it is just \mathbf{e}_k , the k^{th} standard basis vector. If the k^{th} column of \widetilde{A} is nonpivotal, then equation (1) (and equation (2)) has a unique solution for every choice of values for the variables corresponding to the nonpivotal columns among the first k - 1 columns of \widetilde{A} , by Theorem 2.2.1. In particular, equation (1) (and equation (2)) has a unique solution with the nonpivotal variables set to zero. Thus, the k^{th} column of \widetilde{A} is given by $x_1\mathbf{e}_1 + \cdots + x_j\mathbf{e}_j = \widetilde{\mathbf{a}}_k$, where x_1, \ldots, x_j are the unique values of the pivotal variables that solve equation (1) (and equation (2)) with the nonpivotal variables set to zero.

Thus, each column of A is uniquely specified by the system of equations (1) (one for every k), hence by A.