1. Recall the double-angle trigonometric identities.

$$
\begin{aligned}
\cos ^{2}(x)-\sin ^{2}(x) & =\cos (2 x) \\
2 \sin (x) \cos (x) & =\sin (2 x)
\end{aligned}
$$

(a) Show that $\mathcal{S}=\left\{\sin ^{2}(x), \cos ^{2}(x), \sin (x) \cos (x)\right\}$ and $\mathcal{T}=\{1, \sin (2 x), \cos (2 x)\}$ span the same 3 -dimensional subspace of $C[0, \pi]=\{f:[0, \pi] \rightarrow \mathbb{R} \mid f$ is continuous $\}$.
(b) Find the transition matrix from the ordered basis \mathcal{S} to the ordered basis \mathcal{T}.
(c) Use the transition matrix to express $a \sin ^{2}(x)+b \cos ^{2}(x)$ as a linear combination of $1, \sin (2 x)$ and $\cos (2 x)$.
2. Recall that the hyperbolic cosine and hyperbolic sine functions are defined as follows.

$$
\begin{aligned}
\cosh (x) & =\frac{e^{x}+e^{-x}}{2} \\
\sinh (x) & =\frac{e^{x}-e^{-x}}{2}
\end{aligned}
$$

(a) Show that $\mathcal{E}=\left\{e^{x}, e^{-x}\right\}$ and $\mathcal{H}=\{\cosh (x), \sinh (x)\}$ span the same 2-dimensional subspace of $C(\mathbb{R})=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is continuous $\}$.
(b) Find the transition matrix from the ordered basis \mathcal{E} to the ordered basis \mathcal{H}.
(c) Use the transition matrix to express $c e^{x}+d e^{-x}$ as a linear combination of $\sinh (x)$ and $\cosh (x)$.
3. Using the definition of the hyperbolic cosine function and the hyperbolic sine function, it is a straightforward computation to verify the following identities.

$$
\begin{aligned}
\cosh ^{2}(x)-\sinh ^{2}(x) & =1 \\
\cosh ^{2}(x)+\sinh ^{2}(x) & =\cosh (2 x) \\
2 \cosh (x) \sinh (x) & =\sinh (2 x)
\end{aligned}
$$

(a) Show that $\mathcal{S}_{h}=\left\{\cosh ^{2}(x), \sinh ^{2}(x), \cosh (x) \sinh (x)\right\}$ and $\mathcal{T}_{h}=\{1, \cosh (2 x), \sinh (2 x)\}$ span the same 3-dimensional subspace of $C(\mathbb{R})=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is continuous $\}$.
(b) Find the transition matrix from the ordered basis \mathcal{S}_{h} to the ordered basis \mathcal{T}_{h}.
(c) Use the transition matrix to express $a \cosh ^{2}(x)+b \sinh ^{2}(x)$ as a linear combination of $1, \cosh (2 x)$ and $\sinh (2 x)$.

1. (b) $P=\left(\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & 0\end{array}\right)$.
(c) $a \sin ^{2}(x)+b \cos ^{2}(x)=\frac{1}{2}(a+b)+\frac{1}{2}(-a+b) \cos (2 x)$.
2. (b) $P=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$.
(c) $c e^{x}+d e^{x}=(c+d) \cosh (x)+(c-d) \sinh (x)$.
3. (b) $P=\left(\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2}\end{array}\right)$.
(c) $a \cosh ^{2}(x)+b \sinh ^{2}(x)=\frac{1}{2}(a-b)+\frac{1}{2}(a+b) \cosh (2 x)$.
