MATH 110-003
Winter 2018
Practice problems 1

Section 1.4: The Tangent Problem

1. Let f be the function defined by $f(x)=4 x^{2}$. Let x be different from 3 . What is the slope m_{x} of the line through the points $(3,36)$ and $\left(x, 4 x^{2}\right)$? Simplify your answer as much as possible.
2. Let f be the function defined by $f(x)=\frac{2}{3 x}$. Let x be different from 0 and 1 . What is the slope m_{x} of the line through the points $\left(1, \frac{2}{3}\right)$ and $\left(x, \frac{2}{3 x}\right)$? Simplify your answer as much as possible.
3. The point $P(2,-1)$ lies on the curve $y=\frac{1}{1-x}$.
(a) If Q is the point $\left(x, \frac{1}{1-x}\right)$, use your calculator to find the slope of the secant line $P Q$ for the following values of $x: 1.5,1.9,1.99,1.999,2.5,2.1,2.01,2.001$.
(b) Using the results of part (a), guess the value of the slope of the tangent line to the curve at $P(2,-1)$.
(c) Using the slope from part (b), find an equation of the tangent line to the curve at $P(2,-1)$.
4. Let f be the function defined by $f(x)=-\frac{1}{x^{2}}$. Let x be different from 0 and 2 .
(a) What is the slope m_{x} of the line through the points $\left(2,-\frac{1}{4}\right)$ and $\left(x,-\frac{1}{x^{2}}\right)$? Simplify your answer as much as possible.
(b) Guess the value of $\lim _{x \rightarrow 2} m_{x}$, and determine an equation for the line tangent to the graph of f at $\left(2,-\frac{1}{4}\right)$.

Section 1.5: The Limit of a Function

1. Use the given graph of f (see Figure 1) to state the value of each quantity, if it exists. If it does not exist, explain why.
(a) $\lim _{x \rightarrow 2^{-}} f(x)$;
(b) $\lim _{x \rightarrow 2^{+}} f(x)$;
(c) $\lim _{x \rightarrow 2} f(x)$;
(d) $f(2)$;
(e) $\lim _{x \rightarrow 4} f(x) ;(\mathrm{f}) f(4)$.
2. For the function g whose graph is given (see Figure 2), state the value of each quantity, if it exists. If it does not exist, explain why.
(a) $\lim _{x \rightarrow 0^{-}} g(t)$;
(b) $\lim _{x \rightarrow 0^{+}} g(t)$;
(c) $\lim _{x \rightarrow 0} g(t)$;
(d) $\lim _{x \rightarrow 2^{-}} g(t)$;
(e) $\lim _{x \rightarrow 2^{+}} g(t)$;
(f) $\lim _{x \rightarrow 2} g(t)$;
(g) $g(2) ;(\mathrm{h}) \lim _{x \rightarrow 4} g(t)$.

Figure 1

Figure 2

