Section 1.4: The Tangent Problem

1. Let \(f \) be the function defined by \(f(x) = 4x^2 \). Let \(x \) be different from 3. What is the slope \(m_x \) of the line through the points \((3, 36)\) and \((x, 4x^2)\)? Simplify your answer as much as possible.

2. Let \(f \) be the function defined by \(f(x) = \frac{2}{3x} \). Let \(x \) be different from 0 and 1. What is the slope \(m_x \) of the line through the points \((1, \frac{2}{3})\) and \((x, \frac{2}{3x})\)? Simplify your answer as much as possible.

3. The point \(P(2, -1) \) lies on the curve \(y = \frac{1}{1-x} \).
 (a) If \(Q \) is the point \((x, \frac{1}{1-x})\), use your calculator to find the slope of the secant line \(PQ \) for the following values of \(x \): 1.5, 1.9, 1.99, 2.5, 2.1, 2.01, 2.001.
 (b) Using the results of part (a), guess the value of the slope of the tangent line to the curve at \(P(2, -1) \).
 (c) Using the slope from part (b), find an equation of the tangent line to the curve at \(P(2, -1) \).

4. Let \(f \) be the function defined by \(f(x) = -\frac{1}{x^2} \). Let \(x \) be different from 0 and 2.
 (a) What is the slope \(m_x \) of the line through the points \((2, -\frac{1}{4})\) and \((x, -\frac{1}{x^2})\)? Simplify your answer as much as possible.
 (b) Guess the value of \(\lim_{x \to 2} m_x \), and determine an equation for the line tangent to the graph of \(f \) at \((2, -\frac{1}{4})\).

Section 1.5: The Limit of a Function

1. Use the given graph of \(f \) (see Figure 1) to state the value of each quantity, if it exists. If it does not exist, explain why.
 (a) \(\lim_{x \to 2^-} f(x) \); (b) \(\lim_{x \to 2^+} f(x) \); (c) \(\lim_{x \to 2} f(x) \); (d) \(f(2) \); (e) \(\lim_{x \to 4} f(x) \); (f) \(f(4) \).

2. For the function \(g \) whose graph is given (see Figure 2), state the value of each quantity, if it exists. If it does not exist, explain why.
 (a) \(\lim_{x \to 0^-} g(t) \); (b) \(\lim_{x \to 0^+} g(t) \); (c) \(\lim_{x \to 0} g(t) \); (d) \(\lim_{x \to 2^-} g(t) \); (e) \(\lim_{x \to 2^+} g(t) \); (f) \(\lim_{x \to 2} g(t) \);
 (g) \(g(2) \); (h) \(\lim_{x \to 4} g(t) \).