MATH 110–003 Winter 2018 Practice problems 1

Section 1.4: The Tangent Problem

- 1. Let f be the function defined by $f(x) = 4x^2$. Let x be different from 3. What is the slope m_x of the line through the points (3, 36) and $(x, 4x^2)$? Simplify your answer as much as possible.
- 2. Let f be the function defined by $f(x) = \frac{2}{3x}$. Let x be different from 0 and 1. What is the slope m_x of the line through the points $(1, \frac{2}{3})$ and $(x, \frac{2}{3x})$? Simplify your answer as much as possible.
- 3. The point P(2, -1) lies on the curve $y = \frac{1}{1-x}$.
 - (a) If Q is the point $(x, \frac{1}{1-x})$, use your calculator to find the slope of the secant line PQ for the following values of x: 1.5, 1.9, 1.99, 1.999, 2.5, 2.1, 2.01, 2.001.
 - (b) Using the results of part (a), guess the value of the slope of the tangent line to the curve at P(2, -1).
 - (c) Using the slope from part (b), find an equation of the tangent line to the curve at P(2, -1).
- 4. Let f be the function defined by $f(x) = -\frac{1}{x^2}$. Let x be different from 0 and 2.
 - (a) What is the slope m_x of the line through the points $(2, -\frac{1}{4})$ and $(x, -\frac{1}{x^2})$? Simplify your answer as much as possible.
 - (b) Guess the value of $\lim_{x\to 2} m_x$, and determine an equation for the line tangent to the graph of f at $(2, -\frac{1}{4})$.

Section 1.5: The Limit of a Function

- 1. Use the given graph of f (see Figure 1) to state the value of each quantity, if it exists. If it does not exist, explain why.
 - (a) $\lim_{x \to 2^{-}} f(x)$; (b) $\lim_{x \to 2^{+}} f(x)$; (c) $\lim_{x \to 2} f(x)$; (d) f(2); (e) $\lim_{x \to 4} f(x)$; (f) f(4).
- 2. For the function g whose graph is given (see Figure 2), state the value of each quantity, if it exists. If it does not exist, explain why.
 - (a) $\lim_{x\to 0^-} g(t)$; (b) $\lim_{x\to 0^+} g(t)$; (c) $\lim_{x\to 0} g(t)$; (d) $\lim_{x\to 2^-} g(t)$; (e) $\lim_{x\to 2^+} g(t)$; (f) $\lim_{x\to 2} g(t)$; (g) g(2); (h) $\lim_{x\to 4} g(t)$.

Figure 1

Figure 2