## MATH 110–003 Winter 2018 Solution to Practice problems 1

## Section 1.4: The Tangent Problem

1. Let f be the function defined by  $f(x) = 4x^2$ . Let x be different from 3. What is the slope  $m_x$  of the line through the points (3, 36) and  $(x, 4x^2)$ ? Simplify your answer as much as possible.

**Solution.** First recall that the slope of a line through  $P_1(x_1, y_1)$  and  $P_2(x_2, y_2)$  is given by the formula

Slope 
$$= \frac{y_2 - y_1}{x_2 - x_1}.$$

Let  $x \neq 3$ . The slope of the line through (3, 36) and  $(x, 4x^2)$  is then

$$m_x = \frac{4x^2 - 36}{x - 3}$$

To simply it, we need to factor the numerator and the denominator. The numerator is the difference of two squares as  $4x^2 - 36 = (2x)^2 - (6)^2$ . So by the formula  $a^2 - b^2 = (a - b)(a + b)$ , we have  $4x^2 - 36 = (2x - 6)(2x + 6)$ . The denominator is already on the factored form. Thus

$$m_x = \frac{(2x-6)(2x+6)}{x-3} = \frac{2(x-3)2(x+3)}{x-3} = 4(x+3).$$

We have simplified by x - 3 because  $x \neq 3$ , so that  $x - 3 \neq 0$ .

2. Let f be the function defined by  $f(x) = \frac{2}{3x}$ . Let x be different from 0 and 1. What is the slope  $m_x$  of the line through the points  $(1, \frac{2}{3})$  and  $(x, \frac{2}{3x})$ ? Simplify your answer as much as possible.

Solution. First recall some algebra about fractions.

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}, \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b}\frac{d}{c} = \frac{ad}{bc}, \frac{\frac{a}{b}}{\frac{c}{c}} = \frac{a}{bc}, \frac{\frac{a}{b}}{\frac{c}{c}} = \frac{a}{bc}, \frac{a}{\frac{b}{c}} = \frac{ac}{b}, \frac{a}{\frac{b}{c}} = \frac{a}{bc}, \frac{a}{\frac{b}{c}} = \frac{a}{b}, \frac{a}{b$$

Let x be different from 0 and 1. The slope of the line through  $(1, \frac{2}{3})$  and  $(x, \frac{2}{3x})$  is

$$m_x = \frac{\frac{2}{3x} - \frac{2}{3}}{x - 1}$$

To simplify this, we first need to make the denominators of  $\frac{2}{3x} - \frac{2}{3}$  the same. By using  $\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$ , we get  $\frac{2}{3x} - \frac{2}{3} = \frac{6-6x}{9x}$ . So

$$m_x = \frac{\frac{6-6x}{9x}}{x-1} = \frac{6-6x}{9x(x-1)} = \frac{-6(x-1)}{9x(x-1)} = \frac{-6}{9x} = \frac{-2}{3x}.$$

We have simplified by x - 1 because  $x \neq 1$ , so that  $x - 1 \neq 0$ .

3. The point P(2, -1) lies on the curve  $y = \frac{1}{1-x}$ .

- (a) If Q is the point  $(x, \frac{1}{1-x})$ , use your calculator to find the slope of the secant line PQ for the following values of x: 1.5, 1.9, 1.99, 1.999, 2.5, 2.1, 2.01, 2.001.
- (b) Using the results of part (a), guess the value of the slope of the tangent line to the curve at P(2, -1).
- (c) Using the slope from part (b), find an equation of the tangent line to the curve at P(2, -1).

**Solution.** (a) For  $x \neq 2$ , the slope of the line through P(2, -1) and  $Q(x, \frac{1}{1-x})$  is

$$m_x = \frac{\frac{1}{1-x} - (-1)}{x-2} = \frac{\frac{1+(1-x)}{1-x}}{x-2} = \frac{2-x}{(1-x)(x-2)} = \frac{-(x-2)}{(1-x)(x-2)} = \frac{-1}{1-x}$$

| x     | 1.5 | 1.9   | 1.99 | 1.999 | 2 | 2.001 | 2.01  | 2.1   | 2.5   |
|-------|-----|-------|------|-------|---|-------|-------|-------|-------|
| $m_x$ | 2   | 1.111 | 1.01 | 1.001 |   | 0.999 | 0.990 | 0.909 | 0.666 |

(b) From the table, we can make the guess that the slope of the the tangent line to the curve  $y = \frac{1}{1-x}$  at P(2, -1) is

$$m = \lim_{x \to 2} m_x = 1.$$

(c) An equation of the tangent line to the curve at P(2, -1) is: y - (-1) = m(x - 2), which is equivalent to y + 1 = 1(x - 2), so that y = x - 3.

- 4. Let f be the function defined by  $f(x) = -\frac{1}{x^2}$ . Let x be different from 0 and 2.
  - (a) What is the slope  $m_x$  of the line through the points  $(2, -\frac{1}{4})$  and  $(x, -\frac{1}{x^2})$ ? Simplify your answer as much as possible.
  - (b) Guess the value of  $\lim_{x\to 2} m_x$ , and determine an equation for the line tangent to the graph of f at  $(2, -\frac{1}{4})$ .

## Solution.

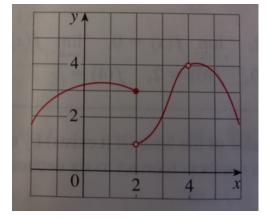
(a) Let  $x \neq 0$  and  $x \neq 2$ . The slope of the line through the points  $(2, -\frac{1}{4})$  and  $(x, -\frac{1}{x^2})$  is

$$m_x = \frac{-\frac{1}{x^2} - (-\frac{1}{4})}{x - 2} = \frac{-\frac{1}{x^2} + \frac{1}{4}}{x - 2} = \frac{\frac{-4 + x^2}{4x^2}}{x - 2} = \frac{x^2 - 4}{4x^2(x - 2)} = \frac{(x - 2)(x + 2)}{4x^2(x - 2)} = \frac{x + 2}{4x^2}$$

(b) In order to guess the limit, we make a table.

## Section 1.5: The Limit of a Function

1. Use the given graph of f (see Figure 1) to state the value of each quantity, if it exists. If it does not exist, explain why.



(a)  $\lim_{x \to 2^{-}} f(x)$ ; (b)  $\lim_{x \to 2^{+}} f(x)$ ; (c)  $\lim_{x \to 2} f(x)$ ; (d) f(2); (e)  $\lim_{x \to 4} f(x)$ ; (f) f(4).



**Solution.** From the graph, we have: (a)  $\lim_{x\to 2^-} f(x) = 3$ ; (b)  $\lim_{x\to 2^+} f(x) = 1$ ; and (c)  $\lim_{x\to 2} f(x)$  does not exist since the limit from the left is not the same as the limit from the right.

(d) f(2) = 3; (e)  $\lim_{x \to 4} f(x) = 4$ ; and (f) f(4) does not exist because of the hole.

- 2. For the function g whose graph is given (see Figure 2), state the value of each quantity, if it exists. If it does not exist, explain why.
  - (a)  $\lim_{x\to 0^-} g(t)$ ; (b)  $\lim_{x\to 0^+} g(t)$ ; (c)  $\lim_{x\to 0} g(t)$ ; (d)  $\lim_{x\to 2^-} g(t)$ ; (e)  $\lim_{x\to 2^+} g(t)$ ; (f)  $\lim_{x\to 2} g(t)$ ; (g) g(2); (h)  $\lim_{x\to 4} g(t)$ .

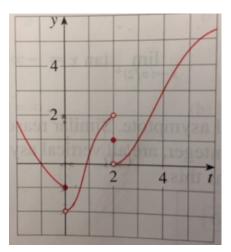


Figure 2

**Solution.** (a)  $\lim_{t\to 0^-} g(t) = -1$ ; (b)  $\lim_{t\to 0^+} g(t) = -2$ ; (c)  $\lim_{t\to 0} g(t)$  does not exist (DNE) since the limit from the left is different from the limit from the right. (d)  $\lim_{t\to 2^-} g(t) = 2$ ; (e)  $\lim_{t\to 2^+} g(t) = 0$ ; (f)  $\lim_{t\to 2} g(t)$  DNE for the same reason as before. (g) g(2) = 1 and  $\lim_{t\to 4} g(t) = 3$ .