MATH 110-003
Winter 2018
Solution to Practice problems 1

Section 1.4: The Tangent Problem

1. Let f be the function defined by $f(x)=4 x^{2}$. Let x be different from 3 . What is the slope m_{x} of the line through the points $(3,36)$ and $\left(x, 4 x^{2}\right)$? Simplify your answer as much as possible.
Solution. First recall that the slope of a line through $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ is given by the formula

$$
\text { Slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Let $x \neq 3$. The slope of the line through $(3,36)$ and $\left(x, 4 x^{2}\right)$ is then

$$
m_{x}=\frac{4 x^{2}-36}{x-3}
$$

To simply it, we need to factor the numerator and the denominator. The numerator is the difference of two squares as $4 x^{2}-36=(2 x)^{2}-(6)^{2}$. So by the formula $a^{2}-b^{2}=(a-b)(a+b)$, we have $4 x^{2}-36=(2 x-6)(2 x+6)$. The denominator is already on the factored form. Thus

$$
m_{x}=\frac{(2 x-6)(2 x+6)}{x-3}=\frac{2(x-3) 2(x+3)}{x-3}=4(x+3) .
$$

We have simplified by $x-3$ because $x \neq 3$, so that $x-3 \neq 0$.
2. Let f be the function defined by $f(x)=\frac{2}{3 x}$. Let x be different from 0 and 1 . What is the slope m_{x} of the line through the points $\left(1, \frac{2}{3}\right)$ and $\left(x, \frac{2}{3 x}\right)$? Simplify your answer as much as possible.
Solution. First recall some algebra about fractions.

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}, \frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}, \frac{\frac{a}{c}}{\frac{c}{d}}=\frac{a}{b} \frac{d}{c}=\frac{a d}{b c}, \frac{\frac{a}{b}}{c}=\frac{a}{b c}, \frac{a}{\frac{b}{c}}=\frac{a c}{b}
$$

Let x be different from 0 and 1 . The slope of the line through $\left(1, \frac{2}{3}\right)$ and $\left(x, \frac{2}{3 x}\right)$ is

$$
m_{x}=\frac{\frac{2}{3 x}-\frac{2}{3}}{x-1}
$$

To simplify this, we first need to make the denominators of $\frac{2}{3 x}-\frac{2}{3}$ the same. By using $\frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}$, we get $\frac{2}{3 x}-\frac{2}{3}=\frac{6-6 x}{9 x}$. So

$$
m_{x}=\frac{\frac{6-6 x}{9 x}}{x-1}=\frac{6-6 x}{9 x(x-1)}=\frac{-6(x-1)}{9 x(x-1)}=\frac{-6}{9 x}=\frac{-2}{3 x} .
$$

We have simplified by $x-1$ because $x \neq 1$, so that $x-1 \neq 0$.
3 . The point $P(2,-1)$ lies on the curve $y=\frac{1}{1-x}$.
(a) If Q is the point $\left(x, \frac{1}{1-x}\right)$, use your calculator to find the slope of the secant line $P Q$ for the following values of $x: 1.5,1.9,1.99,1.999,2.5,2.1,2.01,2.001$.
(b) Using the results of part (a), guess the value of the slope of the tangent line to the curve at $P(2,-1)$.
(c) Using the slope from part (b), find an equation of the tangent line to the curve at $P(2,-1)$.

Solution. (a) For $x \neq 2$, the slope of the line through $P(2,-1)$ and $Q\left(x, \frac{1}{1-x}\right)$ is

(b) From the table, we can make the guess that the slope of the the tangent line to the curve $y=\frac{1}{1-x}$ at $P(2,-1)$ is

$$
m=\lim _{x \rightarrow 2} m_{x}=1
$$

(c) An equation of the tangent line to the curve at $P(2,-1)$ is: $y-(-1)=m(x-2)$, which is equivalent to $y+1=1(x-2)$, so that $y=x-3$.
4. Let f be the function defined by $f(x)=-\frac{1}{x^{2}}$. Let x be different from 0 and 2 .
(a) What is the slope m_{x} of the line through the points $\left(2,-\frac{1}{4}\right)$ and $\left(x,-\frac{1}{x^{2}}\right)$? Simplify your answer as much as possible.
(b) Guess the value of $\lim _{x \rightarrow 2} m_{x}$, and determine an equation for the line tangent to the graph of f at $\left(2,-\frac{1}{4}\right)$.

Solution.

(a) Let $x \neq 0$ and $x \neq 2$. The slope of the line through the points $\left(2,-\frac{1}{4}\right)$ and $\left(x,-\frac{1}{x^{2}}\right)$ is

$$
m_{x}=\frac{-\frac{1}{x^{2}}-\left(-\frac{1}{4}\right)}{x-2}=\frac{-\frac{1}{x^{2}}+\frac{1}{4}}{x-2}=\frac{\frac{-4+x^{2}}{4 x^{2}}}{x-2}=\frac{x^{2}-4}{4 x^{2}(x-2)}=\frac{(x-2)(x+2)}{4 x^{2}(x-2)}=\frac{x+2}{4 x^{2}} .
$$

(b) In order to guess the limit, we make a table.

x	1.5	1.9	1.99	1.999	2	2.001	2.01	2.1	2.5
m_{x}	0.388	0.27	0.2518	0.2501		0.2498	0.2481	0.232	0.18

From that table we can make the guess that $m=\lim _{x \rightarrow 2} m_{x}=0.25=\frac{1}{4}$. An equation of the tangent line is $y-\left(-\frac{1}{4}\right)=m(x-2)$, that is, $y+\frac{1}{4}=\frac{1}{4}(x-2)$ or $y=\frac{1}{4} x-\frac{3}{4}$.

Section 1.5: The Limit of a Function

1. Use the given graph of f (see Figure 1) to state the value of each quantity, if it exists. If it does not exist, explain why.
(a) $\lim _{x \rightarrow 2^{-}} f(x)$;
(b) $\lim _{x \rightarrow 2^{+}} f(x)$;
(c) $\lim _{x \rightarrow 2} f(x)$;
(d) $f(2)$;
(e) $\lim _{x \rightarrow 4} f(x) ;(\mathrm{f}) f(4)$.

Figure 1
Solution. From the graph, we have: (a) $\lim _{x \rightarrow 2^{-}} f(x)=3$; (b) $\lim _{x \rightarrow 2^{+}} f(x)=1$; and (c) $\lim _{x \rightarrow 2} f(x)$ does not exist since the limit from the left is not the same as the limit from the right.
(d) $f(2)=3$; (e) $\lim _{x \rightarrow 4} f(x)=4$; and (f) $f(4)$ does not exist because of the hole.
2. For the function g whose graph is given (see Figure 2), state the value of each quantity, if it exists. If it does not exist, explain why.
(a) $\lim _{x \rightarrow 0^{-}} g(t)$;
(b) $\lim _{x \rightarrow 0^{+}} g(t)$;
(c) $\lim _{x \rightarrow 0} g(t)$;
(d) $\lim _{x \rightarrow 2^{-}} g(t)$;
(e) $\lim _{x \rightarrow 2^{+}} g(t)$;
(f) $\lim _{x \rightarrow 2} g(t)$;
(g) $g(2) ;(\mathrm{h}) \lim _{x \rightarrow 4} g(t)$.

Figure 2

Solution. (a) $\lim _{t \rightarrow 0^{-}} g(t)=-1$; (b) $\lim _{t \rightarrow 0^{+}} g(t)=-2$; (c) $\lim _{t \rightarrow 0} g(t)$ does not exist (DNE) since the limit from the left is different from the limit from the right.
(d) $\lim _{t \rightarrow 2^{-}} g(t)=2$; (e) $\lim _{t \rightarrow 2^{+}} g(t)=0$; (f) $\lim _{t \rightarrow 2} g(t)$ DNE for the same reason as before.
(g) $g(2)=1$ and $\lim _{t \rightarrow 4} g(t)=3$.

