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ABSTRACT

Allocation processes|the division of some commodity among multiple agents|are fun-

damental to social interactions in various arenas. Examples include wealth/income distri-

bution in populations, natural resource exploitation, market share for competing corpora-

tions, satellite bandwidth division among many users, and CPU time usage by multiple

software agents running simultaneously. In the case where each agent prefers more to less

of the commodity|as in these examples|preference, or Condorcet, cycles are inevitable.

We determine the consequences of this fact on an analytically tractable process of alloca-

tion subject to random external perturbations. This is a complex system: under majority

rule the process is chaotic, while under weighted majority rule the system self-organizes to

produce a path-dependent majority owner/dictator/monopolist.

Journal of Economic Literature Classi�cation System: D71, D31, C69.

1999 Physics and Astronomy Classi�cation Scheme: 05.65.+b, 05.40.Jc, 89.90.+n.

American Mathematical Society Subject Classi�cation: 90A80, 90A08, 54H20, 60J65.
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Expanded version of a talk presented at the Second International Conference on Complex

Systems held in Nashua, NH, 25{30 October 1998.

1



Allocation processes David A. Meyer

1. Introduction

EXAMPLE 1. Suppose Mom has baked an apple pie and is faced with the quintessential

problem (no more American than are mothers or pies!) of allocating the pie among her

children: Alice, Bob and Charlie. For reasons of her own she cuts a 1

3
wedge of the pie

and suggests to her children that she give it to Charlie and leave the remaining 2

3
of the

pie for Alice, with Bob getting none.

Bob complains vociferously, so she gives the three children an alternative: either stick

with this initial allocation a1 = (2
3
; 0; 1

3
), or change to the allocation a2 = (0; 1

3
; 2
3
), where

these ordered triples indicate the amounts allocated to Alice, Bob and Charlie, respectively.

Assuming each of the children prefers more to less of the pie, Bob and Charlie will vote

to change to a2; only Alice is worse o� this way. But then Mom suggests the allocation

a3 = (1
3
; 2
3
; 0) and now Alice and Bob prefer this to a2 so the result of a (majority) vote is

to switch again.

a1 = (
2

3
; 0;

1

3
)

a2 = (0;
1

3
;
2

3
)

a3 = (
1

3
;
2

3
; 0)

Figure 1. The directed graph fp representing
majority rule aggregation of the agents' more-
is-better preferences contains a Condorcet cycle.
The edges connecting each vertex to itself are
omitted.

Losing patience, Mom suggests a1 =

(2
3
; 0; 1

3
) for the second time, and despite

the fact that the children voted to switch

from a1 to a2 and then to a3, now they

vote again by 2:1 to return to a1, complet-

ing a cycle. Figure 1 illustrates this pref-

erence (Condorcet [1]) cycle: The three

vertices represent the ai while the directed

edges indicate how decisions between two

alternatives go when decided by majority

vote.

Under the very strict assumptions implicit in our story (e.g., there are no side agree-

ments between the children) this situation exempli�es a social system in which we attribute

rationality to the individual agents (Alice, Bob and Charlie) in the form of totally ordered

preferences [2] for allocations giving them bigger over smaller pie slices, yet cannot conclude

that any equilibrium is achieved when these preferences are aggregated. In this paper we

will explain the sense in which the absence of equilibria in allocation processes indicates

that they are complex systems.

Let us begin by recalling a pragmatic de�nition of complexity [3]: A system is complex

if it is represented e�ciently by di�erent models at di�erent scales. That is, if a system

can be simulated with bounded error and with less computational e�ort at larger scales in

terms of macroscopic variables than in terms of microscopic variables, and the macroscopic

variables di�er qualitatively from the microscopic ones, then the system is complex. Table 1

summarizes some examples of complex systems for which the qualitative di�erence of the

macroscopic model derives from nontrivial global topology [3].

The second and third systems in this table are essentially similar: there is a �nite
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SYSTEM LOCAL MODEL GLOBAL MODEL


uid 
ow scattering molecules interacting vortices

population biology interacting organisms cycling ecology

market economics agent utilities market w/o stable equilibrium

iterated social choice agent preferences Condorcet cycles

Table 1. Four systems which can be complex : : : when the global topology is nontrivial, producing the
phenomena listed in the third column.

number of continuous valued variables in the local models|relative populations in the

second and prices of some �nite number of goods in the third. The �rst system in the table,


uid 
ow, di�ers in having a continuum of continuous valued variables, the velocities v(x),

while the fourth, iterated social choice, has a �nite number of discrete valued variables. In

Example 1, these are the three pie allocations Mom proposes.

Our goal is to bridge the gap between this situation and the one exempli�ed by market

economics and population dynamics|by making the natural generalization to processes

where a continuum of allocations is allowed [5]. To varying degrees, this is a good model

for social systems such as wealth/income distribution in populations, natural resource

exploitation, market share for competing corporations, satellite bandwidth division among

many users, and CPU time usage by multiple software agents running simultaneously.

Speci�cally, we want to extend the techniques developed to quantify the complexity of

iterated social choice [4] to continuous variables. We do so in Section 3, after reviewing

the analysis of the discrete problem in Section 2. In Section 4 we consider a natural

modi�cation of the allocation process and then conclude with a discussion in Section 5.

2. Iterated discrete choice

The general setting for the discrete choice problem of Example 1 is a �nite set of alternatives

A and a �nite number of agents, each of whom has a preference order on A. The usual

model for the preference order of a rational agent is a relation, denoted�, which is complete

(a; b 2 A ) a � b or b � a) and transitive (a; b; c 2 A and a � b, b � c ) a � c) [2].

We formalize voting or aggregation by maps f from preference pro�les p (a list of agent

preference orders) to directed graphs fp. As in Figure 1, the vertices of fp correspond to

alternatives in A and a directed edge a  b in fp indicates that for pro�le p the map f

chooses alternative a over alternative b. We call f a voting rule if for all pro�les p, fp is

complete (a; b 2 A ) a  b or b  a in fp) and unanimous (a; b 2 A and a � b in each

preference order in p) a b in fp). Notice that in Figure 1 we have omitted the directed

edges|present in every fp|connecting each vertex to itself.

The directed graph fp de�nes a symbolic dynamical system: Suppose the agents are

presented with a sequence of alternatives. The results of successive pairwise votes between
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each new alternative and the current one form a sequence of symbols representing the

chosen alternatives. The possible sequences are exactly the directed paths in fp. These

paths, together with the shift map (deletion of the �rst symbol of a sequence) form a

dynamical system|a (one-sided ) subshift of �nite type [6]. To enumerate the paths we

de�ne the transition matrix Fp by (Fp)ab = 1 if a  b in fp and (Fp)ab = 0 otherwise;

then the number of paths of length N from b to a is (FN
p )ab. The topological entropy [7]

of the symbolic dynamical system de�ned by fp is

S[fp] := lim
N!1

1

N
log TrFN

p = log(largest eigenvalue of Fp): (1)

In [4] we showed that the topological entropy is positive exactly when there is a Condorcet

cycle and observed that this makes the dynamical system chaotic [8].

In Example 1 there is a preference cycle, the transition matrix is

Fp =

0
@1 0 1

1 1 0

0 1 1

1
A ;

and S[fp] = 2. We can observe that the system is chaotic since, for example, arbitrarily

close paths diverge like 2t under t iterations of the shift dynamics. By contrast, suppose

that in our example only Alice's preferences matter: since she prefers a1 > a3 > a2, the

direction on the edge between a1 and a2 in Figure 1 would be reversed. For this dictatorial

voting rule f 0 we have an acyclic f 0p, the transition matrix is

F 0p =

0
@1 1 1

0 1 0

0 1 1

1
A ;

and S[F 0p] = 0. This system is not chaotic: the set of paths converging to a1 for large t has

measure 1; neither is it complex: the whole system can be described by Alice's preference

order|there is no di�erence between e�cient models at the local (individual) and global

(group) scales. The original system, however, is e�ciently described at the global scale by

fp|a directed graph containing a nontrivial cycle, which is qualitatively di�erent than an

individual preference order.

These examples illustrate that the fundamental distinction between iterated discrete

choice systems is topological|the presence or absence of preference cycles. Their exis-

tence was observed by Condorcet [1]; Arrow analyzed conditions under which they are

inevitable [2]; Chichilnisky recognized their topological importance [9]; and we have noted

that the topological entropy quanti�es the amount of cyclicity, distinguishing simple from

complex discrete choice systems [3], and suggested that it be used to quantify complexity

in this context [4]. Now we will extend this approach to a situation with a continuum of

alternatives|continuous allocation processes.
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3. Continuous allocation processes

EXAMPLE 2. Suppose Mom is able to cut the pie into any three portions x1, x2 and x3 for

Alice, Bob and Charlie, respectively. Since there is only one pie, each allocation is described

by a vector x = x1ê1 + x2ê2 + x3ê3 2 R3 with x1 + x2 + x3 = 1 and xi � 0. The xi are

barycentric coordinates on the allocation simplex|the two dimensional simplex bounded

by the triangle with vertices at fêig (ê1 := (1; 0; 0), etc.). We supposed that each child

prefers more pie to less, so the ith child prefers allocation y = (y1; y2; y3) to x = (x1; x2; x3)

i� yi > xi. This de�nes a pro�le for three agents on the space of allocations. Let us suppose,

as in Example 1, that the three preference orders in this pro�le are aggregated by majority

rule, i.e., the group prefers allocation y to x i�

X
i

sign(yi � xi) � 0; (2)

in which case we write y  x.� The consequences of this voting rule are captured by the

lightcone-like diagram shown in Figure 2: The point labelled x in the allocation simplex

is preferred under majority rule to all points in the shaded regions, while all points in

the unshaded regions, e.g., a1, are majority preferred to x. Possible sequences of out-

comes in an iterated voting procedure then, consist of points each of which lies in `the

future lightcone'|the unshaded region|of its predecessor. Unlike the (usual) situation in

Lorentzian geometry, however, cycles are prevalent: e.g., the a1 ! a2 ! a3 ! a1 cycle of

Example 1 exists also in this continuous generalization.

x

a1

a2

a3

ê1

ê2 ê3

Figure 2. Aggregated preferences on the alloca-
tion simplex: unshaded points are majority pref-
ered to x. The triangular lattice including alter-
natives a1, a2 and a3 is a discrete approximation
to the continuous allocation simplex.

Our goal is to measure the complex-

ity of this system by extending the topo-

logical entropy analysis we described for

discrete choice systems [4] in Section 3.

One might attempt to do so by discretiz-

ing Example 2 to some �nite number V

of allocations|such as the vertices of the

triangular lattice shown in Figure 2|and

then taking the limit as V !1. The vot-

ing rule (Eq. 2) de�nes a directed graph

on these vertices and we can compute the

topological entropy (Eq. 1) of the associ-

ated symbolic dynamical system. As we

re�ne the discretization to more vertices,

however, the largest eigenvalue of the transition matrix, �V � V as V ! 1, so to get a

continuum limit we must rescale to �V =V . The relative entropy [11] is the logarithm of

the rescaled largest eigenvalue, i.e.,

S := lim
V!1

log �V � log V: (3)

� With this voting rule the situation is equivalent to the general three-person zero-sum game considered
originally by von Neumann and Morgenstern [10].
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Since �V � V , the relative entropy is nonpositive, vanishing for the maximally cyclic case

of complete directed graphs. The relative entropy, therefore, measures how far the system

is from being maximally chaotic.

To compute the relative entropy, however, it is more convenient|as well as aesthet-

ically pleasing|to work directly in the continuum, where a transition matrix becomes a

transition operator, or Green's function. Here it is de�ned by

T (y; x) :=
n
1 if y  x;

0 otherwise.

Matrix multiplication is replaced by integration: y can be reached from x in two steps

provided

T 2(y; x) :=

Z
4

T (y; z)T (z; x)dz > 0;

and in N steps if

TN (y; x) :=

Z
4

TN�1(y; z)T (z; x)dz > 0;

where 4 indicates that the variable z is integrated over the allocation simplex. Just as

in the discrete situation, the `number' of cyclic paths of length N is given by the trace of

this operator, which is again de�ned by integration. Thus the relative entropy of Eq. 3

can equivalently be de�ned as:

S := lim
N!1

1

N
log

Z
4

TN(x; x)dx � log area(4); (4)

i.e., as the logarithm of the largest eigenvalue of the operator T , rescaled by the area of

the allocation simplex.

Figure 3. The approximate eigenfunction of T
with largest norm eigenvalue � � 0:28494.

The eigenvalue problem for such an

integral operator is

�f(y) =

Z
4

T (y; x)f(x)dx: (5)

Clearly f(x) � 0 solves this equation; the

problem is to determine the eigenvalues

�i (in our case we mostly care about the

one, � := �1, with the largest norm) for

which Eq. 5 has nontrivial solutions, the

eigenfunctions. Leaving the calculational

details for another paper [12], Figure 3

shows the eigenfunction of T with the largest norm eigenvalue, � � 0:28494. Notice that

� < 1

4

p
6 = area(4) so that the relative entropy (Eq. 4) S := log� � log area(4) < 0.

That is, there is a lower density of Condorcet cycles than there would be if T (y; x) � 1
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(in which case the largest norm eigenvalue solving Eq. 5 is 1

4

p
6 and the corresponding

eigenfunction is constant), but it is high enough that the relative entropy is �nite.

As in the previous section, we can compare with a simple system: Suppose again that

only Alice's preference matter so that there are no preference cycles. Then the transition

operator is

T 0(y; x) :=

�
1 if y1 � x1;

0 otherwise,

and it is clear that the only nontrivial eigenfunction of this operator is concentrated at

ê1. Thus the eigenfunction is proportional to �(ê1 � x) and according to Eq. 5, the corre-

sponding eigenvalue is 0. In this case the relative entropy is �1.

These examples demonstrate that the �niteness of the relative entropy (Eq. 3 or

Eq. 4) for iterated continuous choice systems is the criterion corresponding to positivity

of the entropy (Eq. 1) for iterated discrete choice systems. Each re
ects the presence of

topologically nontrivial paths in the space of alternatives� and identi�es the system as

complex.

4. Inequity

The eigenfunction of T shown in Figure 3 also re
ects the presence of Condorcet cycles|by

not being concentrated at a single point as is the eigenfunction of the transition operator T 0

modelling Alice's dictatorship. We may consider both the discrete and continuous choice

systems probabilistically: at each timestep a new alternative y is presented at random|

uniformly from all the alternatives. This probability distribution, weighted by T (y; x),

de�nes a transition probability from x to y. The eigenfunction is a projectively stationary

distribution for this non-probability preserving process.

ê1

ê2 ê3

Figure 4. The �rst 400 steps of a path starting

at the equal allocation (
1

3
;
1

3
;
1

3
) and driven by a

Gaussian random process with � = 0:03.

For many allocation processes, how-

ever, this is not the most realistic proba-

bilistic model. In the case of wealth distri-

bution, for example, it seems likely that a

possible change in the allocation will be

fairly small|just a perturbation of the

status quo implemented by, say, a small

change in the tax code. Rather than a uni-

form distribution for the new alternative,

therefore, we might consider a Gaussian

distribution centered at the status quo.

The voting rule (Eq. 2) still determines

which new alternatives are preferred. Figure 4 shows the �rst 400 steps of a path starting

� It is amusing to note that if we extend our model to continuous time choices, there are continuous
periodic paths in the allocation simplex, as well as continuous paths from any point to any point
other than the vertices êi. The discrete time version of this statement was proved by Ward [5].
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ê1

ê2 ê3

ê1

ê2 ê3

Figure 5. The �rst 100 steps for the inequitable
rule (Eq. 6) driven by Gaussian 
uctuations with
� = 0:03. There are cycles, but the path con-
verges to ê3.

Figure 6. The �rst 400 steps for the same pro-
cess driven by a narrower Gaussian (� = 0:02).
The path takes x1 near zero and then converges
to ê2.

at the equal allocation (1
3
; 1
3
; 1
3
) and generated by a Gaussian with width � = 0:03. Notice

the cycles in the path, and the apparently larger probability for allocations near the center

of the allocation simplex, both phenomena we derived in the previous section.

We must also remark that majority rule (Eq. 2) may be an unrealistic idealization for

some allocation processes. In the case of wealth distribution, for example, it seems likely

that the wealthier agents will have a greater say in the decision about a new allocation.

Similarly, changes in market share may be more heavily in
uenced by corporations which

dominate the market. To model unequal in
uences we need only weight the corresponding

terms in Eq. 2, de�ning the aggregate preference y  x i�

X
i

xisign(yi � xi) � 0: (6)

This voting rule weights the preference of each agent proportionaly to his/her fraction

in the current allocation. Figures 5 and 6 illustrate the consequences of this inequitable

voting rule with sample paths generated by Gaussian distributions. Each path starts at

the equal allocation (1
3
; 1
3
; 1
3
). Figure 5 shows the �rst 100 steps with a Gaussian of width

� = 0:03, just as in Figure 4. Notice that while there are still cycles, the path converges

rapidly to ê3. Figure 6 shows the �rst 400 steps with a narrower Gaussian, � = 0:02. In

this case the allocation process takes longer to leave the center of the allocation simplex,

and squeezes agent 1's fraction down near 0 before converging to ê2.
�

These examples illustrate that although the voting rule (Eq. 6) is symmetric (under

permutation of the agents [10]), the fact that it is inequitable leads to symmetry breaking

[13]: Almost all paths converge to one of the êi, but to which is a consequence of the Gaus-

sian random process|deviations from the equal distribution are ampli�ed and eventually

`frozen in' by the inequity of the voting rule (Eq. 6). So complex allocation processes can

include the venerable economics phenomenon of increasing returns [14] and demonstrate

the path-dependent consequences [15].

� Log normal (i.e., Gaussian for the log of a multiplicative factor) distributions for the xi, rescaled to
keep the total 1, give similar|although not identical|results.
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5. Discussion

1

1

Figure 7. The Lorenz curve for the expected al-
location of the eigenfunction shown in Figure 3
lies below the Lorenz curve for an equal distri-
bution (the diagonal line). Fraction of the total
is graphed as a function of `poorest' population
fraction.

We have generalized the entropy measure

of complexity for iterated discrete choice

systems to the economics setting of con-

tinuous allocation processes. The most

complex system we have considered is the

majority rule allocation process; in Sec-

tion 3 we showed that the relative entropy

can be computed precisely in this case.

Furthermore, the density of Condorcet cy-

cles makes the equal allocation (1
3
; 1
3
; 1
3
)

only the most probable; even with this

equitable voting rule the expected values

satisfy

hmax. fractioni > 1

3
> hmin. fractioni;

implying inequality in the distribution. In Figure 7 we illustrate this inequality with

a Lorenz curve [16] which plots the cumulative allocated fraction as a function of the

`poorest' fraction of the population. For the distribution given by the eigenfuntion in

Figure 3, the Lorenz curve lies below the diagonal Lorenz curve for the equal allocation.

In Section 4 we considered allocation processes driven away from an initial equal

allocation by Gaussian 
uctuations. The expected inequality of these random processes

increases in each case, stabilizing at some intermediate value for majority rule (Eq. 2),

but converging to the maximum for the inequitable rule (Eq. 6). The latter situation

exempli�es the evolution of a complex system into a simple one!
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