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ABSTRACT

Only �nite precision measurements are experimentally reasonable, and they cannot distin-
guish a dense subset from its closure. We show that the rational vectors, which are dense
in S2, can be colored so that the contradiction with hidden variable theories provided
by Kochen-Specker constructions does not obtain. Thus, in contrast to violation of the
Bell inequalities, no quantum-over-classical advantage for information processing can be

derived from the Kochen-Specker theorem alone.
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Recent theoretical and experimental work on quantum computation and quantum

information theory has inspired renewed interest in fundamental results of quantum me-
chanics. The Horodeccy have shown, for example, that a spin- 1

2
state can be teleported

with greater than classical �delity using any mixed two spin- 1
2
state which violates some

generalized Bell-CHSH inequality [1]. Quantum teleportation was �rst demonstrated ex-

perimentally in quantum optics systems [2]; the parametric down-conversion techniques

crucial for these experiments have also been used to verify violation of Bell's inequality
directly [3]. Although the Bell-CHSH inequalities were originally derived in the context

of EPR-B experiments [4] and (local) hidden variable theories [5,6], the present concern

is with the di�erences in information processing capability between classical and quantum

systems.�

Analyses of EPR-B experiments from the very �rst [8] have been concerned with

limitations in, for example, detector e�ciency [6]: The observed violations of Bell-CHSH

inequalities are consequently reduced; so, too, is teleportation �delity [2,9].

Logically, if not entirely chronologically prior contradictions with (noncontextual) hid-
den variable theories were derived by Bell [10] from a theorem of Gleason [11] and by
Kochen and Specker [12]. The GHZ-Mermin three spin- 1

2
state exhibits a similar incom-

patibility with (noncontextual) hidden variable theories [13] and reduces the communica-
tion complexity of certain problems [14]. While no quantum improvement in information
processing power has yet been derived directly from the Kochen-Specker theorem, it is
natural to ask for the consequences of experimental limitations on measurement in this
setting.

The Kochen-Specker theorem concerns the results of a (counterfactual) set of mea-
surements on a quantum system described by a vector in a three dimensional Hilbert space.
Kochen and Specker consider, for example, measurement of the squares of the three angular
momentum components of a spin-1 state [12]. The corresponding operators commute and
can be measured simultaneously, providing one `yes' and two `no's to the three questions,
\Does the spin component along â, b̂, â� b̂ vanish?" for any â ? b̂ 2 S2, the unit sphere in
R
3. Specker [15] and Bell [10] observed that Gleason's theorem [11] implies that there can

be no assignment of `yes's and `no's to the vectors of S2 consistent with this requirement:

each triad is `colored' with one `yes' and two `no's (1)

(where triad means three mutually orthogonal vectors) and concluded that there could be
no theory with hidden variables assigned independently of the measurement context.

A compactness argument [16] implies that there must be a �nite set of triads for which

there is no coloring satisfying (1). Kochen and Specker gave the �rst explicit construction

of such a �nite set [12]. Their construction requires 117 vectors; subsequently examples
with 33 [17] and 31 [18] vectors in S2 have been constructed.

� See, for example, the recent discussion of separability in NMR experiments [7]; at issue is whether
these perform or merely simulate quantum computations.
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For our present purposes the details of these constructions are unimportant; all that

matters is that the vectors forming the set of triads are precisely speci�ed. But, as Birkho�
and von Neumann remark in their seminal study of the lattice of projections in quantum

mechanics, \it seems best to assume that it is the Lebesgue-measurable subsets : : : which

correspond to experimental propositions, two subsets being identi�ed, if their di�erence has

Lebesgue-measure 0." [19, p.825] That is, no experimental arrangement could be aligned

to measure spin projections along coordinate axes speci�ed with more than �nite precision.
The triads of a Kochen-Specker construction should therefore be constrained only to lie

within some (small) neighborhoods of their ideal positions. This is su�cient to nullify

the Kochen-Specker theorem because, as we will show presently, there is a coloring of the

vectors of a set of triads, dense in the space of triads, which respects (1). More complicated
colorings satisfying (1) `almost everywhere' have been constructed by Pitowsky using the

axiom of choice and the continuum hypothesis [20]; our results here support a conjecture

of his that many dense subsets|in particular, the rational vectors|have colorings which

satisfy (1) [21], but we will need no more than constructive set theory.

The �nite constructions violating (1) provide the clue we use: in each case the com-
ponents of some of the vectors forming triads are irrational numbers. So let us consider
only the vectors with rational components, S2

\ Q
3. This is a familiar subset: the usual

requirement of separability� for Hilbert space and for the lattice of measurement proposi-
tions depends upon such a countable dense subset [23]; the fact that it is dense means that
it is indistinguishable from its closure by �nite precision measurements. As Jauch puts
it, while the rationals must already be de�ned with in�nite precision, completing them to
include the irrationals requires that \we transcend the proximably observable facts and : : :

introduce ideal elements into the description of physical systems." [23, p.75] Surely the
meaning of quantum mechanics should not rest upon such non-experimental entities. But,
at least in the three dimensional arena for the Kochen-Specker theorem it does, as we will
be able to conclude from the following three lemmas:

LEMMA 1. The rational vectors S2
\Q

3 can be colored to satisfy (1).

Proof. This is an immediate consequence of a result of Godsil and Zaks [24] which is in
turn based upon a theorem of Hales and Straus [25]. It su�ces here to give an explicit

coloring using their results. The rational projective plane QP 2 consists of triples of integers
(x; y; z) with no common factor other than 1 (every integer is taken to divide 0). Since at
least one of x, y and z must therefore be odd, and since odd (even) numbers square to 1
(0) modulo 4, exactly one must be odd if x2 + y2 + z2 is to be a square. In this case, and

only in this case, (x; y; z) 2 QP 2 can be identi�ed as a vector in S2
\Q

3. Consider a triad

of such vectors. For any two, (x; y; z) and (x0; y0; z0), x0x+ y0y + z0z = 0 implies that they
must di�er in which component is odd. Thus exactly one vector of any triad has an odd
z component. Color this one `yes' and the other two `no'. This de�nes a z-parity coloring

of S2
\Q

3 satisfying (1).

� To avoid possible confusion, we remark that this is a distinct concept from that of separability of
density matrices [22].
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The rational vectors are dense in S2 since Q2 is dense in R2 and rational vectors in

S2 map bijectively to rational points in the a�ne plane|since stereographic projection is
a birational map. Furthermore:

LEMMA 2. The rational vectors z-parity colored `yes' are dense in S2.

Proof. Again we follow the argument of Godsil and Zaks [24]: Rotation by angle � =
arccos 3

5
about the x-axis takes each rational vector (0; y; z) with odd z (i.e., colored `yes')

to another rational vector colored `yes'. Since � is not a rational multiple of �, iterated

rotation takes (0; 0; 1) to a dense set of vectors in the x = 0 great circle of S2. Similarly,

iterated rotation by angle � around the z-axis takes this set of vectors dense in S1 to a set

of vectors dense in S2, each of which is colored `yes' since it has odd z-component.

Repeating this argument with (x; y; z) permuted to (y; z; x) shows that the rational

vectors z-parity colored `no' are also dense in S2.

LEMMA 3. The rational triads are dense in the space of triads.

Proof. By the proof of Lemma 2, for any � > 0, within a 1

2
�-neighborhood of a speci�ed

vector â of a triad, â, b̂, â � b̂, there is a rational vector û to which (0; 0; 1) is mapped by
an SO(3;Q) rotation. This rotation maps the rational vectors (x; y; 0) on the the equator

to the rational vectors in a great circle passing through the 1

2
�-neighborhoods of b̂ and

â � b̂. Since the rational points are dense in the equator (also a consequence of the proof

of Lemma 2) there is a rational vector v̂ ? û in the 1

2
�-neighborhood of b̂, and thus û� v̂

is a rational vector in the �-neighborhood of â� b̂.

Suppose we measure some triad in a three dimensional Kochen-Specker construction.
By Lemma 3 the unavoidable �nite precision of this measurement cannot distinguish it
from the (many) rational triads within some neighborhood of the intended triad. By
Lemmas 1 and 2 the results of a (counterfactual) set of such measurements cannot con
ict
with (1), and so cannot rule out a noncontextual hidden variable theory de�ned over the

rationals. Thus �nite precision measurement nulli�es the Kochen-Specker theorem. The

z-parity coloring of S2
\Q

3 shows that arguments such as Bell's [10], based on Gleason's
theorem [11] in three dimensions, also fail when the �nite precision of measurement is
taken into account.� Although our explicit construction involves the rational vectors, we
emphasize that they are incidental to the interpretation of this result. Any dense subset

is indistinguishable by �nite precision measurement from its completion, so any colorable
dense subset would do equally well. Our results, together with Pitowsky's earlier [20] and
Kent's subsequent [26] constructions indicate that there are many such subsets.

We conclude by remarking that while one might object that since the counterfactual

� Kent has recently generalized the results of this paper to show that similar constructions produce
`colorings' of dense subsets satisfying the analogue of (1) in all higher dimensional real or complex
Hilbert spaces as well. [26]

4



Finite precision nulli�es the K-S theorem David A. Meyer

measurements speci�ed by a Kochen-Specker construction are not (simultaneously) ex-

perimentally realizable, it is unreasonable to impose the experimental limitation of �nite
precision on such a theoretical edi�ce. But theoretical analyses of the power of algo-

rithms must address the possibility that it resides in in�nite precision speci�cation of the

computational states or the operations on them. Sch�onhage showed, for example, that

classical computation with in�nite precision real numbers would solve NP-complete prob-

lems e�ciently [27]. And, as Freedman has emphasized, even classical statistical mechanics
models would solve #P-hard problems were in�nite precision measurement possible [28].

The promise of quantum computation, in contrast, is e�cient algorithms|which require

only poly(log) number of bits precision|for problems not known to have polynomial time

classical solutions [29]. Thus, despite the relation noted earlier with the GHZ-Mermin
state which can reduce communication complexity, the elementary argument presented

here shows that given the �nite precision of any expermental measurement, the Kochen-

Specker theorem alone cannot separate quantum from classical information processing in

three dimensional Hilbert space. We have not, of course, constructed even a static (much
less a dynamic) hidden variable theory for a spin-1 particle, so we have not proved that no
separation result is possible|only that the Kochen-Specker theorem does not imply one,
as we might have expected. Our results, and Pitowsky's deterministic model [20], however,
make it seem unlikely that any separation exists.�
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