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ABSTRACT

Failure to �nd homogeneous scalar unitary cellular automata (CA) in one dimension led

to consideration of only \approximately unitary" CA|which motivated our recent proof

of a No-go Lemma in one dimension. In this note we extend the one dimensional result

to prove the absence of nontrivial homogeneous scalar unitary CA on Euclidean lattices in

any dimension.
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A classical cellular automaton (CA) consists of a lattice L of cells together with a �eld

� : N �L! S, where N denotes the non-negative integers labelling timesteps and S is the

set of possible states in which the �eld is valued. Time evolution is locally de�ned; in the

special case of an additive CA the �eld evolves according to a local rule of the form:

�t+1(x) =
X

e2E(t;x)

w(t; x+ e)�t(x+ e); (1)

where E(t; x) is a set of lattice vectors de�ning local neighborhoods for the automaton [1].

For the purposes of this note, the lattice L is taken to be generated by a set of d linearly

independent vectors in R
d, i.e., as a group under vector addition L is isomorphic to Z

d

or some periodic quotient thereof. If E(t; x) is a constant neighborhood and w(t; x+ e) �

w(x+ e), the CA is homogeneous. For example, in the Z2 lattice generated by v1 and v2,

the neighborhood E = f0;�v1;�v2;�(v1 + v2)g de�nes the \triangular lattice".

The additive evolution rule (1) is more compactly expressed as (left) multiplication of

the vector �t by an evolution matrix having non-zero entries (the weights w(t; x+ e)) in

row x only in columns x+ e for e 2 E(t; x). For example, if S consists of the real numbers

in the unit interval [0; 1], the weights w(t; x+ e) are positive, and the sum of the entries in

each column of the evolution matrix is 1, then (1) de�nes a speci�c probabilistic CA [2].

The evolution preserves the L1 norm of �:
P

x �(x); if the L
1 norm of �0 is one, then �t(x)

may be interpreted physically as the probability that the system is in state x at time t. If

the lattice of cells is a discretization of space, as suggested by the locality of the evolution

rule (1), �t(x) is naturally interpreted to be the probability that a stochastic particle is in

cell x at time t.

If the �eld is complex valued, or more precisely, if S = fz 2 C j jzj � 1g, and the

evolution matrix is unitary then (1) de�nes what we refer to here as a scalar unitary CA;

this is a special case of a quantum CA (QCA) [3,4,5,6]. Unitary evolution preserves the L2

norm of �: (
P

x j�(x)j
2)1=2; if the L2 norm of �0 is 1, then �t(x) is the amplitude for the

system to be in, and j�t(x)j
2 is the probability of observing, the state x at time t. Scalar

QCA were �rst considered by Gr�ossing and Zeilinger [4], although they found nontrivial

homogeneous scalar CA in one dimension with neighborhoods of radius one (i.e., with

the evolution matrix tridiagonal) only by relaxing their de�nition to allow \approximately

unitary" evolution. In [3] we showed that only trivial homogeneous scalar unitary CA exist

in one dimension with neighborhoods of any size:

NO-GO LEMMA. In one dimension there exists no nontrivial, homogeneous, scalar unitary

CA. More explicitly, every band r-diagonal unitary matrix which commutes with the 1-step

translation matrix is also a translation matrix, times a phase.

The purpose of this note is to show that the analogous result also holds in higher

dimensions. This will be important when we extend the one dimensional models of [3]

to more realistic simulations of two or three dimensional systems [7]. We shall give two

di�erent proofs of this No-go Theorem and then conclude by explaining how it may be

evaded in order to �nd nontrivial QCA in any dimension.
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Consider �rst a lattice L = Zn1 � � � � � Znd , i.e., a �nite lattice which is locally

isomorphic to Z
d but is periodic in each coordinate. The cells of this lattice may be

ordered lexicographically by their coordinates: for a cell (x1; : : : ; xd),

x := xd + nd xd�1 + ndnd�1 xd�2 + � � �+ nd : : : n2 x1 (2)

de�nes the position of the cell in a one dimensional array. In a CA with a neighborhood

of radius r the value of the �eld at this cell depends on the values of the �eld at the cells

f(y1; : : : ; yd) j jxi� yij � rg at the previous timestep. In the representation de�ned by (2),

the evolution matrix U is what we may describe as \depth d band r-diagonal" (the more

familiar \tridiagonal with fringes" matrix arising in the �nite di�erence method solution

to a second order elliptic equation in two variables [8] is depth 2 band 1-diagonal in this

terminology). More importantly for our purposes, U is (sparsely) band Kr-diagonal, where

K := 1 + nd + ndnd�1 + � � �+ nd : : : n2;

as shown in Figure 1.

Figure 1. A portion of the depth 3 band 1-diagonal evolution matrix U for the lattice with
dimensions (n1; n2; n3). The small grey squares have size n3 � n3; there are n2 � n2 grey
squares in each medium black square; and there are n1 � n1 black squares in the whole array.
U is band 1(1 + n3 + n3n2)-diagonal.

The product of two band Kr-diagonal matrices is necessarily band 2Kr-diagonal. The

proof of the one dimensional No-go Lemma given in [3] depends only on the size of U being
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Figure 2. A pair of spacetime histories of the
quantum particle in a one dimensional automaton
with local neighborhood of radius 1 in the set S
de�ned by intersection with the shaded region R

of spacetime. Since the histories coincide at the
truncation time (which lies to the future of R),

they contribute to the probability jSj.

large enough that the band 2Kr-diagonal product UUy is still band diagonal, namely that

1 + 4Kr � nd : : : n1: (3)

Given any r, for a su�ciently large lattice L (speci�cally, for su�ciently large n1), inequal-

ity (3) is satis�ed.

The conclusion of the argument in [3] is that the only band diagonal solution to UUy =

I is a phase times a matrix with only non-zero entries being ones along a single diagonal

within the band. This is a translation matrix even in the present higher dimensional

context. Thus, as a scholium to the No-go Lemma for homogeneous scalar unitary CA in

one dimension, we have proved:

NO-GO THEOREM. In any dimension the only homogeneous, scalar unitary CA evolve by

a constant translation with overall phase multiplication.

Although the proof just given is straightforward, the physical and geometrical content

of the result is perhaps obscured by the unraveling of the higher dimensional lattice L

into the one dimensional representation (2). In fact, the theorem does not depend on the

�niteness of the lattice which was necessary for the band diagonality of the U shown in

Figure 1. To rectify this problem let us consider a second argument using a sum-over-

histories approach. In [3] we saw that this is particularly natural since a scalar QCA may

be interpreted to be a quantum particle automaton: the system consists of a single particle

moving on the lattice, �t(x) is the amplitude for the particle to be in state x at time t, and

the weight w(t; x+ e) is the amplitude for

the particle to move from x+ e to x.

In the sum-over-histories framework

for quantum mechanics a probability is

associated to a set S of particle histories

(de�ned by boolean expressions in projec-

tors onto states xi at times ti) by the rule:

jSj =
X


1;
22S

w(
1)w(
2)�
�

1(T ); 
2(T )

�
;

where the delta function ensures that the

only non-zero contributions to the proba-

bility come from pairs of paths in S which

coincide at the truncation time T [9]. Of

course, as shown in Figure 2, only trun-

cation times de�ning spacelike hypersur-

faces entirely to the future of the condi-

tions de�ning S are permitted. Unitar-

ity is the invariance of probability under

a change in truncation time. That is, for
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any two states x1 and x2, the sum of the contributions of all pairs of paths, one from each

of these states at time T1 to any common state x at time T2 > T1, must vanish unless

x1 � x2, in which case it must be one.

In particular, this condition applies to the paths corresponding to advancing the trun-

cation time by one timestep. In a homogeneous CA, a cell x1 may in
uence cells in the

constant neighborhood E around it at the next timestep; hence any pair of paths, one from

each of x1 and x2, which coincide at the next timestep, do so at a cell in the intersection

of the neighborhood around x1 and the neighborhood around x2. The unitarity conditions

on the weights in (1) thus arise from each pair of cells with intersecting neighborhoods:

the corresponding sum vanishes except when the two cells coincide, in which case it is one.

With this description of the unitarity conditions it is easy to prove the No-go Theorem.

Order the cells in the neighborhood of x1 as in (2). Let k be the position of the �rst non-

zero weight wk in this ordering (there must be one since the zero matrix is not unitary) and

let ek denote the corresponding lattice vector. Consider x2 := x1 + ejEj � ek. The set of

cells with possibly non-zero weights in the neighborhood of x2 intersects the neighborhood

of x1 only at the last cell in that ordering, so wkwjEj = 0 and hence wjEj = 0. Now slide

the second neighborhood down one as in Figure 3, i.e., let x2 := x1+ ejEj�1 � ek. The set

of cells with possibly non-zero weights in the intersection of x1 and x2 is again a singleton,

still labelled k in the neighborhood of x2, but now jEj � 1 in the neighborhood of x1.

So wkwjEj�1 = 0 and hence wjEj�1 = 0. Continue this process until x2 = x1, whence

unitarity requires wkwk = 1. The conclusion of the No-go Theorem follows: the one step

evolution of this homogeneous scalar unitary CA is translation by ek and multiplication

by the phase wk.

Figure 3. Intersecting neighborhoods of radius 2 in a two dimensional CA; in each pair x1 is
the lower left cell outlined and x2 is the upper right one. The �rst non-zero weight is at position
2 (dark grey) in each neighborhood. In the three steps of the argument shown, x2 is shifted so
that the cell at position 2 in its neighborhood coincides successively with the cell at position

jEj = 25, then 24, then 23 in the neighborhood of x1. When the last column has been depleted
the process is repeated on the next to last, etc., until the neighborhoods coincide.

The homogeneity hypothesis in the No-go Theorem is the requirement that the evo-

lution matrix be invariant under the action of the translation group of the lattice. The

conclusion is that this restriction on scalar unitary CA renders them too simple to be of

5



Absence of homogeneous scalar unitary CA David A. Meyer

much interest. As we showed in [3], however, if the evolution matrix is required to be in-

variant only under the action of a subgroup of the translation group of the one dimensional

lattice, the No-go Lemma is evaded and there are many interesting scalar QCA (the �rst of

which seems to have been described by Feynman [10]; similar discrete models for a quan-

tum particle have been studied by several authors more recently [5,11]). This is equally

true in higher dimensional lattices: the one step evolution of a quantum partitioning [2,12]

CA is invariant under the action of a subgroup of the translations on the lattice and may be

interpreted to be composed of particle scattering matrices. Higher dimensional quantum

particle automata [7,13] and their generalizations to quantum lattice gas automata [7,14]

have been constructed in exactly this way.
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