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ABSTRACT

We continue our analysis of the physics of quantum lattice gas automata (QLGA). Pre-

vious work has been restricted to periodic or in�nite lattices; simulation of more realistic

physical situations requires �nite sizes and non-periodic boundary conditions. Further-

more, envisioning a QLGA as a nanoscale computer architecture motivates consideration

of inhomogeneities in the `substrate'; this translates into inhomogeneities in the local evo-

lution rules. Concentrating on the one particle sector of the model, we determine the

various boundary conditions and rule inhomogeneities which are consistent with unitary

global evolution. We analyze the re
ection of plane waves from boundaries, simulate wave

packet refraction across inhomogeneities, and conclude by discussing the extension of these

results to multiple particles.

PACS numbers: 03.65.-w, 02.70.-c, 11.55.Fv, 89.80.+h.

KEY WORDS: quantum lattice gas; quantum cellular automaton; quantum computation;

boundary conditions; inhomogeneities.

1



Quantum mechanics of LGA David A. Meyer

1. Introduction

Shor's discovery of a polynomial time quantum algorithm for factoring [1] stimulated a

surge of interest in quantum computation (see the extensive bibliographies of [2]). Most

work has concentrated on serial algorithms|sequences of unitary, few qubit* operations|

the quantum version of serial Boolean logic [4]. Single quantum logic gates have been

realized experimentally in ion traps [5] and quantum electrodynamics cavities [6], and

short sequences of such unitary operations have recently been implemented with NMR

[7]. All of these systems, as well as proposed solid state architectures such as arrays of

quantum dots [8], exist physically in d > 0 spatial dimensions and therefore naturally

evolve in parallel. Imposing a single gate operation restricts the rest of the qubits to be

invariant, i.e., they must evolve by the identity operator; at the opposite extreme all the

qubits would evolve according to the same, local (few qubit) operation during a single

timestep. A quantum computer evolving according to such a homogeneous, local, unitary

rule would have the quantum version of the massively parallel architecture possessed, for

example, by Margolus' CAM machines [9].

The simplest algorithms which would run on such an architecture are quantum cellular

automata (QCA) [10] or quantum lattice gas automata (QLGA) [11]. Even in d = 1

spatial dimensions QCA are capable of universal computation [12], and the existence of

the universal reversible billiard ball computer [13] implies that QLGA are also, at least in

d � 2 spatial dimensions. Just as classical LGA are most e�ectively deployed to simulate

physical systems such as 
uid 
ow [14], however, QLGA most naturally simulate quantum

physical systems [11,15,16]: with the simplest homogeneous evolution rule, one particle

QLGA simulate the constant potential Dirac [11] or Schr�odinger [17] equation, depending

on the relative scaling of the lattice spacing and timestep.

An earlier paper [15] initiated a project to analyze which physical processes QLGA

can simulate e�ectively. In that paper and in this one we concentrate on the most general

model for a single quantum particle with speed no more than 1 in lattice units, moving

on a lattice in one dimension. The amplitudes for the particle to be (left, right) moving

at a lattice point x 2 L are combined into a two component complex vector  (t; x) :=�
 �1(t; x);  +1(t; x)

�
which evolves as

 (t+ 1; x) = w�1 (t; x� 1) + w0 (t; x) + w+1 (t; x+ 1): (1:1)

Here the weights wi 2 M2(C ) are 2� 2 complex matrices constrained by the requirement

* A qubit [3] is a quantum system whose state is a vector in a two dimensional Hilbert space, e.g., a

spin-
1

2
particle �xed in space.
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that the global evolution matrix

U :=

0
BBBBB@

. . .

w�1 w0 w+1

w�1 w0 w+1

w�1 w0 w+1

. . .

1
CCCCCA (1:2)

be unitary. We showed in [11] that the most general parity invariant solution, up to unitary

equivalence and an overall phase, is given by

w�1 = cos �

�
0 i sin �

0 cos �

�
w+1 = cos �

�
cos � 0

i sin � 0

�

w0 = sin �

�
sin � �i cos �

�i cos � sin �

�
:

(1:3)

Describing the evolution by (1.1){(1.3) assumes that the system is homogeneous in

space and that the lattice L is isomorphic either to the integers Z or to a periodic quotient

thereof, say ZN . To simulate physical systems [18] more generally, the model should

be extended to allow for �nite size and non-periodic boundary conditions. Furthermore,

envisioning a QLGA as a nanoscale quantum computer architecture [19,20,2] motivates

consideration of inhomogeneities in the `substrate', possibly as a step towards implementing

logical gates [4] and away from simply simulating quantum physical systems. In [15]

we showed how to introduce an inhomogeneous potential in the model; the purpose of

this paper is to investigate more general inhomogeneities in the evolution rule, including

boundary conditions.

In Section 2 we consider the simplest possible modi�cation of the evolution rule (1.1)

for a boundary at x = 0, say, setting w�1 there to 0 and allowing the weight w0 to di�er

from the constant w0 of the rest of the lattice. The resulting Type I boundary condition

suggests the form for a corresponding Type I inhomogeneity where the global evolution

matrix (1.2) is changed by replacing one of the w0 blocks with a di�erent matrix bw0, and

allowing the weights wi to di�er on either side of the antidiagonal through it. In Section 3

we show that such an inhomogeneous rule is unitary provided � is the same for all the

weights.

There is a dual inhomogeneity across which � is constant but � may di�er; we describe

this Type II inhomogeneity in Section 4 and �nd the corresponding boundary condition. In

Section 5 we observe that the Type I and II inhomogeneities can occur together, changing

both � and �. The corresponding Type III boundary condition has an extra degree of

freedom, justifying distinct classi�cation.

In Section 6 we show how to �nd the eigenfunctions of U in the presence of these

boundaries. In each case the result is a linear combination of left and right moving plane
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waves with the same frequency. On a �nite lattice with two boundaries, the spectrum of

U is discrete. In Section 7 we investigate the discrete spectra for pairs of each type of

boundary condition, determining how they depend on the boundary parameters and what

the consequences are for the eigenfunctions.

Simulations of wave packets on lattices with boundary conditions and in the presence of

inhomogeneities con�rms that the physical consequences of these inhomogeneous evolution

rules are as expected. We show some results in Section 8.

We conclude in Section 9 with a summary and a discussion of the extension of this

work to the multiple particle sector of the Hilbert space.

2. Type I boundary conditions

If our system is neither in�nite nor periodic, we must model it on a bounded lattice, e.g.,

L = fx 2 Z j 0 � x � N �1g. Since there is no lattice point to the left of 0, it is clear that

the evolution rule (1.1) must be adjusted there (as it must also be at the right boundary).

Making the minimal change in the model, let us suppose that the global evolution matrix

takes the form

U :=

0
BB@

w0 w+1

w�1 w0 w+1

w�1 w0

. . .

1
CCA ; (2:1)

where the wi are given by (1.3). Thus a left moving particle at x = 1 has the same

amplitudes (given by w+1) to advect to x = 0 and scatter to the left or right, and a right

moving particle at x = 0 has the same amplitudes (given by w�1) to advect to x = 1 and

scatter to the left or right, as each would were there no boundary. (The analogous form

for the evolution rule at a right boundary is obtained by a parity transformation.) The

only di�erences we allow for this Type I boundary condition are in the amplitudes for the

evolution of a left moving particle at x = 0 and for the scattering of a right moving particle

at x = 0 which remains there during the advection step; these are given by w0.

The unitarity conditions UUy = I = UyU impose the following constraints on w0:

I = w0w
y
0 + w+1w

y
+1 (2:2a)

0 = w0w
y
�1 + w+1w

y
0 (2:2b)

and

I = w
y
0w0 + w

y
�1w�1 (2:3a)

0 = w
y
+1w0 + w

y
0w�1: (2:3b)

Let

w0 :=

�
y1 y2
y3 y4

�
: (2:4)

4



Quantum mechanics of LGA David A. Meyer

Then, assuming cos � 6= 0, (2:2b) implies

y2 = �i cos � sin �

y4 = sin � sin �;
(2:5)

while (2:3b) implies

y1 = iy3 tan �: (2:6)

The normalization condition (2:2a) requires

y3 = �ie
i� cos � (2:7)

for some arbitrary phase angle � 2 R . Combining (2.4){(2.7), we �nd

w0 =

�
ei� sin � �i cos � sin �

�iei� cos � sin � sin �

�
; (2:8)

which satis�es all the constraints (2.2) and (2.3).

The Type I boundary condition de�ned by (2.1) and (2.8) gives the same amplitudes

as (1.3) for the scattering of a right moving particle at x = 0 which remains there; only

the amplitudes for the scattering of a left moving particle at x = 0 di�er from the no

boundary situation. The latter depend on a single real parameter � characterizing the

boundary. Notice also that these amplitudes do not vanish in the decoupled case � = 0

(whence w0 = 0). That is, w0 6= 0 is required to de�ne unitary boundary conditions even

when the particle has speed 1 everywhere else in the lattice.

3. Type I inhomogeneities

The boundary weight w0 de�ned by (2.8) has the same form as the weight w0 de�ned

in (1.3), except that the factor of sin � in the �rst column is replaced by ei�. Thus we

can interpret the evolution rule de�ned by (2.1) and (2.8) as describing a system where

the coupling constant � satis�es cos � = 0 at and to the left of x = 0. This would make

w�1 = 0 = w+1, so there would be no advection to the left of x = 0. This suggests that

the w0 we found in Section 2 may be a special case of an inhomogeneity in the coupling

constant �. So let us consider a Type I evolution rule inhomogeneity of the form:

U :=

0
BBBBBB@

. . .

w0
�1 w0

0 w0
+1

w0
�1 bw0 w+1

w�1 w0 w+1

. . .

1
CCCCCCA
; (3:1)

where the wi =: wi(�; �) are de�ned by (1.3) and w0
i := wi(�

0; �0).
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Now the unitarity conditions impose constraints on the relation between the wi and

the w0
i as well as on the inhomogeneity matrix bw0:

0 = w
0
+1w

y
�1 (3:2a)

0 = w
0
�1w

0y
0 + bw0w

0y
+1 (3:2b)

I = w
0
�1w

0y
�1 + bw0 bwy

0 + w+1w
y
+1 (3:2c)

0 = bw0w
y
�1 + w+1w

y
0 (3:2d)

and

0 = w
0y
�1w+1 (3:3a)

0 = w
0y
0 w

0
+1 + w

0y
�1 bw0 (3:3b)

I = w
0y
+1w

0
+1 + bwy

0 bw0 + w
y
�1w�1 (3:3c)

0 = w
y
+1 bw0 + w

y
0w�1: (3:3d)

Constraint (3:2a) is automatically satis�ed but, again assuming that cos � 6= 0 6= cos �0,

(3:3a) requires sin(� � �0) = 0, so we set �0 � �. Using the form (2.4) for bw0, we observe

that the constraints (3:2d) and (3:3d) are the same as (2:2b) and (2:3b), so the yi must

satisfy (2.5) and (2.6). Constraint (3:2b) requires that

y1 = sin � sin �0

y3 = �i cos � sin �
0;

(3:4)

which is consistent with (2.6), just as (2.5) is with (3:3b). Combining (2.4), (2.5) and (3.4)

we �nd

bw0 = bw0(�
0; �; �) :=

�
sin � sin �0 �i cos � sin �

�i cos � sin �0 sin � sin �

�
; (3:5)

which also satis�es the remaining (normalization) constraints in (3.2) and (3.3).

The arbitrary phase degree of freedom in the Type I boundary condition is not present

in (3.5), but as anticipated, this Type I inhomogeneity describes a change in the coupling

constant �, the mass � being held �xed across the inhomogeneity. The locus of the in-

homogeneity is quite precise: a left moving particle from x = 0 obeys the `primed' rules,

while a right moving particle obeys the `unprimed' ones.

4. Type II inhomogeneities and boundary conditions

The form (3.1) of the Type I inhomogeneity partitions the evolution matrix U into two

pieces across an antidiagonal through the bw0 block (inside the block the partition runs

between the two columns). We might also consider an inhomogeneity which partitions U

across an antidiagonal through a pair of w�1 and w+1 blocks. Such a Type II evolution
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rule inhomogeneity has the form:

U :=

0
BBBBBBBB@

. . .

w0
�1 w0

0 w0
+1

w0
�1 w0

0 bw+1bw�1 w0 w+1

w�1 w0 w+1

. . .

1
CCCCCCCCA
; (4:1)

where again wi = wi(�; �) and w0
i = wi(�

0; �0) are de�ned by (1.3) but with a priori

di�erent parameters.

The unitarity conditions UUy = I = UyU impose even more constraints in this more

complicated situation:

I = w
0
�1w

0y
�1 + w

0
0w

0y
0 + bw+1 bwy

+1 (4:2a)

0 = w
0
0 bwy

�1 + bw+1w
y
0 (4:2b)

0 = bw+1w
y
�1 (4:2c)

0 = bw�1w
0y
+1 (4:2d)

I = bw�1 bwy
�1 + w0w

y
0 + w+1w

y
+1 (4:2e)

and

I = bwy
+1 bw+1 + w

y
0w0 + w

y
�1w�1 (4:3a)

0 = bwy
+1w

0
0 + w

y
0 bw�1 (4:3b)

0 = w
0y
�1 bw+1 (4:3c)

0 = w
y
+1 bw�1 (4:3d)

I = w
0y
+1w

0
+1 + w

0y
0 w

0
0 + bwy

�1 bw�1: (4:3e)

Suppose the inhomogeneity matrices have the most general forms:

bw�1 :=

�
x1 x2
x3 x4

�
and bw+1 :=

�
z1 z2
z3 z4

�
: (4:4)

Then, assuming cos � 6= 0, constraint (4:2c) requires z2 = 0 = z4. Similarly, assuming

cos �0 6= 0, constraint (4:2d) requires x1 = 0 = x3. Thus the inhomogeneity matrices have

the same advection/scattering interpretation as in the homogeneous situation.

Now constraints (4:3c) and (4:3d) imply that

z3 = iz1 tan �
0 (4:5)

and
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x2 = ix4 tan �; (4:6)

respectively. Imposing the normalization constraint (4:2a) we �nd that

z1 = ei� cos �0 cos �0: (4:7)

Then imposing the normalization constraint (4:3a) implies cos2 � = cos2 �0, so we set

�0 � �. Combining (4.4), (4.5) and (4.7) gives

bw+1 = ei�w0
+1: (4:8)

Similarly, imposing the normalization constraint (4:2e) we �nd that

x4 = ei� cos � cos �: (4:9)

Combining (4.4), (4.6) and (4.9) gives

bw�1 = ei�w�1; (4:10)

which also satis�es the last normalization constraint (4:3e). The two remaining constraints

(4:2b) and (4:3b) require only that � � �� (mod 2�), which can thence be set to 0 by a

unitary transformation. Thus (4.8) and (4.10) become

bw�1 = w�1(�; �) and bw+1 = w+1(�; �
0): (4:11)

Just as the Type I inhomogeneity described by (3.1) and (3.5) specializes to a Type I

boundary condition described by (2.1) and (2.8) when cos �0 = 0 so that there is no

advection to the left of x = 0, the Type II inhomogeneity described by (4.1) and (4.11)

specializes to a boundary condition when cos �0 = 0. In this situation, when a left moving

particle at x = 1 advects to x = 0 it scatters to the right, while a right moving particle at

x = 0 which remains at x = 0 also scatters to the right|a particle initially at x > 0 or at

x = 0 and right moving has no amplitude to be at x < 0 or at x = 0 and left moving at

any subsequent timestep.

This is a special case of the Type II boundary condition which we expect to be

characterized by nontrivial phases, just as is the Type I boundary condition. The `primed'

parameters satisfy �0 � � and cos �0 = 0, so generalizing the Type II inhomogeneity by

multiplicative phases suggests

U :=

0
BB@
ei�w0

0 ei�w0
+1

w�1 w0 w+1

w�1 w0

. . .

1
CCA ; (4:12)

where

w�1 = cos �

�
0 iei�1 sin �

0 ei�2 cos �

�
(4:13)
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is a generalization of (4.10). Then the unitarity conditions impose constraints on the phase

angles �1, �2, � and � via (4.2) and (4.3). Constraint (4:2c) is automatically satis�ed, while

(4:3d) requires �1 � �2 =: � (mod 2�). This means that the normalization constraints

are necessarily satis�ed so the only remaining constraints are (4:2b) and (4:3b). These are

satis�ed provided � � � + � (mod 2�). Finally, up to unitary equivalence we may set

� = 0, so the most general Type II boundary condition is de�ned by:

U =

0
BB@
ei�w0

0 ei�w0
+1

w�1 w0 w+1

w�1 w0

. . .

1
CCA ; (4:14)

where w0
i = wi(�; 0). Just as does the Type I boundary condition, the Type II boundary

condition has one phase degree of freedom.

5. Type III boundary conditions

The two types of inhomogeneities we have found re
ect the �  ! � duality evident in

the dispersion relation (6.2) discussed in [15]: The Type I inhomogeneity has constant �

and discontinuity in � while the Type II inhomogeneity has constant � and discontinuity

in �. Suppose we wish to change both � and �. This is clearly possible using a Type I

inhomogeneity to change � followed by a Type II inhomogeneity to change �, provided the

discontinuities are su�ciently far apart that the constraints (3.2), (3.2), (4.2) and (4.3)

do not overlap. In fact, the discontinuities can be adjacent: it is straightforward to verify

that the evolution matrix

U :=

0
BBBBBBBB@

. . .

w0
�1 w0

0 w0
+1

w0
�1 bw0 bw+1bw�1 w0 w+1

w�1 w0 w+1

. . .

1
CCCCCCCCA

(5:1)

is unitary for bw�1 = w�1(�; �) and bw+1 = w+1(�; �
0) as in (4.11) and bw0 = bw0(�

0; �0; �).

The evolution matrix (5.1) describes a system in which the parameters �0 and �0 change

to � and � across the inhomogeneity.

While (5.1) does not describe a new type of inhomogeneity as it is composed of a

Type I and Type II pair, our experience with boundary conditions in the previous sections

suggest that there may be an analogous Type III boundary condition which has extra

phase degrees of freedom. Suppose

U :=

0
BB@

w0 w+1

w�1 w0 w+1

w�1 w0

. . .

1
CCA ; (5:2)
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where the wi are given by (1.3), w�1 is given by (4.13), w+1 is generalized from (4.11):

w+1 = cos �

�
ei�1 cos �0 0

iei�2 sin �0 0

�
;

and w0 is the same as in (2.8) with � replaced by �0 and also with additional phase factors:

w0 =

�
ei�1 sin �0 �iei�2 cos � sin �

�iei�3 cos �0 ei�4 sin � sin �

�
:

In this case, the unitarity conditions require

I = w0w
y
0 + w+1w

y
+1 (5:3a)

0 = w0w
y
�1 + w+1w

y
0 (5:3b)

0 = w+1w
y
�1 (5:3c)

I = w�1w
y
�1 + w0w

y
0 + w+1w

y
+1 (5:3d)

and

I = w
y
0w0 + w

y
�1w�1 (5:4a)

0 = w
y
+1w0 + w

y
0w�1 (5:4b)

0 = w
y
+1w�1 (5:4c)

I = w
y
+1w+1 + w

y
0w0 + w

y
�1w�1: (5:4d)

Constraints (5:3c) and (5:4c) are the same as (4:2c) and (4:3b), respectively, so they have

the same consequences as in the case of the Type II boundary condition: (5:3c) is satis�ed

automatically, while (5:4c) requires �1 � �2 =: � (mod 2�). Next, (5:3b) implies �2 �

�+�1 (mod 2�) and �4 � �+�2 (mod 2�). Constraint (5:4b) requires �3��1 � �2��1 =: �

(mod 2�), whereupon the remaining (normalization) constraints in (5.3) and (5.4) are

automatically satis�ed. Combining these results and setting � := �1, � := �1 gives

w�1 = ei� cos �

�
0 i sin �

0 cos �

�
w+1 = ei� cos �

�
cos �0 0

iei� sin �0 0

�

w0 =

�
ei� sin �0 �iei(�+�) cos �0 sin �

�iei(�+�) cos �0 ei(�+�+�) sin �0 sin �

�
,

for the weights in (5.2). We may set � = 0 = � by a unitary transformation, so the

most general Type III boundary condition, up to unitary equivalence, is given by w�1 =

w�1(�; �), w+1 = ei�w+1(�; �
0), and

w0 =

�
ei� sin �0 �iei� cos �0 sin �

�iei� cos �0 ei� sin �0 sin �

�
:

As expected, in addition to �0 there are two phase angle degrees of freedom: � and �.
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6. Plane waves near a boundary

The global evolution matrices (2.1), (4.14) and (5.2) describe unitary evolution of a single

particle in the presence of a boundary of Type I, II, or III, respectively. Away from the

boundary the local evolution is still given by (1.1) and (1.3), so the one particle plane

waves

 (k;�)(x) =  (k;�)(0)eikx (6:1)

we found in [15] still evolve, locally, by multiplication by e�i�! at each time step, where !

satis�es the dispersion relation

cos! = cos k cos � cos �+ sin � sin � (6:2)

and � 2 f�1g. In fact, any linear combination

 (k;�)(x) +A (�k;�)(x) (6:3)

evolves locally by phase multiplication as both k and �k satisfy (6.2) with the same

frequency !.

Consider the Type I boundary condition at x = 0 and suppose there is an eigenfunction

 (!)(x) of the form (6.3), which should be interpreted as a linear combination of incident

and re
ected plane waves with relative amplitude A, just as in the situation of scattering

o� a potential step considered in [21]. Then

w0 
(!)(0) + w+1 

(!)(1) = e�i! (!)(0): (6:4)

The linear combination (6.3) is well de�ned for x < 0 and

w�1 
(!)(�1) + w0 

(!)(0) + w+1 
(!)(+1) = e�i! (!)(0) (6:5)

for any A 2 C , so subtracting (6.5) from (6.4) gives

(w0 � w0) 
(!)(0) = w�1 

(!)(�1): (6:6)

Using (1.3), (2.8) and (6.3) in (6.6) we �nd

A = �
(ei� � sin �) 

(k;�)
�1 (0)� ie�ik cos � 

(k;�)
+1 (0)

(ei� � sin �) 
(�k;�)
�1 (0)� ieik cos � 

(�k;�)
+1 (0)

(6:7)

where

 (k;�)(0) :=

�
i sin � cos � � ie�ik cos � sin �

sin � sin � + eik cos � cos � � e�i�!

�
(6:8)

is the (unnormalized) eigenvector of D(k) in [15]. That is, with A given by (6.7), the linear

combination (6.3) is an eigenfunction satisfying the Type I boundary condition.

11



Quantum mechanics of LGA David A. Meyer

The more complicated Type II and III boundary conditions require modi�cations to

the linear combination of plane waves (6.3) near the boundary. Consider the Type II

boundary condition and suppose

 (!)(x) :=  (k;�)(x) +A (�k;�)(x) for x � 1 (6:9)

and

 
(!)

�1 (0) := 0; (6:10)

where the latter condition follows from the discussion preceding (4.12). At x = 1 the same

argument as in the Type I boundary case gives

w�1 
(!)(0) = w�1

�
 (k;�)(0) +A (�k;�)(0)

�
(6:11)

which implies

 
(!)
+1 (0) :=  

(k;�)
+1 (0) + A 

(�k;�)
+1 (0): (6:12)

Applying (4.14) to the eigenfunction  (!)(x) at x = 0 gives

ei�w0
0 

(!)(0) + ei�w0
+1 

(!)(1) = e�i! (!)(0): (6:13)

Using the expressions for w0
i with �

0 � �, cos �0 = 0 and (6.9), (6.10) and (6.12) in (6.13)

we �nd

A = �

�
ei� sin �� e�i!

�
 
(k;�)

+1 (0) + iei(�+k) cos � 
(k;�)

�1 (0)�
ei� sin �� e�i!

�
 
(�k;�)
+1 (0) + iei(��k) cos � 

(�k;�)
�1 (0)

: (6:14)

Thus (6.9) with A given by (6.14), (6.10) and (6.12) de�ne an eigenfunction satisfying the

Type II boundary condition.

To �nd the eigenfunctions for the Type III boundary condition, we still suppose they

satisfy (6.9), but not (6.10). Since w�1 is the same as for the Type II boundary, (6.11)

still implies (6.12). Now applying (5.2) to the eigenfunction  (!)(x) at x = 0 gives

w0 
(!)(0) + w+1 

(!)(1) = e�i! (!)(0);

which comprises a pair of linear equations for  
(!)

�1 (0) and A. These equations can be

solved to give the eigenfunctions for the Type III boundary conditions, although we will

not need the explicit solution here.

7. Plane waves on �nite lattices

With only one boundary, e.g., L = N as we were considering implicitly in the previous

section, the wave number can take any value in the interval �� < k � � and the fre-

quency/energy spectrum is continuous with range � � � � j!j � � � (� + �) (assuming

0 � � � � � �=2) determined by the dispersion relation (6.2). On �nite lattices, however,

the spectra are discrete and are determined by the two boundary conditions. Consider the

12
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case of two Type I boundary conditions on a lattice of cardinality N . The weights in the

boundary condition at x = N � 1 are the parity transforms of those in (6.6):

P (w0 � w0)P
�1 (!)(N � 1) = Pw�1P

�1 (!)(N);

where

P :=

�
0 1

1 0

�
:

This gives a second constraint on A:

A = �e�2ik(N�1)
(ei� � sin �) 

(k;�)
+1 (0)� ieik cos � 

(k;�)
�1 (0)

(ei� � sin �) 
(�k;�)
+1 (0)� ie�ik cos � 

(�k;�)
�1 (0)

(7:1)

which must be consistent with (6.7). To see how this determines the discrete spectrum,

let � = 0 = �. Then (6.7) becomes

A = �e�2ik eik cos � � e�i�! + sin �

e�ik cos � � e�i�! + sin �
(7:2)

and (7.1) becomes

A = �e�2ik(N�1) e
ik cos � � e�i�! � sin �

e�ik cos � � e�i�! � sin �
: (7:3)

Setting the right hand sides of (7.2) and (7.3) to be equal and using the dispersion relation

(6.2) to eliminate !, we �nd, after some algebra,

e�2i(N�2)k(sin � � i sin k cos �) = sin � + i sin k cos �: (7:4)

Supposing k to be real, the right hand side of (7.4) is the complex conjugate of the paren-

thesized expression on the left hand side, which implies that

tan
�
(N � 2)k

�
+ sin k cot � = 0: (7:5)

The left hand side of (7.5) has poles at k = (n+ 1=2)�=(N � 2), n 2 Z, between each pair

of which there must be a root of the equation. Thus (7.5) has N � 1 roots in the interval

0 � k � �, givingN�1 distinct values for eigenfrequencies in the range ��� � ! � �����

(assuming 0 � � � � � �=2). But U is a 2N � 2N matrix so it must have 2N eigenvalues

e�i! . Figures 1 and 2 show the results of computing the eigenvalues of U numerically for

N = 16: the eigenfrequencies are plotted as functions of the Type I boundary parameter

�, set to the same value at each boundary. Notice that while most of the eigenfrequencies

lie in the expected intervals, there are four which, over parts of the range of �, do not.

To understand the origin of these unexpected eigenfrequencies, let us reconsider (7.4)

and suppose that k has a nonzero imaginary part. Then for large N and the correct sign

13
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π/2

π
ω

π−π

Figure 1. The eigenfrequencies ! of U for a
lattice of size N = 16 with � = 0, � = �=4 and
two Type I boundary conditions with the same
parameter �.

Figure 2. The same situation as in Figure 1 but
with parameters � = �=4, � = �=3. In both cases
there are two eigenvalues with ! � 0 when � = 0
and two with ! � � when � = �.

of k, the left hand side of (7.4) becomes arbitrarily small. So, if there were such a k which

caused the right hand side of (7.4) to vanish, it would provide an additional root. Solving

0 = sin � +
1

2
(eik � e�ik) cos �;

we �nd

eik = � tan � � sec �: (7:6)

The negative root in (7.6) makes the norm je�ikj � 1 for 0 � � � �=2; furthermore,

it satis�es the dispersion relation (6.2) with ! = 0. Thus in the N ! 1 limit, 1 is an

eigenvalue of U with multiplicity two. For �nite N these extra eigenfrequencies split, �nely,

and are only very close to 0. As we see in Figures 1 and 2, as � changes away from 0,

the splitting increases and the eigenfrequencies move into the range associated with real

wave numbers. An analogous discussion explains the pair of eigenfrequencies near � at

� = �. The eigenfunctions having these eigenfrequencies corresponding to wave numbers

with nonzero imaginary part are, of course, not plane waves; rather, each describes the

state of a `low' energy particle which is `trapped' at the boundaries, with exponentially

decreasing amplitude to be in the interior of the lattice.

For the case of two Type II boundary conditions note that per the discussion following

(4.12) the eigenfunctions of interest are those which have vanishing left (right) moving

amplitude at the left (right) boundary. Thus when jLj = N , there are 2N � 2 relevant

eigenfunctions and eigenfrequencies. Figures 3 and 4 show the results of computing the

eigenvalues of U numerically for N = 16: the eigenfrequencies are plotted as functions of
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Figure 3. The eigenfrequencies ! of U for a
lattice of size N = 16 with � = 0, � = �=4 and
two Type II boundary conditions with the same
parameter �.

Figure 4. The same situation as in Figure 3 but
with parameters � = �=4, � = �=3. In both
cases there are two eigenvalues with ! � 0 and
two with ! � � when � = �.

the Type II boundary parameter �, set to the same value at each boundary. As in the

Type I boundary situation, most of the eigenfrequencies lie in the ranges corresponding

to real wave numbers, although near � = � there are four which do not, and which are

explained by an analysis similar to that of the preceding paragraph.

Finally, consider the case of two Type III boundary conditions, again with equal

parameter values. In this case there is a non-phase parameter which can be adjusted,

namely �0. Figure 5 shows the eigenfrequencies of U as a function of �0 for the rule de�ned

by � = 0, � = �=4, with boundary parameters � = 0 = �. To separate the eigenvalues

we have computed them for a lattice of size only N = 4. Figure 6 is similar, but the rule

parameters are now � = �=4, � = �=3. In this case N = 8 and the two eigenfrequencies

near 0 are only �nely split over the whole parameter range. Notice that in each case

there are actually six eigenvalues corresponding to imaginary wave numbers. Examination

of the eigenfunctions shows that the two with eigenfrequencies near 0 have amplitudes

concentrated in the states j1;�1i and jN � 2;+1i, while the four with eigenfrequencies

closer to �� have amplitudes concentrated at x = 0 and x = N � 1.

8. Re
ection and refraction of wave packets

The physical meaning of the rule inhomogeneities we are considering is perhaps most clear

in wave packet simulations. In [15] we de�ned binomial wavepackets with localized initial

position and particularized initial wavenumber. In each of the simulations of this section

the initial wavepacket is built from a plane wave (6.1) and (6.8) with k0 = �=4, is centered
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Figure 5. The eigenfrequencies ! of U for a
lattice of size N = 4 with � = 0, � = �=4 and
two Type III boundary conditions with the same

parameter �0 and both boundary phase angles 0.

Figure 6. The same situation as in Figure 5
but with parameters � = �=4, � = �=3, and
N = 8. In both cases there are two eigenvalues

with ! � 0 and four with j!j � �.

at x = 16 and has width 32, on the lattice 0 � x � 63. The peak frequency !0 and the

group velocity depend on the rule parameters � and � through the dispersion relation (6.2).

Let us �rst consider the re
ection of such a wave packet from the possible boundaries.

Figure 7 shows the evolution of the wave packet with parameters � = 0 and � = �=4 in the

presence of Type I boundary conditions with � = 0. Re
ection from Type II and Type III

boundaries is extremely similar: in each case the signi�cant dispersion of the wave packet

at the time of interaction with the wall results in a sequence of re
ected (smaller) wave

packets.

As we learned in [15], a `massless' wave packet disperses more slowly than a massive

one. In Figure 8 we show the results of a simulation of this case: � = �=4 = � and

the boundaries are both of Type II with � = 0. Re
ection from Type I and Type III

boundaries is again similar: in each case the wave packet re
ects cleanly and su�ers little

more dispersion than if the boundary had not been there.

Now let us consider the e�ect of rule inhomogenities on wave packet evolution. Figure 9

shows the results of a simulation in which there is a Type I inhomogeneity at x = 31: the

rule parameter � is constant at �=4 while � is 0 to the left, and �=4 to the right, of

the inhomogeneity. There is both re
ection and transmission of the wave packet at the

inhomogeneity: the re
ected wave disperses rapidly which causes an interaction with the

left boundary similar to that shown in Figure 7 while the transmitted wave packet has

little dispersion and evolves much as the wave packet in Figure 8.
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x

t
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|ψ| 2

Figure 7. Evolution of the k0 = �=4 wave packet with width 32 for rule parameters � = 0,
� = �=4. The boundaries are both of Type I with � = 0.

x

t

x

|ψ| 2

Figure 8. Evolution of the same wave packet as in Figure 7 for rule parameters � = �=4 = �.
The boundaries are both of Type II with � = 0.
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x

t

x

|ψ| 2

Figure 9. Evolution of the same wave packet as in the previous �gures with rule parameters
� = �=4 everywhere and � = 0 to the left and � = �=4 to the right of a Type I inhomogeneity
at x = 31. Both boundaries are of Type I with � = 0.

x

t

x

|ψ| 2

Figure 10. Evolution of the same wave packet as in the previous �gures with rule parameters
� = �=4 everywhere and � = �=4 to the left and � = �=3 to the right of a Type II inhomogeneity
at x = 32. Both boundaries are of Type II with � = 0.
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Next, let us consider the e�ect of a Type II inhomogeneity which changes the value

of � from �=4 to the left of x = 32 to �=3 to the right. Figure 10 show the results of

a simulation with � = �=4 everywhere and Type II boundary conditions. To the left of

the inhomogeneity the rule is `massless'; this is evident in the negligible dispersion of the

wave packet and its re
ection o� the inhomogeneity and then o� the left boundary. With

higher probability, however, the particle is transmitted through the inhomogeneity. The

transmitted wave packet evolves according to a `massive' rule and begins to disperse slowly

so that re
ection o� the right boundary creates a small trailing wave packet.

Recall from Section 5 that the Type I and Type II inhomogeneities can be adjacent

with evolution matrix of the form (5.1). Figure 11 shows the results of a simulation of

this situation: to the left of the inhomogeneity � = 0, � = �=4 and to the right � = �=4,

� = �=3. The boundary conditions are of Type III with �0 = 0 = � = �. There is

the same concentration of probability at the inhomogeneity that occurs with the Type I

inhomogeneity shown in Figure 9, together with less transmission and more dispersion to

the right than with the Type II inhomogeneity shown in Figure 10.

Finally, recall the � ! � duality displayed by the dispersion relation (6.2). Figure 12

shows the results of a simulation in the presence of a Type III inhomogeneity constructed to

convert the rule parameters � = �=3, � = �=4 on the left to the dual pair � = �=4, � = �=3

on the right. The re
ected and transmitted wave packets have more even probabilities

than in Figure 11 and evolve with the opposite group velocities. There is some asymmetry,

most evident at the end of the simulation upon re
ection from the boundaries; it is due

to the asymmetry of the combined Type I/Type II inhomogeneity as well as of the initial

condition.

9. Discussion

We have found dual inhomogeneities consistent with unitary global evolution of the general

one particle rule (1.1){(1.3): Type I implements a change in � while Type II implements

a change in �; adjacent Type I/Type II inhomogeneities implement changes in both � and

�. Each of these three possibilities has a corresponding boundary condition character-

ized by additional parameters. Despite this apparent variety of possibilities, the unitarity

constraint is quite restrictive: besides the phase implementation of an inhomogeneous po-

tential [17,15] and some degenerate cases, these are the only possible local inhomogeneities

up to unitary equivalence.

A natural question to ask is how these rule inhomogeneities extend to the complete

multiparticle rule set. Even the homogeneous rules for the general one dimensional QLGA

whose one particle subspace we have been investigating are quite complicated as there are

e�ectively two, three and four particle interactions. In [11], however, we found the only

particle preserving generalization of the rules (1.1){(1.3) with � = 0 (i.e., with particles

of unit speed). In this case no more than two particles can advect simultaneously to a

given lattice site, whereupon they scatter in opposite directions with amplitude ei�, � 2 R .

In fact, the global evolution remains unitary if the constant phase angle � considered in
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x

t

x

|ψ| 2

Figure 11. Evolution of the same wave packet as in the previous �gures with rule parameters
� = 0, � = �=4 to the left and � = �=4, � = �=3 to the right of a combined Type I/Type II

inhomogeneity at x = f31; 32g. Both boundaries are of Type III with � = 0 = � = �.

x

t

x

|ψ| 2

Figure 12. Evolution of the same wave packet as in the previous �gures with dual rule
parameters � = �=3, � = �=4 to the left and � = �=4, � = �=3 to the right of a combined

Type I/Type II inhomogeneity at x = f31; 32g. Both boundaries are of Type III with � = 0 =
� = �.
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[22,11,17,21] becomes any function of the lattice sites �(x). That is, the two particle

scattering amplitude can be any inhomogeneous function on the lattice, independently

of the one particle `scattering' amplitudes|and this independent inhomogeneity extends

to the values of �(x) at the boundaries. (Notice that even in the Type I and Type III

boundary conditions where w0 6= 0, and hence a particle scattering o� the boundary can

have speed 0, no more than two particles can advect to the same lattice site.) The question

of determining which boundary conditions are consistent with integrability of the model,

via the Bethe ansatz [23,24] as we began studying in [21] or by generalization of the Yang-

Baxter equation [24] as has been used in closely related models [25], is of fundamental

interest.

For the purposes of quantum computation with QLGA, we conclude by noting that we

have explicitly formulated the possible local inhomogeneities in the one dimensional unit

speed model. Extending these multiparticle results to multiple speeds and higher dimen-

sions seems likely to be algebraically more complicated but conceptually similar|single

particle single speed models with inhomogeneities have been constructed in two dimen-

sions [26,27,17]. More interesting is the question of how to exploit such inhomogeneities to

e�ect speci�c quantum computational tasks more e�ciently than by simply implementing

a quantum version of reversible billiard computing [13,20] using a homogeneous rule. The

most natural use of QLGA may be to simulate other quantum physical systems; designing

an inhomogeneous QLGA to be an e�cient universal quantum computer may consequently

be di�cult. A reasonable intermediate goal would be to solve speci�c problems particu-

larly well suited to this architecture. Although neither implements a quantum algorithm,

Squier and Steiglitz' particle model for parallel arithmetic [28] and Benjamin and John-

son's recent proposal for an inhomogeneous nanoscale cellular automaton adder [29] may

provide useful points of departure.
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