§3.5. Problem 112. Show that there are infinitely many primes of the form $4 n+3$.
Recall that when $p=4 n+3$, we write $p \equiv 3(\bmod 4)$. Suppose there were only a finite number of primes congruent to 3 modulo 4 ; call them p_{1}, \ldots, p_{k}. Let $P=p_{1} p_{2} \cdots p_{k}$. We consider two cases: k even and k odd.

When k is even, $P \equiv 3^{k} \equiv 1(\bmod 4)$. Then $P+2 \equiv 3(\bmod 4)$. According to Prop. 3.2, $P+2$ is a product of primes. 2 is not one of them since $P+2$ is odd. If all the primes that divide $P+2$ were congruent to 1 modulo 4 , then $P+2$ would also be congruent to 1 modulo 4 , so there must be at least one prime dividing $P+2$ that is congruent to 3 modulo 4 , say p_{i}. But then $p_{i} \mid P$ and $p_{i} \mid P+2$, so $p_{i} \mid(P+2)-P=2$, which is a contradiction.

When k is odd, $P \equiv 3^{k} \equiv 3(\bmod 4)$. Then $P+4 \equiv 3(\bmod 4)$. Just as in the previous case we can find some p_{j} dividing both P and $P+4$, and hence dividing 4. Again this is a contradiction.

Since k can be neither even nor odd, we must have been wrong to suppose there are only a finite number of primes congruent to 3 modulo 4 . Thus there are infinitely many primes of the form $4 n+3$.

Note: To prove that the product of an even (odd) number of integers of the form $4 n+3$ is congruent to 1 (3) modulo 4 , use induction.

