This is the second midterm from the last time I taught this class. You may find it a bit difficult, but it will be good practice to try to do all the problems.
1.a. [18 points] Prove that $\sum_{i=1}^{n}\left(3 i^{2}-3 i+1\right)=n^{3}$.
b. [7 points] Draw a picture that illustrates why this formula is true.
2. [25 points] For $n \in \mathbb{N}$, let $f_{n}(x)=f_{n-1}^{\prime}(x)$, where $f_{n-1}^{\prime}(x)$ means the derivative with respect to x of $f_{n-1}(x)$; and let $f_{0}(x)=\cos x$. Prove that for all $k \in \mathbb{N}, f_{2 k}(x)=(-1)^{k} \cos x$.
3.a. [7 points] Sketch the line $y=-\frac{2}{5} x+\frac{2}{3}$.
b. [18 points] Prove that this line does not contain any point (x, y) where x and y are both integers.
4. [25 points] Let $x, y, z, r \in \mathbb{N}$ and let r be odd. Prove that if $x^{2}+y^{2}+z^{2}=$ r^{2}, then exactly one of x, y, z is odd. [Hint: First show that for any $n \in \mathbb{N}$, either $4 \mid n^{2}$ or the remainder when n^{2} is divided by 4 is 1.]

