This is the final from the last time I taught this class. We have not covered Chapter 9, so you do not need to be able to do problems 1, 2 and 6.b.

There are 6 problems worth a total of 100 points, and 1 extra credit problem worth 15 points. Make sure that you look on the back of this page.

1. [16 points] Suppose $\left\langle x_{n}\right\rangle \rightarrow x$ and for all $n \in \mathbb{N}, x_{n} \neq x$. Prove that

$$
\left\langle\frac{x^{2}-x_{n}^{2}}{x-x_{n}}\right\rangle \rightarrow 2 x .
$$

2. [16 points] Use the Least-Upper-Bound Axiom to prove that if $S \subset \mathbb{R}$ has a lower bound then it has a greatest lower bound.
3. For $n \in \mathbb{N}$, let $[n]$ denote the equivalence class of n modulo p, where $p>1$ is a prime number. Explain your answer to each of the following questions:
a. [2 points] What is the cardinality of $\mathbb{Z}_{p}=\{[n] \mid n \in \mathbb{N}\}$?
b. [4 points] Define $f: \mathbb{N} \rightarrow \mathbb{Z}_{p}$ by $f(n)=[n]$. Is f onto? Is f one-toone?
c. [6 points] Define $g: \mathbb{N} \rightarrow \mathbb{Z}_{p}$ by $g(n)=\left[n^{p-1}\right]$. Is g onto? Is g one-to-one?
d. [6 points] Let $q>1$ be a prime number not equal to p. Define h : $\mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ by $h([n])=[q n]$. Is h onto? Is h one-to-one?
4. a. $[6$ points $]$ Solve $x^{2}-x \equiv 6(\bmod 7)$.
b. [12 points] Find all solutions to the system of congruences:

$$
\begin{aligned}
x^{2}-x & \equiv 6(\bmod 7) \\
x & \equiv 1(\bmod 5) .
\end{aligned}
$$

5. Let $n \in \mathbb{N}$.
a. [5 points] How many solutions are there to the equation $x_{1}+x_{2}=n$ for x_{1} and x_{2} nonnegative integers? Prove that your answer is right.
b. [10 points] Prove that there are $(n+1)(n+2) / 2$ solutions to the equation $x_{1}+x_{2}+x_{3}=n$ for x_{1}, x_{2} and x_{3} nonnegative integers.
6. For $n \in \mathbb{N}$, let $U_{n}=\left\{x \in \mathbb{R} \left\lvert\, 1-\frac{1}{n}<x<1+\frac{1}{n}\right.\right\}$.
a. [5 points] Find $\cap_{n \in \mathbb{N}} U_{n}$.
b. [10 points] Let $\left\langle a_{n}\right\rangle$ be a sequence with the property that for all $n \in \mathbb{N}$, $a_{n} \in U_{n}$. Prove $\left\langle a_{n}\right\rangle \rightarrow 1$.

Extra Credit. [15 points] Prove that the following propositional expression is a contradiction:

$$
\begin{aligned}
& \left(\neg R_{1} \vee \neg R_{2}\right) \wedge\left(\neg B_{1} \vee \neg B_{2}\right) \wedge \\
& \left(\neg R_{2} \vee \neg R_{3}\right) \wedge\left(\neg B_{2} \vee \neg B_{3}\right) \wedge \\
& \left(\neg R_{3} \vee \neg R_{1}\right) \wedge\left(\neg B_{3} \vee \neg B_{1}\right) \wedge \\
& \left(R_{1} \vee B_{1}\right) \wedge\left(R_{2} \vee B_{2}\right) \wedge\left(R_{3} \vee B_{3}\right)
\end{aligned}
$$

Your proof does not have to include a complete truth table.

