More induction

David A. Meyer
Department of Mathematica
University of California, San Diego

We’ve seen in Chapter 5 of Eccles that induction is used in definitions and in proofs. Here I want to explain how it can be used also to derive formulas that we would prove using induction. Consider the sum of the squares of the first n positive integers:

$$\sum_{i=1}^{n} i^2.$$

Imagining a pyramid of squares of cubes: 1×1 at the top, atop 2×2, atop 3×3, ..., atop $n \times n$, since the volume of a pyramid is $\frac{1}{3}bh$, where b is the area of the base and h is its height, we might guess that this sum should be something like $\frac{1}{3}n^2 \cdot n = \frac{1}{3}n^3$. We would guess the same thing by recognizing it as being analogous to the integral

$$\int_0^n x^2 \, dx = \frac{1}{3}n^3.$$

Our experience with the simpler sum

$$\sum_{i=1}^{n} i = \frac{n}{2}(n + 1),$$

however, suggests that a better guess for the sum should also have smaller powers of n in it, e.g., $an^3 + bn^2 + cn + d$.

Suppose we were given such a formula, with specific values for a, b, c, and d. Let us proceed as we would if we were trying to prove its correctness. We would do so using induction, so the first thing to check is the base case:

$$P(0) : \sum_{i=1}^{0} i^2 = 0 = d,$$

which would be true if $d = 0$. This implies that for our formula to be correct, it must have $d = 0$. The next thing we would do is to assume

$$P(k) : \sum_{i=1}^{k} i^2 = ak^3 + bk^2 + ck$$
(no constant d since we already found that it must be 0). Then, to prove

\[P(k + 1) : \sum_{i=1}^{k+1} i^2 = a(k + 1)^3 + b(k + 1)^2 + c(k + 1), \]

we use the inductive definition of the sum on the left hand side to get

\[
\sum_{i=1}^{k+1} i^2 = (k + 1)^2 + \sum_{i=1}^{k} i^2
\]

\[
= (k + 1)^2 + ak^3 + bk^2 + ck,
\]

where the second equality follows from $P(k)$. In order for this last expression to be equal to the right hand side of $P(k + 1)$ above, the coefficients of each power of k must be the same. That is,

\[
k^3 : \quad a = a
\]
\[
k^2 : \quad 3a + b = 1 + b \quad \Rightarrow a = 1/3
\]
\[
k^1 : \quad 3a + 2b + c = 2 + c \quad \Rightarrow b = 1/2
\]
\[
k^0 : \quad a + b + c = 1 \quad \Rightarrow c = 1/6.
\]

Thus the formula must be

\[
\sum_{i=1}^{n} i^2 = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n = \frac{n}{6}(2n + 1)(n + 1).
\]

And we have already shown that it can be proved by induction!