Each problem is worth 25 points. Please be specific in your answer to problem 1, and please write out your proofs for the propositions in problems 2, 3 and 4 in complete sentences, justifying how you get from step to step.

1. Let S be the statement: “If Trump feels insecure he tweets something stupid.” and let T be the contrapositive of S. What is T? Is $S \text{XOR} T$ true or false? Why?

Since S is the implication “Trump feels insecure \Rightarrow he tweets something stupid”, its contrapositive T is “He does not tweet something stupid \Rightarrow Trump does not feel insecure”, which we would phrase in English as, “If Trump doesn’t tweet something stupid he is feeling secure.”. Since a statement and its contrapositive are equivalent, S and T have the same truth value. Although we might not all agree what this truth value is, we all (to the extent we all are logical!) must therefore agree that $S \text{XOR} T$ is false.

2. Prove the Boolean distribution law: $P \land (Q \lor R) \iff (P \land Q) \lor (P \land R)$.

We could prove this with a truth table, but let’s make a different argument. This is an iff statement, so we can prove both implications to prove the statement.

(\Rightarrow) $P \land (Q \lor R)$ true means that P must be true and either Q or R is true. If P and Q are true, then $(P \land Q) \lor (P \land R)$ since the first clause is true, and if P and R are true, then it is true since the second clause is true. Thus $P \land (Q \lor R) \Rightarrow (P \land Q) \lor (P \land R)$.

(\Leftarrow) $(P \land Q) \lor (P \land R)$ means both P and Q are true or both P and R are true. Thus P is true, and either Q or R is true, i.e., $P \land (Q \lor R)$. Thus $P \land (Q \lor R) \iff (P \land Q) \lor (P \land R)$.

3. Prove that no three unit vectors $u, v, w \in \mathbb{R}^2$ are mutually perpendicular.

We will prove this by contradiction, i.e., by assuming that there are three such vectors $u, v, w \in \mathbb{R}$. By rotating \mathbb{R}^2 we can choose $u = (1, 0)$. Then $u \perp v$ implies $v = (0, b)$, with $b \in \{-1, 1\}$. Let $w = (x, y)$. Then $u \perp w$ implies $x = 0$ and $v \perp w$ implies $y = 0$. But then the length of w is 0, not 1, which is a contradiction. Thus there is no such set of vectors.

4. Prove that the number of ways to tile an $n \times 1$ rectangle with 1×1 squares and 2×1 rectangles is f_{n+1}, the $(n + 1)^{st}$ Fibonacci number.

We prove this using (strong) induction. First, consider $n = 1$. It can be tiled in 1 way, using a single 1×1 tile; this is f_2. Second, consider $n = 2$. It can be tiled in 2 ways, using two 1×1 tiles, or one 2×1 tile; this is f_3. Now suppose a $k \times 1$ rectangle can be tiled in f_{k+1} ways, and also that a $(k - 1) \times 1$ rectangle can be tiled in f_k ways (since we are using strong induction). Consider a $(k + 1) \times 1$ rectangle, tiled. The last tile must be either a 1×1 tile or a 2×1 tile. In the first case there will be f_{k+1} tilings since that is the number of ways the remaining $k \times 1$ rectangle can be tiled, according to the inductive hypothesis, and in the second case there will be f_k tilings since that is the number of ways the remaining $(k - 1) \times 1$ rectangle can be tiled, also according to the (strong) inductive hypothesis. Thus the total number of tilings is $f_{k+1} + f_k$, which is f_{k+2} according to the definition of the Fibonacci numbers.