Section 6.1

#2: Using the Laplace operator in spherical coordinates, u must satisfy
\[\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} u(r) \right) = \kappa^2 u(r) \Rightarrow r \frac{d}{dr} u''(r) + 2 u'(r) = \kappa^2 u(r) \cdot r. \]
Suppose u satisfies this equation and set \(v = u \cdot r \). The \[\frac{d}{dr} v = u' \cdot r + u \cdot r, \] and \[\frac{d^2}{dr^2} v = u'' \cdot r + 2 u' = \kappa^2 u \cdot r = \kappa^2 v \]
using the equation for u. Solving \(v'' - \kappa^2 v = 0 \) we find \(v = Ae^{\kappa r} + Be^{-\kappa r} \), so that \[u = \frac{v}{r} = \frac{Ae^{\kappa r} + Be^{-\kappa r}}{r} \].

#3: Assume we look for functions \(u = u(r) \) that depend on \(r \) only. Using the polar coordinate form of \(\Delta \), we must solve \(u_{rr} + \frac{1}{r} u_r = \kappa^2 u \).
Bessel's differential equation is
\[\frac{d^2}{dz^2} f(z) + \frac{1}{z} \frac{d}{dz} f(z) + \left(1 - \frac{s^2}{z^2} \right) f(z) = 0, \]
where \(s \) is a constant. Its solutions are the Bessel functions. Consider the equation with \(s = 0 \):
\[\frac{d^2}{dz^2} f(z) + \frac{1}{z} \frac{d}{dz} f(z) = -f(z). \]
Suppose $f(z)$ is a solution of (\ast) and set $u(r) = f(ikr)$. Then
\[
\frac{d}{dr} u(r) = \frac{d}{dr} f(ikr) = f'(ikr) \cdot ik, \quad \text{and}
\]
\[
\frac{d^2}{dr^2} u(r) = f''(ikr)(ik)^2 = -k^2 f''(ikr).
\]
So
\[
ur + \frac{i}{r} ur = -k^2 f''(ikr) + \frac{ik}{r} f'(ikr)
\]
by $(\ast) = -k^2 (-f(ikr)) = k^2 u(r).
\]
So $u(r) = f(ikr)$ is a solution to the original problem $\Delta u = k^2 u$. According to section 10.5, the functions f that satisfy (\ast) are just linear combinations of two Bessel functions J_o and J_o. So we have solutions $u(r) = A J_o(ikr) + B J_o(ikr)$.

#5: Let's look for solutions u that depend only on r; the PDE becomes an ODE:
\[
ur + \frac{1}{r} ur = 1 \iff r ur + ur = r
\]
i.e.
\[
\frac{d}{dr} (r ur) = r.
\]
Integrating, we have
\[
r ur = \frac{1}{2} r^2 + C_1 \implies ur = \frac{1}{2} r + \frac{C_1}{r}.
\]
\[
\implies u = \frac{1}{4} r^2 + C_1 \log r + C_2. \quad \text{Since u must be defined for $r = 0$, we take $C_1 = 0$}.
\]
The boundary condition gives
\[O = U(a) = \frac{a^2}{4} + c_2, \quad \text{so} \]
\[U = \frac{r^2}{4} - \frac{a^2}{4}. \]

#9 6a. Assuming the temperature \(T \) is a function of \(r \) only we have
\[\Delta T = Tr'' + \frac{2}{r} Tr' = 0; \text{ this is an ODE,} \]
\[\text{in fact we have } \frac{d}{dr} (r^2 Tr) = 2r Tr + r^2 Tr'. \]
\[= r^2 (Tr' + \frac{2}{r} Tr) = 0. \]
\[\text{Integrating gives } \]
\[r^2 Tr = C_1 \Rightarrow Tr = C_1 r^{-2} \Rightarrow \]
\[T = -C_1 r^{-2} + c_2. \] Now we apply the boundary conditions:
\[100 = T(1) = -C_1 + c_2 \Rightarrow C_2 = C_1 + 100, \text{ and} \]
\[-8 = Tr(2) = C_1 2^{-2} = \frac{C_1}{4}. \]
\[\text{So } C_1 = -48, \quad C_2 = -48 + 100, \text{ and} \]
\[T(r) = 48 r^{-2} - 48 + 100. \]

b: The temperature decreases as \(r \) increases, so it's hottest at \(r = 1 \), \(u/ \)
\[T(1) = 100, \text{ and coldest at } r = 2, \quad u/ \]
\[T(2) = 100 - 48. \]

c: \(\gamma = 40 \)
We take the hint and guess that the solution has form \(u = Ax^2 + By^2 + Cxy + Dx + Ey + F \). Then \(\Delta u = 2A + 2B \), so Laplace's Eqn. implies that \(B = -A \). We apply the BC's:

1. \(U_x = 2Ax + Cy + D \)
2. \(U_y = 2By + Cx + E = -2Ay + Cx + E \).

- \(a = U_x(0, y) = Cy + D \Rightarrow C = 0 \) and \(D = -a \).
- \(a = U_x(a, y) = 2Aa + Cy + D = 2Aa - a = a(2A - 1) \)
 \(\Rightarrow A = \frac{1}{2} \)
- \(b = U_y(x, 0) = Cx + E \Rightarrow C = 0, \ E = b \)
- \(0 = U_y(x, b) = 2Bb + Cx + E = 2Bb + b = b(2B + 1) \)
 \(\Rightarrow B = -\frac{1}{2}, \) which agrees with our computation \(B = -A \) above.

So \(u(x, y) = \frac{1}{2}x^2 - \frac{1}{2}y^2 - ax + by + F \), where \(F \) is arbitrary.
2. We show that \{ \sin m\pi x, \sin n\pi z \} are orthogonal on \(0 \leq y \leq \pi, 0 < z < \pi \), by integrating the product of two such functions over the square:

\[
\int_0^\pi \int_0^\pi (\sin m\pi y, \sin n\pi z) (\sin m\pi y, \sin n\pi z) \, dy \, dz
\]

\[
= \left(\int_0^\pi \sin m\pi y \, dy \right) \left(\int_0^\pi \sin n\pi z \, dz \right)
\]

\[
= 0 \quad \text{unless} \quad m_1 = m_2 \quad \text{and} \quad n_1 = n_2 \quad \text{because the functions } \{ \sin kx \} \text{ are orthogonal on } 0 < x < \pi.
\]

4. There are two inhomogeneous boundary conditions; our strategy is to split the problem into two subproblems, each of which involves only one inhomogeneous boundary condition:

1. Solve \(\Delta u = 0 \) on \(D = \{ 0 < x < 1, 0 < y < 1 \} \)

\[
\begin{align*}
\text{BCs:} \quad & u(x, 0) = u(x, 1) = u_x(0, y) = 0, \quad u_x(1, y) = y^2 \\
\text{IVCs:} & \quad u_x = y^2, \quad u = 0
\end{align*}
\]

The PDE gives \(\frac{\partial^2 \xi}{\partial y^2} = -\lambda \xi \). We separate variables: \(u = \xi(x) \eta(y) \)

First we solve \(\eta'' = -\lambda \eta \), the BCs give \(0 = \eta(0) = \eta(1) \), so \(\lambda = (n\pi)^2, \quad n > 0 \) with corresponding eigenfunctions \(\eta_n(x) = \sin n\pi x \).

Next we solve \(\xi'' = \lambda \xi \) with the single boundary condition \(\xi'(0) = 0 \). We have
\[
\sum_{n=1}^{\infty} \alpha_n \cosh n\pi x + B \sinh n\pi x, \quad \text{and}
\]
\[
O = \sum_{n=1}^{\infty} B_n \pi \cosh(\pi) = Bn\pi
\]
\[
\Rightarrow B = 0, \quad \text{so } \sum_{n=1}^{\infty} \alpha_n \cosh n\pi x.
\]
So \(u(x, y) = \sum_{n=1}^{\infty} \alpha_n \cosh n\pi x \).

Sine satisfies the PDE and the three homogeneous BCs.

For the remaining side we require that
\[
y^2 = u_x(1, y) = \sum_{n=1}^{\infty} \left(A_n \cdot \pi \cdot \sinh n\pi x \right) \sin n\pi y
\]
Let \(y^2 = \sum_{n=1}^{\infty} C_n \sin n\pi y \) be the Fourier sine series for \(y^2 \). Choosing \(A_n = \frac{C_n}{\pi \cdot \sinh n\pi x} \), \(n \neq 0 \), \(\sum_{n=1}^{\infty} \frac{C_n}{\pi \cdot \sinh n\pi x} \)

2. Solve \(\Delta u = 0 \) on \(D \) with

\[
\begin{align*}
& u = 0 \\
& u_x = 0 \\
& u = x \\
\end{align*}
\]

\(u_x(0, y) = u_x(1, y) = u(x, 1) = 0, \quad u(x, 0) = x \).

Again, separate variables and obtain
\[
-\frac{\vec{X}''}{\vec{X}} = \frac{\vec{Y}''}{\vec{Y}} = \lambda.
\]

First we solve \(\vec{X}'' = -\lambda \vec{X} \); the BCs give \(\vec{X}'(0) = \vec{X}'(1) \). These are Neumann conditions, so \(\lambda = (n\pi)^2 \quad n \geq 0 \) with eigenfunctions \(\vec{X}_n = \text{constant} \), \(\vec{X}_n = \cos n\pi x \) for \(n \geq 0 \).

Now we solve \(\vec{Y}'' = \lambda \vec{Y} \) with the single boundary condition \(\vec{Y}(0) = 0 \).
For $\lambda = 0$ we have $\nabla'' = 0 \Rightarrow \nabla (y) = Ay + B$, and $O = \nabla (1) = A + B$, hence $B = -A$ and $\nabla (y) = A (y - 1)$. For $n > 0$, $\nabla'' = \lambda \nabla$ has solutions $\nabla = A \cosh \nu \pi x + B \sinh \nu \pi x$. Then $O = \nabla (1) = A \cosh \nu \pi x + B \sinh \nu \pi x$, so $B = -A \coth \nu \pi x$ and $\nabla (y) = A (\cosh \nu \pi x - \coth \nu \pi x \cdot \sinh \nu \pi x)$.

So $u(x, y) = \sum_{n=1}^{\infty} A_n [\cosh \nu \pi x - \coth \nu \pi x \cdot \sinh \nu \pi x] \cdot \cos \nu \pi x$, satisfies the PDE and the three homogeneous BCs. For the remaining BC, we require that

$$x = u(x, 0) = \sum_{n=1}^{\infty} A_n \cos \nu \pi x = -A_0 + \sum_{n=1}^{\infty} A_n \cos \nu \pi x.$$

Writing the Fourier cosine series for x:

$$x = \frac{1}{2} C_0 + \sum_{n=1}^{\infty} C_n \cos \nu \pi x,$$

we see that we must have $A_0 = -\frac{1}{2} C_0$ and $A_n = C_n$ for $n > 0$, where $C_n = \frac{2}{T} \int_0^T x \cos \nu \pi x \, dx$.

1. Let u_1 be the solution found in (1), and u_2 the solution found in (2). Let $u = u_1 + u_2$. Since u_1, u_2 harmonic, so is u. Moreover,
We get $\Sigma(y) = A \cosh n\pi y + B \sinh n\pi y$. The boundary condition gives $0 = \Sigma(0) = A \cosh n\pi (0) + B \sinh n\pi (0)$, so $B = -A \cotanh n\pi$, and

$\Sigma(y) = A (\cosh n\pi y - \cotanh n\pi \cdot \sinh n\pi y)$

for $n > 0$.

So $U(x, y) = \sum_{n=1}^{\infty} A_n \left[\cosh n\pi x - \cotanh n\pi \cdot \sinh n\pi x \right] \cos n\pi x$

satisfies the PDE and the three homogeneous boundary conditions. For the remaining BC, we require

$x \cdot U(x, 0) = \sum_{n=1}^{\infty} A_n \cos n \pi x$

for $n = 0$
the sum satisfies the two homogeneous and two inhomogeneous BC's that we are looking for, so \(u \) is our solution.

\[\frac{-\frac{\partial^2 u}{\partial x^2}}{\frac{\partial^2 u}{\partial y^2}} = \lambda. \]
Separating variables, the PDE gives \(-\frac{\partial^2 u}{\partial x^2} = \lambda \frac{\partial^2 u}{\partial y^2} \). The BC's imply that \(\lambda = \frac{\pi^2}{\pi^2} \). The eigenvalue problem for \(\lambda \) has solutions \(\lambda = n^2 \) for \(n \geq 1 \) with eigenfunctions \(\phi_n(x) = \sin nx \). For \(\frac{\partial^2 u}{\partial y^2} = \lambda \frac{\partial^2 u}{\partial y^2} \), the solutions have form \(\psi_n(y) = Ae^{\lambda y} + Be^{-\lambda y} \). The condition at \(\infty \) implies that \(\psi_n \to 0 \) as \(\lambda y \to \infty \) so we must have \(A = 0 \). Then the function \(u(x,y) = \sum_{n=1}^{\infty} B_n e^{-\lambda y} \sin nx \) satisfies \(\Delta u = 0 \) and three of the four BC's. For the fourth BC we must have

\[A (h(x)) = U(x,0) = \sum_{n=1}^{\infty} B_n \sin nx, \]
so the \(B_n \) must be the Fourier sine coefficients for \(h(x) \):

\[B_n = \frac{2}{\pi} \int_0^{\pi} h(x) \sin nx \, dx. \]
b: If we omit the condition at \(\infty \), the problem is solved in the same way except we no longer throw out the term \(e^{ny} \) in the expression for \(Y_n \). Thus,

\[
U(x, y) = \sum_{n=1}^{\infty} (A_n e^{ny} + B_n e^{-ny}) \sin nx
\]

satisfies the PDE and the homogeneous BCs on the left and right sides. For the last BC, we require that

\[
h(x) = U(x, 0) = \sum_{n=1}^{\infty} (A_n + B_n) \sin nx,
\]

so that \(A_n + B_n \) must be the \(n^{th} \) Fourier sine coefficient for \(h \). The point here is that there are many ways to choose \(A_n + B_n \) so that this is the case, therefore the solution \(U \) is not unique. This does not violate the proof for uniqueness in Sec. 6.1 since that proof assumes that the region \(D \) is bounded.
HW #7 Solutions

Section 5.5 #s 2, 4, 12, 13, 14.

#2: We prove the Schwartz...
#1: a: By the Maximum Principle,
\[\max_{\partial \Omega} u = \max_{\partial \Omega} (3 \sin 2\theta + 1) = 4. \]

b: By the mean value property,
\[u(0,0) = \text{average value of } u \text{ on the circle of radius } 2 = \frac{1}{2\pi} \int_0^{2\pi} (3 \sin 2\theta + 1) \, d\theta \]
\[= \frac{1}{2\pi} \int_0^{2\pi} 3 \sin 2\theta \, d\theta + \frac{1}{2\pi} \int_0^{2\pi} 1 \, d\theta \]
\[= 0 + 1 \]

#2: According to Sec. 6.3, \(\Delta u = 0 \) on the disk has solution
\[u = \frac{1}{2} A_0 + \sum_{n=1}^{\infty} r^n (A_n \cos n\theta + B_n \sin n\theta). \]
For the boundary condition, we require that
\[1 + 3 \sin \theta = u(a, \theta) = \frac{1}{2} A_0 + \sum_{n=1}^{\infty} a^n A_n \cos n\theta + a^n B_n \sin n\theta. \]
Comparing coefficients, we see that
\[A_0 = 2, \quad a B_1 = \frac{3}{a}, \quad \text{and all other coefficients are zero}. \]

#4: We must show that
\[P(r, \theta) = \frac{a^2 - r^2}{a^2 - 2ar \cos \theta + r^2} \]
is harmonic. In polar coordinates, the Laplace operator is
\[\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2 \sin^2 \Theta} \frac{\partial^2}{\partial \Theta^2} , \] so we must compute \(P_{rr} \), \(\frac{1}{r} P_r \), and \(\frac{1}{r^2} P_{\Theta \Theta} \) and show that they sum to zero. Good luck!