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A microscale probabilistic model

Suppose we want to model population changes by considering individuals, which for
the purposes of simplicity let’s take to be E. coli bacteria (single-celled). Roughly speaking,
the E. coli in your gut reproduce with a timescale of 1 day, so in our discrete model, the
length of a time step can be thought of as 1 day. There are many factors which go into
a cell fissioning; we summarize them by making the process random: we assume each cell
splits with probability b during each time step. Furthermore, since individual bacteria
certainly die, we call the probability of that happening in each time step, d.

Now let Nt = the number of bacteria at time t; it is a random variable, with some
probability distribution. Before seeing what we can compute about Nt analytically, we can
simply simulate this process. The figures below show the results of doing so a couple of
times, with b = 0.3 and d = 0.2. Notice that although the population is growing, on the
average, in both runs, the time series of values, and the final populations, are completely
different.
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Figure 1a. Time series of values of Nt, starting
at N0 = 10.

Figure 1b. A very different time series of values
of Nt.
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Analyzing the model

Suppose there are Nt−1 cells at the beginning of time step t. Then we can write:

Nt = X1 + · · ·+XNt−1
+ Y1 + · · ·+ YNt−1

, (1)

where Xi = 1 if cell i does not die in the tth time step, which happens with probability
1 − d, and is 0 otherwise; and Yi = 1 if cell i splits in the tth time step, which happens
with probability b, and is 0 otherwise. From (1) we can compute the expectation value of
Nt, conditional on Nt−1, to be:

E[Nt | Nt−1] =

Nt−1
∑

i=1

E[Xi] +

Nt−1
∑

i=1

E[Yi]

= (1− d)Nt−1 + bNt−1 =: rNt−1, (2)

where we’ve used the linearity of expectation value in the first line, and E[Xi] = 1 · (1 −
d) + 0 · d = 1 − d (and similarly for E[Yi] = b) in the second. Notice that r = 1 − d + b

is greater than 1 when b > d and less than 1 when b < d, so the expected value of Nt is
bigger or smaller than Nt−1, respectively.

Now recall that the “law of total probability” tells us that

Pr(N = n) =
∑

n′

Pr(N = n | N ′ = n′) Pr(N ′ = n′),

so we can compute the unconditional expectation value of Nt as:

E[Nt] =
∑

n

nPr(Nt = n)

=
∑

n

n
∑

n′

Pr(Nt = n | Nt−1 = n′) Pr(Nt−1 = n′)

=
∑

n′

(

∑

n

nPr(Nt = n | Nt−1 = n′)
)

Pr(Nt−1 = n′)

=
∑

n′

E[Nt | Nt−1 = n′] Pr(Nt−1 = n′)

=
∑

n′

rn′ Pr(Nt−1 = n′) = rE[Nt−1],

which implies

E[Nt] = rtN0. (3)

Figure 2 shows these expected values plotted on the same graphs as the simulation runs
shown in Figure 1. In the first run the simulated values are much larger, in the second,
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Figure 2a. Time series of values of Nt, starting
at N0 = 10, with the exponential growth of the
expectation value.

Figure 2b. A very different time series of values
of Nt, with the exponential growth of the expec-
tation value.

somewhat smaller; unsurprisingly the population does not grow exactly the same way as
the expected value in every run.

Notice that except in the uninteresting case d = 1 and b = 0, we can write 0 < r = ek

for k ∈ R in (3), and get E[Nt] = ektN0, which is the same as the solution to the ODE:

dN

dt
= kN. (4)

Thus we should understand the macroscale ODE model (4) as describing the expectation
value of the microscale probabilistic model. The former gives us no information, for ex-
ample, about the random fluctuations away from the expectation value that we see in the
simulation results shown in the figures.
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