INTRODUCTION TO MATHEMATICAL MODELING. A PROBABILISTIC POPULATION MODEL. II

David A. Meyer
Department of Mathematics
University of California/San Diego
La Jolla, CA 92093-0112
http://math.ucsd.edu/~dmeyer/; dmeyer@math.ucsd.edu

Analyzing the model: population variance

We can run many simulations to understand the range of fluctuations around the expected population. Figure 3 shows a histogram of the resulting populations at each time, i.e., each constant time slice is a sample of size 1000 from the probability distribution of possible populations at that time. Figure 4 shows this distribution for $t=50$. The median value is 1116 , which compares well with the expected value of approximately 1174. Also, the central 95% of these runs lie between 133 and 2786 . Our next goal is to try to understand this range analytically, which we can do in this case, although in more complicated models we might have to rely on a large number of simulation runs.

Figure 3. Histogram of population for 1000 runs, with $b=0.3, d=0.2$.

Figure 4. The histogram of 1000 population values at time $t=50$, also with $b=0.3, d=0.2$.

To do this we calculate the variance of N_{t} :

$$
\begin{equation*}
\operatorname{Var}\left[N_{t}\right]=\mathrm{E}\left[\left(N_{t}-\mathrm{E}\left[N_{t}\right]\right)^{2}\right]=\mathrm{E}\left[N_{t}^{2}\right]-\left(\mathrm{E}\left[N_{t}\right]\right)^{2} \tag{5}
\end{equation*}
$$

Equation (3) gives us the last term in this expression. For the first, we begin by calculating

$$
\begin{aligned}
\mathrm{E}\left[N_{t} \mid N_{t-1}\right]= & \mathrm{E}\left[\left(X_{1}+\cdots+X_{N_{t-1}}+Y_{1}+\cdots+Y_{N_{t-1}}\right)^{2}\right] \\
= & N_{t-1}\left(\mathrm{E}\left[X_{1}^{2}\right]+\mathrm{E}\left[Y_{1}^{2}\right]\right)+2 N_{t-1}^{2} \mathrm{E}\left[X_{1} Y_{2}\right] \\
& \quad+N_{t-1}\left(N_{t-1}-1\right)\left(\mathrm{E}\left[X_{1} X_{2}\right]+\mathrm{E}\left[Y_{1} Y_{2}\right]\right) \\
= & N_{t-1}(1-d+b)+2 N_{t-1}^{2}(1-d) b+N_{t-1}\left(N_{t-1}-1\right)\left((1-d)^{2}+b^{2}\right) \\
= & N_{t-1}^{2}(1-d+b)^{2}+N_{t-1}\left(1-d+b-(1-d)^{2}-b^{2}\right) \\
= & \alpha N_{t-1}^{2}+\beta N_{t-1},
\end{aligned}
$$

where $\alpha=r^{2}$ as defined in (2). Now we use the "law of total probability" again:

$$
\begin{aligned}
\mathrm{E}\left[N_{t}^{2}\right] & =\sum_{n} n^{2} \operatorname{Pr}\left(N_{t}=n\right) \\
& =\sum_{n} n^{2} \sum_{n^{\prime}} \operatorname{Pr}\left(N_{t}=n \mid N_{t-1}=n^{\prime}\right) \operatorname{Pr}\left(N_{t-1}=n^{\prime}\right) \\
& =\sum_{n^{\prime}}\left(\sum_{n} n^{2} \operatorname{Pr}\left(N_{t}=n \mid N_{t-1}=n^{\prime}\right)\right) \operatorname{Pr}\left(N_{t-1}=n^{\prime}\right) \\
& =\sum_{n^{\prime}}\left(\alpha n^{\prime 2}+\beta n^{\prime}\right) \operatorname{Pr}\left(N_{t-1}=n^{\prime}\right) \\
& =\alpha \mathrm{E}\left[N_{t-1}^{2}\right]+\beta \mathrm{E}\left[N_{t-1}\right] \\
& =\alpha \mathrm{E}\left[N_{t-1}^{2}\right]+\beta r^{t-1} N_{0} \\
& =\alpha\left(\alpha \mathrm{E}\left[N_{t-2}^{2}\right]+\beta r^{t-2} N_{0}\right)+\beta r^{t-1} N_{0} \\
& =\alpha^{2} \mathrm{E}\left[N_{t-1}^{2}\right]+\left(\frac{\alpha}{r}+1\right) \beta r^{t-1} N_{0} \\
& \vdots \\
& =\alpha^{t} N_{0}^{2}+\frac{1-(\alpha / r)^{t}}{1-(\alpha / r)} \beta r^{t-1} N_{0} \\
& =r^{2 t} N_{0}^{2}+\frac{1-r^{t}}{1-r} \beta r^{t-1} N_{0} .
\end{aligned}
$$

Using this result in (5) we obtain

$$
\operatorname{Var}\left[N_{t}\right]=\frac{1-r^{t}}{1-r} \beta r^{t-1} N_{0} .
$$

Evaluating this for same case as the simulations we find a standard deviation (the square root of the variance) of about 955 at time $t=50$, which compares well with the histogram in Figure 4. (The 95% range would be about ± 2 standard deviations around the expectation value if this were a normal distribution, which it clearly is not, since subtracting 2 standard deviations from the expectation value gives a negative result, which does not occur.)

