
9 January 2004
revised 18 January 2004

INTRODUCTION TO MATHEMATICAL MODELLING
LECTURES 3-4: BASIC PROBABILITY THEORY

David A. Meyer

Project in Geometry and Physics, Department of Mathematics
University of California/San Diego, La Jolla, CA 92093-0112
http://math.ucsd.edu/~dmeyer/; dmeyer@math.ucsd.edu

Example

Suppose we observe a gambler enter a casino with $100 in his/her pocket, and then
leave a few hours later with $87. This is a situation we might want to model, particularly if
we are thinking about entering the casino ourselves. Without any additional information,
i.e., any additional data, there is little more that we can predict than if someone else goes
into the casino with $100 and leaves after the same amount of time, s/he will also have
only $87. This is certainly a case in which we must adjust our data collection.

So suppose we enter the casino and find that the gambler is repeatedly playing a very
simple game (this is not intended to be realistic): s/he flips a coin, winning a dollar if
it comes up heads, and losing a dollar if it comes up tails. After playing 100 times, the
gambler leaves the casino. This gives us much more information with which to build our
model, although perhaps not as much as we might like.

Probabilistic models

In principle (to the extent that physics is classical), if we could measure exactly
how the coin is being flipped, exactly how the coin is shaped and weighted, exactly the
gravitational acceleration, exactly how the coin bounces when it hits the table, exactly
how the air currents are blowing on the coin while it is in the air, etc., we could do a
complicated physics calculation and determine whether the coin will land head up or tail
up. In practice, of course, we cannot know most of these details, so we summarize our
ignorance by saying that the coin comes up heads with probability p, i.e., a fraction p of
the time, where 0 ≤ p ≤ 1. That is, probability is an accounting for the effects of parts of
the world that we are not trying to model (exogenous variables) and about which we have
only limited knowledge. There are always such effects in any real situation, which is why
we are starting this course with a discussion of them, rather than pretending that we can
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usually make complete mathematical models and then only discussing probabilistic effects
at the end of the course. Most of the models that we discuss will not make deterministic
predictions that something will certainly happen, but rather make probabilistic predictions
that different outcomes will occur different fractions of the time.

The binomial distribution

If the gambler only plays once, it is easy to make a prediction:

outcome payoff probability

H $1 p

T −$1 1 − p

A fraction p of the time s/he will leave the casino with $101, and a fraction 1 − p of the
time s/he will leave the casino with $99. Playing twice is not much harder to understand:

outcome payoff probability

HH $2 p2

HT $0 p(1 − p)

TH $0 (1 − p)p

TT −$2 (1 − p)2

So a fraction p2 of the time the gambler will leave with $102, a fraction 2p(1 − p) of the
time with $100, and a fraction (1− p)2 of the time with $98. Finally, if the gambler plays
three times we compute:

outcome payoff probability

HHH $3 p3

HHT $1 p2(1 − p)

HTH $1 p2(1 − p)

THH $1 p2(1 − p)

TTH −$1 p(1 − p)2

THT −$1 p(1 − p)2

HTT −$1 p(1 − p)2

TTT −$3 (1 − p)3

Now there are four results: $103, $101, $99 and $97, which we predict to occur with
probabilities p3, 3p2(1 − p), 3p(1 − p)2 and (1 − p)3, respectively.
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It would be extremely tedious to analyze the case of 100 coin flips like this. Fortunately,
we can be cleverer. Notice that the payoffs depend only on how many heads there are,
and that for a given total number of flips, n, the probability of a specific outcome with w
heads is the same, pw(1 − p)n−w, no matter when the heads appear. (We have made an
assumption here, that the outcomes of different coin flips are independent, which we will
discuss later.) To figure out how many outcomes there are with w heads, imagine that the
coins are labelled from 1 to n. We can arrange them in n(n − 1)(n − 2) · · ·3 · 2 · 1 = n!
different orders, by picking any of n for the first, any of the remaining n−1 for the second,
etc. Not all of these correspond to different outcomes, however, since any ordering with
the w heads in the same positions is the same outcome, no matter in what order the labels
on the w heads are arranged. But these w labels can be arranged in w! orders by the same
argument. Similarly, the n − w labels on the tail up coins can be arranged in (n − w)!
ways. So the total number of different outcomes with w heads is

no. orders of n coins

(no. orders of w heads)(no. orders of n − w tails)
=

n!

w!(n − w)!
=

(

n

w

)

,

where the last symbol is pronounced “n choose w”, and is called a binomial coefficient.
Multiplying the number of different outcomes with w heads by the probability of a specific
outcome with w heads gives the probability that the gambler will win w times out of n:

(

n

w

)

pw(1 − p)n−w.

Random variables

This is an example of a probability function: We say that the number of heads, W , is
a random variable and the probability that W = w,

prob(W = w) =

(

n

w

)

pw(1 − p)n−w.

For any probability function, if we add the probabilities of every possible outcome we must
get 1; in this case:

1 =

n
∑

w=0

prob(W = w) =

n
∑

w=0

(

n

w

)

pw(1 − p)n−w. (3.1)

Homework: Read Larsen & Marx [1], p. 135–136.
Show algebraically that the sum on the right of eq. 3.1 equals 1.
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The expectation value of a random variable, E[W ], is the probability weighted average
of its possible values; in this case:

E[W ] =
n

∑

w=0

w prob(W = w)

=

n
∑

w=0

w

(

n

w

)

pw(1 − p)n−w

=

n
∑

w=0

w
n!

w!(n − w)!
pw(1 − p)n−w

=
n

∑

w=1

w
n!

w!(n − w)!
pw(1 − p)n−w (since the w = 0 term in the sum is 0)

=

n
∑

w=1

n!

(w − 1)!(n− w)!
pw(1 − p)n−w

= np

n
∑

w=1

(n − 1)!

(w − 1)!
(

(n − 1) − (w − 1)
)

!
pw−1(1 − p)(n−1)−(w−1)

(since (n − 1) − (w − 1) = n − w)

= np

n−1
∑

v=0

(n − 1)!

v!
(

(n − 1) − v
)

!
pv(1 − p)(n−1)−v (letting v = w − 1)

= np, (using eq. 3.1 with n replaced by n − 1)

which is what you most likely expected. That is, for a fair coin (p = 1
2
), the expected

number of times the gambler who plays 100 times will win is 50, so his/her expected payoff
is $50 − $50 = $0. Of course, this does not happen every time; there is some variation in
the outcomes.

The variance of a random variable, Var[W ], is the probability weighted average of the
squared differences of its possible values from E[W ]:

Var[W ] =
∑

w

(w − E[W ])2 prob(W = w).

Evaluating the variance of the binomial distribution is substantially more complicated
than evaluating the expectation value. But we can avoid doing the algebra by learning
a little more about basic probability theory, which will also show us how to compute the
expectation value much more easily than the calculation above.

Sums of random variables

Notice that W = X1 + · · · + Xn, where Xi is a random variable that can take two
values:

Xi =

{

1 if the ith coin flipped lands head up;
0 if the ith coin flipped lands tail up.
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That is, the number of wins can be computed by adding 1 for each coin that lands head
up, and 0 for each coin that lands tail up. It is easy to calculate the expectation value of
Xi. From the definition as the probability-weighted sum of the possible outcomes we have:

E[Xi] = p · 1 + (1 − p) · 0 = p.

Now consider the case n = 2, i.e., W = X1 + X2.

E[X1 + X2] =
∑

x1,x2

(x1 + x2)prob(X1 = x1 ∧ X2 = x2)

=
∑

x1,x2

x1prob(X1 = x1 ∧ X2 = x2) +
∑

x1,x2

x2prob(X1 = x1 ∧ X2 = x2)

=
∑

x1

x1

∑

x2

prob(X1 = x1 ∧ X2 = x2) +
∑

x2

x2

∑

x1

prob(X1 = x1 ∧ X2 = x2)

=
∑

x1

x1prob(X1 = x1) +
∑

x2

x2prob(X2 = x2)

= E[X1] + E[X2],

where xi ∈ {0, 1} and ∧ means ‘and’. The penultimate equality follows from the fact
that for any random variables X and Y , prob(X = x) =

∑

y prob(X = x ∧ Y = y).
Thus, in general, the expectation value of the sum of random variables is the sum of their
expectation values. In particular,

E[W ] = E[X1 + · · · + Xn] = E[X1] + · · · + E[Xn] = np,

which is what we computed previously, with considerably more effort.

Homework: Use mathematical induction to prove the middle equality in this equation, for
all n ∈ N.

So we have showed that expectation values of random variables add. We might ask,
“Do they multiply?”. The answer is, “Sometimes.”. They do if an important property
holds: Two random variables X and Y are independent if and only if

prob(X = x ∧ Y = y) = prob(X = x)prob(Y = y).

In this case we can compute the expectation value of their product:

E[XY ] =
∑

x,y

xy prob(X = x ∧ Y = y)

=
∑

x,y

xy prob(X = x)prob(Y = y)

=
∑

x

x prob(X = x)
∑

y

y prob(Y = y)

= E[X ]E[Y ].
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We use this fact to study the variance of a sum of random variables:

Var[X + Y ] =
∑

x,y

(x + y − E[X ]− E[Y ])2 prob(X = x ∧ Y = y)

=
∑

x,y

(

(x − E[X ]) + (y − E[Y ])
)2

prob(X = x ∧ Y = y)

=
∑

x,y

(

(x − E[X ])2 + 2(x − E[X ])(y − E[Y ]) + (y − E[Y ])2
)

·

· prob(X = x ∧ Y = y)

=
∑

x,y

(x − E[X ])2 prob(X = x ∧ Y = y)

+ 2
∑

x,y

(x − E[X ])(y − E[Y ]) prob(X = x ∧ Y = y)

+
∑

x,y

(y − E[Y ])2 prob(X = x ∧ Y = y)

=
∑

x

(x − E[X ])2 prob(X = x)

+ 2
∑

x,y

(x − E[X ])(y − E[Y ]) prob(X = x)prob(Y = y)

+
∑

y

(y − E[Y ])2 prob(Y = y)

= Var[X ] + Var[Y ]

+ 2
∑

x

(x − E[X ]) prob(X = x)
∑

y

(y − E[Y ]) prob(Y = y)

= Var[X ] + Var[Y ],

where the last equality follows from

∑

x

(x − E[X ])prob(X = x) =
∑

x

x prob(X = x) − E[X ]
∑

x

prob(X = x)

= E[X ] − E[X ] · 1
= 0.

For the coin flipping game, the outcomes of different coin flips are assumed to be indepen-
dent, and

Var[Xi] = p · (1 − p)2 + (1 − p) · (0 − p)2 = p(1 − p),

so
Var[W ] = Var[X1] + · · ·+ Var[Xn] = np(1 − p).
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Figure 3.1. Binomial distributions for n = 20
and p = 1/2 (central distribution, red), p = 1/4
(left distribution, green), and normal distribu-
tions with the same mean and variance, respec-
tively.

Now that we have computed the ex-
pectation value and the variance of the
binomial distribution, we can investigate
how close it is to a normal distribution
with the same mean and variance, just
as we did with the height data in Lec-
ture 2 [2]. Figure 3.1 shows the results for
two binomial distributions with n = 20.
The central one (in red) has p = 1/2 and
is very well approximated by the normal
distribution with the same mean and vari-
ance (in blue). The left one (in green) has
p = 1/4 and is slightly less well approx-
imated by the corresponding normal dis-
tribution (in blue). But the observation
that each is well approximated by a normal distribution is correct, and is a consequence
of the following theorem.

DEMOIVRE-LAPLACE LIMIT THEOREM. Let W be a binomial random variable describing
the number of successes in n trials, each of which succeeds with probability p. For all
a ≤ b ∈ R,

lim
n→∞

prob
(

a ≤ W − np
√

np(1 − p)
≤ b

)

=
1√
2π

∫ b

a

e−w2/2dw.

We could equally well write this as:

lim
n→∞

prob(a ≤ W ≤ b) =
1

√

2πnp(1 − p)

∫ b

a

e−(w−np)2/2np(1−p)dw.

Both statements say that the area under either of the blue curves in Figure 3.1, between
w = a and w = b, is approximately equal to the sum of the probabilities at the points
with a ≤ w ≤ b for the corresponding binomial probability function. The approximation
is better for larger n, and for p further from 0 or 1.

Remember that we used the formula W = X1 + · · ·+ Xn to calculate the expectation
value and variance of W . We can imagine a random variable that is the sum Y1 + · · ·+ Yn

for a sequence of random variables Yi that are not simply binary valued like Xi. Even for
this more general situation, the same result holds:

CENTRAL LIMIT THEOREM. Let Y1, Y2, . . . be an infinite sequence of independent random
variables, each having the same distribution, with E[Yi] = µ < ∞ and Var[Yi] = σ2 < ∞.
For all a ≤ b ∈ R,

lim
n→∞

prob
(

a ≤ Y1 + · · · + Yn − nµ√
nσ

≤ b
)

=
1√
2π

∫ b

a

e−w2/2dw.
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For proofs of these theorems, see any standard probability/statistics text, e.g., Larsen
& Marx [1]. The Central Limit Theorem is most interesting for us because it suggests a
characteristic of mathematical models that would produce a normal distribution for some
variable—the model likely includes several or many independent variables with similar
distributions that are summed to give the variable with the normal distribution. In the
case of human height, the data we have already seen indicate that male/female is an
important factor, and we would expect that nutrition is also important. The observation
that the distribution for each sex is separately approximately normal suggests further that
there might be a genetic model that involves the action of multiple genes, each of which can
contribute to larger or smaller height. This is in contrast to the famous pea plants originally
studied by Mendel [3], which are only tall or short, i.e., have a binary distribution, not a
normal one. From what we have learned in this lecture, we would expect pea plant height
to be controlled by only one gene; this is true, and the action of that gene (Le) is now
understood [4].
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