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Ubiquity of the normal distribution

In the previous lectures we have discussed the normal distribution (for heights) and the
binomial distribution (for the number of heads in a sequence of coin flips). The Central
Limit Theorem tells us that the former approximates the latter, and moreover, that it
approximates sums of independent, identically distributed (i.i.d.) random variables with
finite expectation value and variance. This suggests that the normal distribution should
occur in many contexts, and motivates statements like that of Galton quoted in Larsen
& Marx [1, p. 276]. We saw, however, that when we tried to approximate some of the
data that people in the class collected using normal distributions with the corresponding
sample mean and sample variance, the approximations were not always so good.
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Figure 5.1. Histogram of page lengths of books
with the graph of the normal distribution having
the same mean and variance.

Figure 5.2. Histogram of touchdowns per quar-
terback with the graph of the normal distribution
having the same mean and variance.
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One feature that several of the data sets collected have in common is that they contain
only positive numbers. This is true for heights, for the sizes of poker pots, for page lengths
of books, for ages at which people learn to ride bicycles, for song lengths, for numbers of
touchdowns per quarterback, and for ages at death. Although any normally distributed
random variable has positive probability of taking any real numbered value, if the mean of
the distribution is sufficiently large relative to its variance, the probability of observing a
negative value is almost 0. In the case of heights, for example, Figures 2.3 and 2.4 show that
the normal distributions approximating the height data do not predict that we will observe
any negative heights [2]. When the mean is smaller relative to the variance, however, the
normal distribution does not approximate positive valued data so well. Figures 5.1 and 5.2
show data on page lengths of books for a sample of books in the SIO library (collected by
Jayme Reynolds) and on touchdowns per quarterback in the 2003 NFL season (collected by
Jeremy Greene). In each case the approximating normal distribution implies a substantial
probability for negative values which, of course, are not observed.

One possible fix for this problem could be to use the distribution for |X | where X has
a normal distribution with mean 0, i.e.,

f(x) =

{

2√
2πσ

e−x2/2σ2

if x ≥ 0;

0 if x < 0.
(5.1)

This is a probability density function: it is positive and integrates to 1.

Homework: Compute the mean and variance of the distribution in eq. 5.1.

Figures 5.3 and 5.4 show the approximations to the book length and touchdown data using
this distribution with the corresponding variance. There is still, clearly, a problem at values
near 0. These plots also illustrate another problem: the data include too many large values
to be well approximated by a normal distribution or by the distribution in eq. 5.1. This
feature is sometimes discribed as a ‘heavy tail’ or ‘fat tail’. In this course we will try to
construct mathematical models of several systems that display this phenomenon.
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Figure 5.3. Histogram of page lengths of books
with the graph of the distribution (5.1) having
the same variance.

Figure 5.4. Histogram of touchdowns per quar-
terback with the graph of the distribution (5.1)
having the same variance.
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The distribution of wealth

10 20 30 40

50

100

150

200

250

300

Figure 5.5. Histogram of the wealth of the rich-
est 400 people in the U.S., with the graph of the
distribution (5.1) having the same variance.

Each year Forbes publishes a list of
the 400 richest individuals in the United
States, together with Forbes’ estimate of
their wealths. Figure 5.5 shows the data
for 2003 [3]; the horizontal axis is wealth
in billions of US$. For these 400 wealths,
the standard deviation is approximately
$4.2B. While it is clear that the distri-
bution (5.1) with the corresponding var-
iance (in blue) does not fit very well near
0 (there are almost twice as many people
with wealths between $600M (the smallest
wealth in the top 400) and $2.5B as this
distribution would predict), it fits even
worse at large wealths. According to this distribution, the probability that an individ-
ual would have a wealth greater than $30B, is

prob(W > $30B) =

∫ ∞

30

2√
2πσ

e−w2/2σ2

dw ≈ 6.07253 × 10−13,

where σ = 4.16735. For the U.S. population of about 290M [4], this predicts less than
2×10−4 people with wealths above $30B, which must be contrasted with the existing two:
Bill Gates at $46B and Warren Buffett at $36B; i.e., it is off by a factor of more than 104.

To illustrate this contrast in a way that is perhaps more compelling than Figure 5.5,
we plot the data differently. Figure 5.6 shows a plot of wealth as a function of rank on
Forbes’ list: Bill Gates has rank 1, Warren Buffett has rank 2, etc. Figure 5.7 shows the
same plot for a random sample drawn from the distribution (5.1) with σ = 4.16735. The
two plots are completely different for small ranks, while for large ranks the real wealths
decrease more quickly with rank than do the randomly sampled values.
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Figure 5.6. The wealths of the richest 400 indi-
viduals plotted as a function of their rank.

Figure 5.7. 400 values sampled from distribu-
tion (5.1) plotted as a function of their rank.

3



Mathematical Modelling: Other distributions David A. Meyer

1 2 3 4 5 6

1

2

3

4

1 2 3 4 5 6

-10

-8

-6

-4

-2

2

Figure 5.8. Logarithm of the wealth of the rich-
est 400 individuals plotted as a function of loga-
rithm of rank.

Figure 5.9. Logarithms of 400 values sampled
from distribution (5.1) plotted as a function of
logarithm of rank.

The contrast is even more compelling visually if these two sets of points are plotted
logarithmically. Figure 5.8 shows the logarithm of the wealth plotted as a function of
the logarithm of the rank. Similarly, Figure 5.9 shows the logarithm of each sampled
value plotted as a function of the logarithm of its rank. The points in Figure 5.8 are well
approximated by the line shown (in blue), which has equation

log w = 4.30542− 0.78502 log r, (5.2)

where w is wealth and r is rank. There is no such approximating line for the points in
Figure 5.9.

Homework: Suppose that the distribution of individual wealth in the United States is well
approximated by eq. 5.2 across the whole population, not just the richest 400
people. Use this to compute the total individual wealth in the U.S. What
fraction is owned by Bill Gates? By the 400 richest people? By the richest
1% of the population? By the richest 10% of the population?

Other distributions

We should be convinced by now that wealths are not distributed according to a normal
distribution, or distribution (5.1). There are, of course, many other possible distributions
over non-negative values. Next we briefly describe some of the most commonly studied.

Homework: Read Larsen & Marx [1], Chap. 4, for a more complete discussion of these
distributions.

Recall from Lecture 3 the example of a gambler flipping a sequence of biased coins,
each with probability p of landing head up [5]. The total number of heads in n flips was
described by the binomial distribution. There are other random variables that describe
other aspects of this example. The first two distributions we consider arise in this context.
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Figure 5.10. Probability functions for geomet-
ric distributions with p = 1/2 (red), p = 1/4
(green).

Figure 5.11. Probability functions for negative
binomial distributions with λ = 1 (red), λ = 2
(green), for r = 2 (left) and r = 4 (right).

Geometric and negative binomial distribution: For 0 ≤ p ≤ 1, let prob(T = t) =
(1 − p)t−1p, for t ∈ Z>0. In the sequence of independent biased coin flips, each with
probability p of being 1, this is the probability that the first head occurs on the tth flip.
Figure 5.10 shows plots of the geometric distribution probability function for p = 1/2 (red)
and p = 1/4 (green). As p decreases, the probability of a short wait decreases, and the
probability of a long wait increases. The geometric distribution can be generalized to

prob(T = t) =

(

t − 1

r − 1

)

(1 − p)t−rpr,

for t ≥ 0. This is the probability that the rth head occurs on the tth flip. For r = 1 it is
the same as the geometric distribution. Figure 5.11 shows plots of the negative binomial
distribution for r = 2 with p = 1/2 (red) and p = 1/4 (green). The probability that T = 1
is 0, since there must be at least two coin flips in order to get two heads. For smaller p,
shorter waiting times are less likely and longer waiting times are more likely.
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Figure 5.12. Probability density functions for
Poisson distributions with λ = 1 (red), λ = 2
(green), λ = 4 (blue).

Poisson distribution: For λ > 0, let

prob(W = w) =
e−λλw

w!
,

for w ∈ Z≥0. If events occur randomly
at a rate λ per unit of time, the Poisson
distribution gives the probability that w
occur in a given unit of time. Figure 5.12
shows plots of the probability density func-
tions for Poisson distributions with λ = 1
(red), λ = 2 (green) and λ = 4 (blue).
As λ increases, the most likely numbers
of occurrences increase.
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Figure 5.13. Probability density functions for
exponential distributions with λ = 1 (red), λ = 2
(green), λ = 4 (blue).

Figure 5.14. Probability density functions for
gamma distributions with λ = 1 (red), λ = 2
(green), for r = 2 (left) and r = 4 (right).

Exponential and gamma distribution: For λ > 0, let f(t) = λe−λt, for t ≥ 0. If events
occur randomly at a rate λ per unit of time, this is the probability density function for
the waiting time between events. Figure 5.13 shows plots of the exponential distribution
probability density function for λ = 1 (red), λ = 2 (green) and λ = 4 (blue). As λ
increases, the probability of a short waiting time increases, and the probability of a long
waiting time decreases. The exponential distribution can be generalized to

g(t) =
λr

(r − 1)!
tr−1e−λt,

for t ≥ 0. This is the probability density function for the waiting time until r ∈ Z>0

events occur; when r = 1 it is just the exponential distribution. Figure 5.14 shows plots
for gamma distributions with λ = 1 (red) and λ = 2 (green), for r = 2 and r = 4. As λ
increases, there are larger probabilites for smaller waiting times, and as r increases, the
probability of a longer waiting time increases.

Homework: Sample 400 points from each of these distributions and plot them as in Fig-
ures 5.7 and 5.9. Can you find parameters for any of these distributions so
that the sample is similar to the Forbes 400 data?

Asymptotic behavior

Despite the possibly apparent similarity between the exponential distribution in Fig-
ure 5.13 and the wealth distribution in Figure 5.5, your answer to the homework question
above should be “no”. None of these distributions have sufficiently ‘fat’ tails. To be more
precise about this statement, we need a little bit of notation.

DEFINITION. Let f(x) and g(x) be two functions defined on some subset of the real
numbers that has no upper bound. Then we write f(x) ∼ g(x) if and only if

lim
x→∞

f(x)

g(x)
= 1.
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We write f(x) = Θ
(

g(x)
)

if and only if there is some 0 6= c ∈ R such that

lim
x→∞

f(x)

g(x)
= c.

This notation is used to characterize the asymptotic behavior of functions. For example,
2x2 + 3x ∼ 2x2 = Θ(x2), since as x → ∞, 3x becomes insignificantly small compared to
x2.

Homework: Verify this statement using l’Hôpital’s rule.

We can compute the asymptotic behavior of the distributions we have introduced in
this lecture. For the negative binomial distribution:

(

t − 1

r − 1

)

(1 − p)t−rpr ∼ tr−1

(r − 1)!
(1 − p)t−rpr = Θ

(

tr−1(1 − p)t−r
)

as t → ∞.

For the gamma distribution:

λr

(r − 1)!
tr−1e−λt ∼ λr

(r − 1)!
tr−1e−λt = Θ

(

tr−1e−λt
)

as t → ∞.

For the Poisson distribution:

e−λλw

w!
∼ λwew−λ

√
2πwww

= Θ

(

1√
w

(λe

w

)w
)

as w → ∞,

where we have used Stirling’s formula:

w! ∼
√

2πw
(w

e

)w

as w → ∞,

the derivation of which would be too great a digression. Each of these functions goes to 0
extremely fast as the argument goes to infinity; none has a ‘fat’ tail.

There is a probability density function, however, that was invented to describe the
distribution of wealth. This is Pareto’s distribution:

f(x) = αkαx−α−1,

for α > 0, and where 0 < k ≤ x. Figure 5.15 shows the graphs of the Pareto probability
density function for k = 1 (in red), k = 2 (in green) and k = 4 (in blue), with α = 2. As k
increases, the probability of values larger than k increases. Figure 5.16 shows the graphs
of the Pareto probability density function for α = 1 (red), α = 2 (green) and α = 4 (blue),
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Figure 5.15. Probability density functions for
Pareto distributions with k = 1 (red), k = 2
(green), k = 4 (blue) and α = 2.

Figure 5.16. Probability density functions for
Pareto distributions with α = 1 (red), α = 2
(green), α = 4 and k = 1.

with k = 1. As α increases, the probability density goes to 0 faster as the argument goes
to infinity.

Pareto distributions have ‘fat’ tails:

αkαx−α−1 = Θ(x−α−1) as x → ∞,

which goes to 0 much more slowly as x → ∞ than does the normal distribution, or the
gamma distribution, or the gamma distribution, or the Poisson distribution.

Homework: Sample 400 points from some Pareto distributions and plot them as in Fig-
ures 5.7 and 5.9. Can you find parameters for which the Pareto distribution
is similar to the Forbes 400 data?
If you collected data that was not well approximated by a normal distribution,
plot it as in Figures 5.7 and 5.9. Does one of the other distributions discussed
in this lecture appear to approximate your data better than does the normal
distribution?
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