A discrete Schrödinger equation

You may recall the Schrödinger equation in Euclidean space from your physics or chemistry classes. In any case, it is:

$$
i \hbar \frac{\partial}{\partial t} \psi(x, t)=H \psi(x, t)=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(x, t)+V(x, t) \psi(x, t)
$$

where $\psi(x, t) \in \mathbb{C}$ is the probability amplitude so we require

$$
\int|\psi(x, t)|^{2} \mathrm{~d} x=1
$$

The Schrödinger equation is, of course, a partial differential equation. To turn it into a system of ordinary differential equations we discretize the space in which x takes its values.

And to keep the system low dimensional, we consider a highly symmetric problem, in which $x \in K_{N}$, the complete graph on N vertices (which implies that the transition amplitude from any vertex to any other vertex is the same), and $V(x, t)=\delta_{x a}$ for some $a \in K_{N}$. If we further assume that the initial state of the system is an equal superposition $\psi(x, 0)=1 / \sqrt{N}$ then $\psi(x, t)=\psi(y, t)=: \beta(t) / \sqrt{N-1}$ for all $x, y \neq a$ and all t. These assumptions produce the two (complex) dimensional system:

$$
i\binom{\dot{\alpha}}{\dot{\beta}}=-\left(\begin{array}{cc}
\gamma+1 & \gamma \sqrt{N-1} \tag{1}\\
\gamma \sqrt{N-1} & \gamma(N-1)
\end{array}\right)\binom{\alpha}{\beta}=:-\left(\begin{array}{ll}
a & b \\
b & d
\end{array}\right)\binom{\alpha}{\beta}
$$

where $\alpha(t):=\psi(a, t)$ and γ depends on m. I have omitted the derivation of equation (1), and the motivation for studying it; for both see Childs and Goldstone [1].

The complex-valued functions $\alpha(t)$ and $\beta(t)$ make (1) different from the systems of ODEs you have seen earlier in this course. One way to handle this is to rewrite (1) as a system of real equations by defining $\alpha=: p+i q$ and $\beta=: r+i s$, for real-valued functions p, q, r, s. Substituting into (1) and equating the real and imaginary parts of each equation separately gives:

$$
\left(\begin{array}{c}
\dot{p} \tag{2}\\
\dot{q} \\
\dot{r} \\
\dot{s}
\end{array}\right)=\left(\begin{array}{cccc}
0 & -a & 0 & -b \\
a & 0 & b & 0 \\
0 & -b & 0 & -d \\
b & 0 & d & 0
\end{array}\right)\left(\begin{array}{l}
p \\
q \\
r \\
s
\end{array}\right) .
$$

Now (2) is a linear system for 4 real functions, with a critical point at the origin. Its type depends on the eigenvalues of the coefficient matrix in (2).

Reference

[1] A. M. Childs and J. Goldstone, "Spatial search by quantum walk", Phys. Rev. A 70 (2004) 022314/1-11.

