A discrete Schrödinger equation

You may recall the Schrödinger equation in Euclidean space from your physics or chemistry classes. In any case, it is:

$$i\hbar\frac{\partial}{\partial t}\psi(x,t)=H\psi(x,t)=-\frac{\hbar^2}{2m}\nabla^2\psi(x,t)+V(x,t)\psi(x,t),$$

where $\psi(x,t) \in \mathbb{C}$ is the probability amplitude so we require

$$\int |\psi(x,t)|^2 \,\mathrm{d}x = 1.$$

The Schrödinger equation is, of course, a *partial* differential equation. To turn it into a system of ordinary differential equations we discretize the space in which x takes its values.

And to keep the system low dimensional, we consider a highly symmetric problem, in which $x \in K_N$, the complete graph on N vertices (which implies that the transition amplitude from any vertex to any other vertex is the same), and $V(x,t) = \delta_{xa}$ for some $a \in K_N$. If we further assume that the initial state of the system is an equal superposition $\psi(x,0) = 1/\sqrt{N}$ then $\psi(x,t) = \psi(y,t) =: \beta(t)/\sqrt{N-1}$ for all $x, y \neq a$ and all t. These assumptions produce the two (complex) dimensional system:

$$i\begin{pmatrix} \dot{\alpha}\\ \dot{\beta} \end{pmatrix} = -\begin{pmatrix} \gamma+1 & \gamma\sqrt{N-1}\\ \gamma\sqrt{N-1} & \gamma(N-1) \end{pmatrix} \begin{pmatrix} \alpha\\ \beta \end{pmatrix} =: -\begin{pmatrix} a & b\\ b & d \end{pmatrix} \begin{pmatrix} \alpha\\ \beta \end{pmatrix}, \tag{1}$$

where $\alpha(t) := \psi(a, t)$ and γ depends on m. I have omitted the derivation of equation (1), and the motivation for studying it; for both see Childs and Goldstone [1].

The complex-valued functions $\alpha(t)$ and $\beta(t)$ make (1) different from the systems of ODEs you have seen earlier in this course. One way to handle this is to rewrite (1) as a system of real equations by defining $\alpha =: p + iq$ and $\beta =: r + is$, for real-valued functions p, q, r, s. Substituting into (1) and equating the real and imaginary parts of each equation separately gives:

$$\begin{pmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \\ \dot{s} \end{pmatrix} = \begin{pmatrix} 0 & -a & 0 & -b \\ a & 0 & b & 0 \\ 0 & -b & 0 & -d \\ b & 0 & d & 0 \end{pmatrix} \begin{pmatrix} p \\ q \\ r \\ s \end{pmatrix}.$$
 (2)

Now (2) is a linear system for 4 real functions, with a critical point at the origin. Its type depends on the eigenvalues of the coefficient matrix in (2).

Reference

 A. M. Childs and J. Goldstone, "Spatial search by quantum walk", Phys. Rev. A 70 (2004) 022314/1–11.