1. Recall that the van der Pol equation $\ddot{x}+\mu\left(x^{2}-1\right) \dot{x}+x=0$ can be rewritten as the system

$$
\begin{aligned}
\dot{x} & =y-F(x) \\
\dot{y} & =-x,
\end{aligned}
$$

where $F(x)=\mu x\left(x^{2} / 3-1\right)$ and $\mu>0$.
a. [15 points] Let $R=\frac{1}{2}\left(x^{2}+y^{2}\right)$. For which (x, y) is \dot{R} positive? Negative? Is R a Lyapunov function? Why or why not?
$\dot{R}=x \dot{x}+y \dot{y}=x(y-F)+y(-x)=-x F=-\mu x^{2}\left(x^{2} / 3-1\right)$. Thus $\dot{R}>0$ for $|x|<\sqrt{3}$ and $\dot{R}<0$ for $|x|>\sqrt{3}$. R is not a Lyapunov function since the textbook definition is that it should be weakly decreasing everywhere.
b. [15 points] Can you use what you learned about R in part (a), in conjunction with the Poincaré-Bendixson theorem, to prove that the van der Pol equation has a limit cycle? Explain your answer.
Let A be the annulus $R \leq 2$, for example, with a small disc (of radius less than $\sqrt{3}$) around the fixed point at $(x, y)=(0,0)$ removed. Then along the part of the outer boundary of A on which $|x|>\sqrt{3}$, the flow is towards the interior of A, as it is also on the inner boundary. But this isn't quite enough to apply the Poincaré-Bendixson theorem, since part of the outer boundary of A has $|x|<\sqrt{3}$, and along that part of the boundary R is increasing. Can you find a different region which is trapping?

	score
1	
2	
3	
total	

2. Let $\ddot{x}+2 \epsilon \dot{x}+x=0$, with $x(0)=1$ and $\dot{x}(0)=1$. Suppose we want to find a three-time approximation

$$
x(t, \epsilon)=x_{0}(\tau, T, \mathcal{T})+\epsilon x_{1}(\tau, T, \mathcal{T})+\epsilon^{2} x_{2}(\tau, T, \mathcal{T})+O\left(\epsilon^{3}\right)
$$

where $\tau=t, T=\epsilon t$, and $\mathcal{T}=\epsilon^{2} t$.
a. [15 points] Compute the terms in the ϵ-expansions of \dot{x} and \ddot{x} up to and including $O\left(\epsilon^{2}\right)$.

$$
\begin{aligned}
\dot{x}= & \partial_{\tau} x_{0}+\epsilon \partial_{T} x_{0}+\epsilon^{2} \partial_{\mathcal{T}} x_{0}+\epsilon\left(\partial_{\tau} x_{1}+\epsilon \partial_{T} x_{1}\right)+\epsilon^{2} \partial_{\tau} x_{2}+O\left(\epsilon^{3}\right) \\
= & \partial_{\tau} x_{0}+\epsilon\left(\partial_{T} x_{0}+\partial_{\tau} x_{1}\right)+\epsilon^{2}\left(\partial_{\mathcal{T}} x_{0}+\partial_{T} x_{1}+\partial_{\tau} x_{2}\right)+O\left(\epsilon^{3}\right) \\
\ddot{x}= & \partial_{\tau \tau} x_{0}+\epsilon \partial_{T \tau} x_{0}+\epsilon^{2} \partial_{\mathcal{T} \tau} x_{0}+\epsilon\left(\partial_{\tau T} x_{0}+\epsilon \partial_{T T} x_{0}+\partial_{\tau \tau} x_{1}+\epsilon \partial_{T \tau} x_{1}\right) \\
& \quad+\epsilon^{2}\left(\partial_{\tau \mathcal{T}} x_{0}+\partial_{\tau T} x_{1}+\partial_{\tau \tau} x_{2}\right)+O\left(\epsilon^{3}\right) \\
= & \partial_{\tau \tau} x_{0}+\epsilon\left(2 \partial_{\tau T} x_{0}+\partial_{\tau \tau} x_{1}\right) \\
& \quad+\epsilon^{2}\left(\partial_{T T} x_{0}+2 \partial_{T \tau} x_{1}+2 \partial_{\tau \mathcal{T}} x_{0}+\partial_{\tau \tau} x_{2}\right)+O\left(\epsilon^{3}\right)
\end{aligned}
$$

b. [15 points] Plugging the results of (a) into the differential equation, write down the equations implied by the $\epsilon^{0}, \epsilon^{1}$, and ϵ^{2} terms.

$$
\begin{aligned}
0= & \partial_{\tau \tau} x_{0}+\epsilon\left(2 \partial_{\tau T} x_{0}+\partial_{\tau \tau} x_{1}\right)+\epsilon^{2}\left(\partial_{T T} x_{0}+2 \partial_{T \tau} x_{1}+2 \partial_{\tau} \tau x_{0}+\partial_{\tau \tau} x_{2}\right) \\
& \quad+2 \epsilon\left(\partial_{\tau} x_{0}+\epsilon\left(\partial_{T} x_{0}+\partial_{\tau} x_{1}\right)\right)+x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+O\left(\epsilon^{3}\right) \\
\left(\epsilon^{0}\right) \Rightarrow & \partial_{\tau \tau} x_{0}+x_{0}=0 \\
\left(\epsilon^{1}\right) \Rightarrow & \partial_{\tau \tau} x_{1}+x_{1}=-2 \partial_{\tau T} x_{0}-2 \partial_{\tau} x_{0} \\
\left(\epsilon^{2}\right) \Rightarrow & \partial_{\tau \tau} x_{2}+x_{2}=-\partial_{T T} x_{0}-2 \partial_{\tau \mathcal{T}} x_{0}-2 \partial_{T} x_{0}-2 \partial_{T \tau} x_{1}-2 \partial_{\tau} x_{1} .
\end{aligned}
$$

c. [Extra Credit, 20 points] Solve the first two of the equations you found in (b).
3. Consider the system of equations:

$$
\begin{aligned}
\dot{u} & =-\frac{1}{6} v w \\
\dot{v} & =\frac{2}{3} w u \\
\dot{w} & =-\frac{1}{2} u v .
\end{aligned}
$$

a. [10 points] Show that $L=u^{2}+v^{2}+w^{2}$ is conserved in this system.
$\dot{L}=2 u \dot{u}+2 v \dot{v}+2 w \dot{w}=-\frac{1}{3} u v w+\frac{4}{3} u v w-u v w=0$.
b. [15 points] Find an independent quadratic conserved quantity, $H(u, v, w)$.

Try $H=a u^{2}+b v^{2}+c w^{2}$. Then $\dot{H}=\left(-\frac{1}{3} a+\frac{4}{3} b-c\right) u v w$, so we just need to pick a, b, and c to make $-\frac{1}{3} a+\frac{4}{3} b-c=0$. An independent choice is $a=\frac{1}{2}, b=\frac{1}{4}$, and $c=\frac{1}{6}$.
c. [15 points] Use these two conserved quantities to reduce this system to a single nonlinear first order equation.
Since L and H are conserved, we have:

$$
\begin{aligned}
v^{2}+w^{2} & =L-u^{2} \\
\frac{1}{2} v^{2}+\frac{1}{3} w^{2} & =2 H-u^{2}
\end{aligned}
$$

Solving for v^{2} and w^{2} we get $w^{2}=3\left(L-4 H+u^{2}\right)$ and $v^{2}=2\left(6 H-L-2 u^{2}\right)$. Substituting into the first ODE gives

$$
\dot{u}=-\frac{1}{6} \sqrt{6\left(6 H-L-2 u^{2}\right)\left(L-4 H+u^{2}\right)} .
$$

