Random Walk Algorithms: Homework 6

You can answer the following questions either analytically, or by writing and running code.

1. Consider a game A which consists of flipping a coin with probability $1/2$ of landing head up, in which case you win 1; if it lands tail up you lose 1. Thus, if W_t is your wealth after playing t times, \(\{W_t\} \) is a random walk on \mathbb{Z}. If $W_0 = 0$, what is $E[W_{100}]$?

2. Now consider a game B which has two coins, B_1 and B_2. The probability of B_1 landing head up is $1/10$ and the probability of B_2 landing head up is $3/4$. On play t, if $W_{t-1} \equiv 0 \pmod{3}$ you must flip B_1; otherwise you must flip B_2. Again you win 1 if the coin you flip lands head up; otherwise you lose 1. In this case, \(\{W_t\} \) is an inhomogeneous random walk on \mathbb{Z}. If $W_0 = 0$, what is $E[W_{100}]$?

3. Finally, suppose you play these games in the order AABB. If $W_0 = 0$, what is $E[W_{100}]$? Compare your result with those in problems 1 and 2.